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Slip System

plane slip

direction slip

Plastic deformation of single crystal in uniaxial tension 

Before slip After slip 

Interatomic spacing

발표자
프레젠테이션 노트
Crystalline solids may undergo plastic deformation under the larger stress than the yield stress of the materials.In crystalline material, plastic deformation occurs by a shear process.This motion can be sketched like this figure under the uniaxial stress state.Form this deformation, we can define slip plane and slip direction.For the material to remain continuous, the slip direction must lie within the slip plane.The slip direction is represented by the unit vector, b.The slip plane is represented by the unit vector n, the normal of this plane.What’s the length of this one.This is one of the interatomic spacing of the material.The combination of a particular slip plane and a particular slip direction is called a slip system.  
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Slip System
Metal Crystal 

structure
Purity,

%
Slip

plane
Slip

direction
Shear stress, 

MPa
Reference

Zn
Mg 
Cd
Ti

hcp
hcp
hcp
hcp

99.999
99.996
99.95

99.996
99.996
99.99
99.9

(0001)
(0001)
(0001)
(0001)
(0001)
(1010)
(1010)

<1 1-2 0>
<1 1-2 0>
<1 1-2 0>
<1 1-2 0>
<1 1-2 0>
<1 1-2 0>
<1 1-2 0>

0.18
0.77
0.43
0.58
0.57
13.7
90.1

Jillson
Burke
Burke 

Schmid
Boas

Churchman
Churchman

Ag
Al
Au
Cu
Ni

fcc
fcc
fcc
fcc
fcc

99.999
99.99
99.97
99.93

99.996
99.99

99.999
99.98
99.8

{111}
{111}
{111}
{111}
{111}
{111}
{111}
{111}
{111}

<110>
<110>
<110>
<110>
<110>
<110>
<110>
<110>
<110>

0.37
0.48
0.73
1.3

1.02
0.91
0.65
0.94
5.7

daC. Andrade
Rosi
Rosi
Rosi

Rosi, MCW 
Sachs
Rosi
Rosi
Rosi

Fe
Mo

bcc
bcc

99.96 {110}
{112}
{123}
{110}

<111>
<111>
<111>
<111>

27.5
49.0

Cox
Maddin

발표자
프레젠테이션 노트
In FCC material, the slip system is {111} plane <110> direction.In BCC material, generally, the slip system is {110} plane <111> direction. But sometimes, {112} <111> and {123} <111> are possible.Generally, the slip direction lies in the direction of the shortest lattice vector, and slip plane normal lies perpendicular to the most widely-spaced planes.
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Slip System for Crystal Deformation

발표자
프레젠테이션 노트
Total number of slip system in FCC is 12.Total number of slip system in BCC can 12 or 12+12 or 12+12+24.
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Schmid's Law 

- Plastic deformation is initiated 
at the critical resolved shear 
stress (CRSS).  
- The CRSS is the stress at which 
dislocations begin to move.

Resolved Shear Stress

Plastic flow is initiated when τRSS reaches a critical value, characteristic 
of the material, called critical RSS, when m τCRSS = σys (Schmid law).

= σ / m
Talyor factor

발표자
프레젠테이션 노트
Plastic deformation is initiated at the critical resolved shear stress (CRSS).  The CRSS is the stress at which dislocations begin to move at the slip system.Let’s consider the cylindrical crystal sketched in this figure.Next page…. 1.Plastic flow is initiated when RSS reaches a critical value.We called this stress critical RSS.Next page…..2.What’s the meaning of cos pai and cos lamda ?Cos pai is the direction cosine between the stress direction and slip plane normal.Cos lamda is the direction cosine between the stress direction and slip direction.Cos pai  x Cos lamda is usually referred to as the Schmid factor, or reciprocal of Taylor factor m. 
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MAXIMUM Resolved Shear Stress occurs when φ = λ = 45o

called τRSS,max. Slip is on the planes 45o from the applied stress.

Then, τRSS, max = σ cos2φ = σ /2  at φ = λ = 45o.

τRSS, max

σ

Schmid factor 

Slip system , 1/m of which is maximum, operates.
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Critical Resolved Shear Stress

발표자
프레젠테이션 노트
If crystals are loaded, the normal yield stress  can be measured as a function of the orientation of the slip system as Schmid factor. This figure shows …….From this, the slip occurs when the resolved shear stress attains a critical value, the critical resolved shear stress. The minimum is here. Slip occurs when 1/m is maximum.
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Schmid Factor

m = dγ /dε = σ /τrss
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Schmid Factor
The work done per unit extension (e = 1) is

The work done is least for the slip system with the smallest m, the system 
that slips preferentially. 
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Critical Resolved Shear Stress

Calculate the tensile stress that is applied along 
the [1-20] axis of a gold crystal to cause slip on the 
(1-1-1)[0-11] slip system. The critical resolved 
shear stress is 10 MPa.

Example problem I
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Example II:  FCC Cu with Loading axis [112]
• What is most likely initial slip system?
• If CRSS is 50 MPa, what is the tensile stress at which Cu will start to deform plastically?

Slip Plane
n

Slip direction
s

n.l
cosφ

s . l
cosλ

Schmidt factor
cosφ  cosλ

σ (MPa)

111( )
[1 10]

[1 01]
[01 1]

2 2 / 3      0
3 / 6
3 / 6

    0
6 / 9
6 / 9

Not def.
184
184

1 11( )
[110]
[101]
[01 1]

2 / 3 3 / 3
- 3 / 2

3 / 6

6 / 9
- 6 / 6

6 /18

184
-122
367

11 1( )
[110]

[1 01]
[011]

2 / 3 3 / 3
- 3 / 6

3 / 2

 6 / 9
- 6 /18

6 / 6

184
-367
122

111 ( )
= 1 1 1( ) [1 10]

[101]
[011]

0     0
3 / 2
3 / 2

   0
   0
   0

Not def.
Not def.
Not def.

smallest
stress to
cause slip
(yielding)

Initial Slip Systems (plane, direction) are then (1 11)[101], (11 1)[011]
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Example III:
Crystal with simple cubic structure :

slip planes {100} and slip directions <010>

Load is applied along [010]. 
Determine Schmid factor and what slip occurs.

l=[010]

slip plane 
n 

φ, cosφ 
∝ 

slip dir. 
s 

λ, cosλ 
∝l.s 

m 
 

cosφ cosλ 
(100) 900, 0.0 [010] 

[001] 
00, 1.0 

900, 0.0 
0 

(010) 00, 1.0 [100] 
[001] 

900, 0.0 
900, 0.0 

0 

(001) 900, 0.0 [100] 
[010] 

900, 0.0 
00, 1.0 

0 

 

 

⋅l n

Is there any slip? Why?         
If no slip, what must happen finally to material as load is increased?



14

2010-10-27

Line defects (one dimension)

 Edge Dislocation
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Line defects (one dimension)

 Screw Dislocation



16

2010-10-27

Slip - dislocation
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Slip system
1) FCC is consistent with the general rule, i.e,

Slip plane Slip direction

{111} 110< >

Nonparallel 
plane

4

Slip direction 
per plane

3

Slip system

12

2) BCC

Slip plane Slip direction

{110} 111< >

Nonparallel 
plane

6

Slip direction 
per plane

2

Slip system

12

Preferable

Slip plane Slip direction

{112} 111< >

Nonparallel 
plane

12

Slip direction 
per plane

1

Slip system

12

Observable

{123} 111< > 24 1 24

3) HCP

Slip plane Slip direction

{0001} 1120< >

Nonparallel 
plane

1

Slip direction 
per plane

3

Slip system

3

{1010} 3 1 3

{1011} 6 1 6

1120< >

1120< >

 General rule;  
- slip plane: the densest 
atomic packing
- slip direction: close-
packed atomic direction

 In certain ionic solids, slip 
can happen in nonclose-
packed directions.
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Perfect Dislocation (FCC)

 {111}<1-10> slip system  Burgers vector : a/2<110>  E ∝2a2/4

 1/2<110> is a translation vector for the FCC lattice. Perfect dislocation
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Characteristics of dislocations

Mixed dislocation
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Motion of Mixed Dislocations
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Dislocations move via slip
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Multiplication of Dislocations 
(Frank-Read Source)
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Intersection of Dislocations
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Deformation of single crystals

Stage I:
•After yielding, the shear stress for plastic deformation is essentially 
constant.  There is little or no work hardening.
•This is typical when there is a single slip system operative.  
Dislocations do not interact much with each other.  “Easy glide”
•Active slip system is one with maximum Schmid factor. 
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Deformation of single crystals

Stage II:
•The shear stress needed to continue plastic deformation begins to increase 
in an almost linear fashion. There is extensive work hardening (θ≅G/300).
•This stage begins when slip is initiated on multiple slip systems.
•Work hardening is due to interactions between dislocations moving on 
intersecting slip planes.
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Deformation of single crystals

Stage III:
•There is a decreasing rate of work hardening.
•This decrease is due to an increase in the degree of cross slip
resulting in a parabolic shape to the curve.
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[001] stereographic projection of 
cubic crystal
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Influence of stress axis 
orientation

More slip systems means a 
“harder”material.
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Work/Strain Hardening




30

2010-10-27

Work/Strain Hardening
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Work/Strain Hardening
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Implications for polycrystalline 
materials

•Plastic deformation within an individual grain is constrained by the neighboring grains.
•Since plastic deformation of a single grain is restrained by its neighboring grain, a 
polycrystalline material will have an intrinsically greater resistance to plastic flow than 
would a single crystal.
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Implications for polycrystalline 
materials

x

y

z
σ

BA

grain boundary

Because one grain has a larger value of  cos φ cos λ
[smaller Taylor factor (1/m)], the above constraints restrict the 
deformation of this more favorably oriented grain and result 
in a higher Yield Strength (greater work-hardening response of 
the bicrystal.

Niobium (bcc)
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Geometrically necessary dislocations 
(↔ statistically stored dislocations)

Plastic bending of a crystal

Slip plane and directionSlip plane and direction

12( ) /l l lt r
l l lt l

δ δ δ θ −−
− = = =

Strain gradient=strain difference/thickness

    
( ) ( )

difference of the atomic planes
l l l l

b b
δ δ+ −

= −

12( ) /l l lt r
l l lt l

δ δ δ θ −−
− = = =

Strain gradient=strain difference/thickness

    
( ) ( )

difference of the atomic planes
l l l l

b b
δ δ+ −

= −

   
    2

 
,

 

s

s

density of geometrical dislocation
the number of dislocation l strain gradient

surface area blt b
Generally

strain gradient
b

δρ

ρ α

= = =

=
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Geometrically necessary dislocations

Single crystal without geometrically 
necessary dislocation

2

/
4

: diameter of grain boundary
: average strain gradient

s
d b
d bd

d

ε ερ

ε

≅ ⇒

Polycrystal: grain boundary

   
    

 

 
s

strain gradient
b

ρ α=
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1. Initial 2. Small load 3. Unload

Plastic means permanent!

F

δ
linear 
elastic

linear 
elastic

δplastic

Plastic deformation (for metals)
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Plastic Yielding 

What is yielding?
Slip, Glide of Dislocation on Slip System

What is yield criterion ?
Distinction between elastic region and plastic region.

What is yield stress, locus and surface ?
Uniaxial stress    (1-c)  : Yield stress     :  A value
Plane Stress  (2-c)  : Yield Locus       :  A line  
3 dimensions  (6-c)  : Yield surface      :  A surface

“Yield surface divides the stress space into elastic region and 
plastic region”
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Yielding

 Plastic deformation (yielding) 
 Slip process
 (Maximum) Shear stress

 Yield Criteria
 Tresca (Maximum-Shear-Stress) Yield Criteria

 Von-Mises Yield Criteria

= k

’
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Yield Criteria

Tresca (Maximum-Shear-Stress) Yield Criteria

= k

k=σ0/2

σ1- σ3 = σo
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Stress state and stress space

















σσσ
σσσ
σσσ

=
















σσσ
σσσ
σσσ

=σ

zzzyzx

yzyyyx

xzxyxx

333231

232221

131211

ij jiij σσ = (6 component)

Stress space  =>  6 dimensional space

0ijij =σδ−σ 0

zzzyzx

yzyyyx

xzxyxx

=
σ−σσσ

σσ−σσ
σσσ−σ

or

0JJJ
32

2

1

3 =−σ+σ−σ

Three principal stresses
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Stress state and stress space
zzyyxxii1 )(trJ σ+σ+σ=σ=σ=

2
zx

2
yz

2
xyxxzzzzyyyyxxijijjiij2 2

1
2
1J σ−σ−σ−σσ+σσ+σσ=σσ=σσδ= βααβ

)det(
3
1J ijkjiijk3 σ=σσσδ= γβααβγ

)J2J27JJ9(
54
1R)JJ3(

9
1Q 3

1321
2
12 ++−=−=

3Q
Rcos

−
=θ

11 J
3
1)

3
1cos(Q2 +θ−=σ

12 J
3
1)

3
2

3
1cos(Q2 +π+θ−=σ

13 J
3
1)

3
4

3
1cos(Q2 +π+θ−=σ

Using the solution of cubic equation

3211J σ+σ+σ=

1332212J σσ+σσ+σσ=

3213J σσσ=
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Stress state and stress space

Deviatoric Stress S ijijij Sp +δ=σ ii3
1p σ=

ii3211 SSSS)(tr J =++==′ S

ijij
2
3

2
2

2
12 SS

2
1)SSS(

2
1 J =++=′

3213 SSS J =′

note, )J3J(
3
1 J 2

2
12 −=′           =>   -3Q 

     )J27JJ9J2(
27
1 J 321

3
13 +−=′  =>    2R 

     [ ])()(3)(
3
1 J 2

zx
2
yz

2
xyxxzzzzyyyyxx

2
zzyyxx2 σ+σ+σ−σσ+σσ+σσ−σ+σ+σ=′  

     [ ] 2
zx

2
yz

2
xy

2
xxzz

2
zzyy

2
yyxx6

1
σ+σ+σ+σ−σ+σ−σ+σ−σ= )()()(  

     [ ]2
13

2
32

2
216

1 )()()( σ−σ+σ−σ+σ−σ=  
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Yield Criteria

’



44

2010-10-27

Yield Surface

σ3
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von-Mises Yield Locus

1σ

2σ

yσ

No yielding

Yielding
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1σ

2σ

yσ

0,0 21 >> σσ0,0 21 >< σσ

0,0 21 <> σσ0,0 21 << σσ

No yielding

Yielding

Tresca Yield Locus
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Experimental comparison of 
Yield Locus
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Yield surface

0)ij(F =σ

Elastic Deformation : F < 0   
Plastic Deformation : F = 0

Using the representation of stress in principal stress space, 

         0)J,J,J(F),,(F 321321 ==σσσ  

 

For metallic material, hydrostatic stress do not effect on yielding. 

         0) J, J(F 32 =′′      
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Yield surface

Yield surface

σ3

σ1

σ2

Decompose the yield function into 

     Stress dependent part  : )(f ijσ  

     Stress independent part :  C 

 

 0C)(f)(F ijij =−σ=σ  

* Important Note on Yield surface 

   Closed surface in Six dimensional space 

   0)(F ij =σ   :  No physical meaning : 0)(F ij >σ   
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Yield Criteria for Isotropic Metals
(Maxwell-Huber-von Mises Criterion)

Maxwell (1856) : Initial idea
Huber        : 1st published
von Mises     : published
Hencky       : interpret the criterion

called von Mises criterion or called ‘  J 2′  theory’ 

0
3
1SS

2
1

3
1 2J2k 2J 2

yijij
2
y =σ−=σ−′=−′      k: some critical value 

 

[ ] 2
zx

2
yz

2
xy

2
xxzz

2
zzyy

2
yyxx2 )()()(

6
1 J σ+σ+σ+σ−σ+σ−σ+σ−σ=′  

[ ]2
13

2
32

2
212 )()()(

6
1 J σ−σ+σ−σ+σ−σ=′  
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Yield Criteria for Isotropic Metals
(Maxwell-Huber-von Mises Criterion)

1) circle on π -plane 

2) radius k2r = on π  

3) No 1J effect 

for uniaxial tension 0, 32y1 =σ=σσ=σ   22
y k

3
1

=σ∴    
3

k yσ
=∴  

for pure shear, yxy τ=σ , others zero.   22
y k=τ    yk τ=    

3
y

y

σ
=τ  
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Effective stress

2/12
13

2
32

2
21 ])()()[(

2
1 σσσσσσσ −+−+−=

2/1
312312

2
1133

2
3322

2
2211

)](6

)()()[(
2

1

σσσ

σσσσσσσ

+++

−+−+−=

Under von-Mises Yield Criterion 

''
2
3

ijij σσσ =
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Yield Criteria for Isotropic Metals
(Tresca condition)

kmax =τ      1864 : Tresca 

 

in principal stress space 

      max k)(
2
1,)(

2
1,)(

2
1

133221 =






 σ−σσ−σσ−σ  

       k)(
2
1

minmax =σ−σ  
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Yield Criteria for Isotropic Metals
(Tresca condition)

Other form of Tresca condition 

 

  { } { } { }22
13

22
32

22
21ij k4)(k4)(k4)()(F −σ−σ⋅−σ−σ⋅−σ−σ=σ  

 

  6
2

42
2

22
3

3
232 k64Jk96Jk36J27J4)J,J(F −+−−=  

        2
3

22
2

2
2 J27)k4J)(kJ(4 −−−=  

 

for uniaxial tension  0, 32y1 =σ=σσ=σ   k2y =σ  

for pure shear yτ=τ ,    ky =τ      yy 2
1

σ=τ∴  
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Yield criteria for anisotropic 
materials

General yield function for anisotropic material  

        0)L,(F =σ  

        σ  : Cauchy Stress 

        L : Material Property Tensor generally called Anisotropic coefficient 

 

* Plastic strain ratio R 

During tensile testing of sheet, plastic strain ratio R is defined as 

             
t

w

d
dR

ε
ε

=  

    wdε  : Strain increment along width direction 

    tdε  : Strain increment along thickness direction 
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Yield criteria for anisotropic 
materials

In isotropic material , 02k 2JF =−′=  , 

         R = 1        in all direction 

In anisotropic material,  

         )(RR θ=      θ  : Angle from rolling direction 

 

       

                      

    

                    

The best anisotropic yield function is one of the most important goal for 
the material engineers and scientists.

The best anisotropic yield function is the yield function which can describe 
exact yielding behavior with limited number of coefficient.
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Yield criteria for anisotropic 
materials (Continuum Based Function)

* Hill(1948)  

2
xy

2
zx

2
yz

2
yx

2
xz

2
xyij N2M2L2)(H)(G)(F)(f2 τ+τ+τ+σ−σ+σ−σ+σ−σ=σ  

 

* Hosford(1979) 

m
o

m

yx
m

xz

m

xy HGF σ=σ−σ+σ−σ+σ−σ  

 

* Hill(1979) 

m
o

m
321

m
321

m
321

m

yx
m

xz

m

xy

2N2M2L

HGF

σ=σ−σ−σ+σ−σ−σ+σ−σ−σ+

σ−σ+σ−σ+σ−σ
 

 

* Hill(1990) 

{ } m
b

2
yx

2
y

2
x

1)2/m(2
xy

2
y

2
x

2/m2
xy

2
yx

mmm

yx

)2()(b)(a22

4)()/(

σ=σ−σ+σ+σ−σ+σ+σ+

σ+σ−στσ+σ+σ
−
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Yield criteria for anisotropic 
materials (Continuum Based Function)

* Gotoh 

4
o

4
xy9

2
y8yx7

2
x6

2
xy

4
y5

3
yx4

2
y

2
x3y

3
x2

4
x1 C)CCC(CCCCC σ=σ+σ+σσ+σσ+σ+σσ+σσ+σσ+σ  

 

* Bassani 

m
o

m
21

mn
o

m
21 )R21(

m
n1)R1(

m
n

σ






 ++=σ−σσ++σ+σ −  

 

* CMTP 

}SSS{2}SSSSSS{F m
31

m
23

m
12

n
1133

n
3322

n
2211 ++β+−+−+−α= ,       

 

* Barlat(1991) 

mm
21

m
13

m
21 2SSSSSS σ=−+−+−=Φ  

   jiji LS σ=     L : Symmetry Operation tensor 
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Yield criterion of Powder
2

0

2

1

'

2
YBJAJ η=+

m

TT
)]R1/()RR[( −−

m

TT
)]R1/()RR[( −−

Park and Han 2R5.0m

TT
)]R1/()RR[( −−
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Yield criterion of powder
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Isotropic hardening and 
kinematic hardening

Yield surface movement in stress space
- Expansion
- Translation
- Distortion

Isotropic hardening                              Kinematic hardening
i)  yield locus center is fixed.             i) yield locus center is translated.
ii) Expansion of size                           ii) same size
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Isotropic hardening and 
kinematic hardening

n
p2 kJ ε⋅= 

kf =− )S( α

Typical Example of Yield Function with Hardening

Isotropic   : 

Kinematic  : α : back stress

General yield surface with hardening

0)
i

,,L(F =ασ

To consider Bauschinger effect

’
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Plastic Potential Theory and 
Plastic work

1928, von Mises proposed a Potential function ( )ijQQ σ=  which satisfies 

 
ij

p
ij

Qd
σ∂

∂
λ=ε 

      Plastic Potential Theory 

Q ; Plastic Potential Function (Scalar Function) 
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Plastic Potential Theory and 
Plastic work

1928, von Mises proposed a Potential function ( )ijQQ σ=  which satisfies 

 
ij

p
ij

Qd
σ∂

∂
λ=ε 

      Plastic Potential Theory 

Q ; Plastic Potential Function (Scalar Function) 

1. Geometric representation 

      ( ) CQ ij =σ 에 수직한 방향으로 p
ijdε 가 정해짐                             

      (use definition of gradient) thus called as “Normality Rule” 
 

2. Isotropy  : ( ) ( )321ij J,J,JQQQ =σ=       Anisotropy  :  ( )kij ,QQ βσ=   k=1,2,...,n  

 
3. Incompressibility of plastic flow  : ( )32 J,JQQ ′′=  

Porous material ( 1J  sensitive)  : ( )321 J,J,JQQ =   
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Plastic Potential Theory and 
Plastic work

* Flow Rule  : 
ij

p
ij

Qd
σ∂

∂
λ=ε 

  

Associated Flow Rule          Nonassociated Flow Rule  

     
ij

p
ij

Fd
σ∂

∂
λ=ε 

                  
ij

p
ij

Qd
σ∂

∂
λ=ε 

  

        FQ ≡                      FQ ≠  

Typically deformation of metal - associated flow rule 
Concrete, soil - nonassociated  

* Prantl-Reuss Equation ( or Levy-Mises Equation) 
  Associated flow rule based on von Mises yield function 

ijijSS
2
1F = - k     ij

ij

SF
=

∂σ
∂  

      ij
ij

p
ij SFd λ=

∂σ
∂

λ=ε 

     Prantl-Reuss equation 
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Plastic constitutive equation
(flow rule)

λ=
σ
ε

=
σ
ε

=
σ
ε

=
σ
ε

=
σ
ε

=
σ
ε dddd

'
d

'
d

'
d

31

31
p

23

23
p

12

12
p

33

33
p

22

22
p

11

11
p

3131
p

2323
p

1212
p

22113333
p

11332222
p

33221111
p

dd

dd

dd

)](
2
1[d

3
2d

)](
2
1[d

3
2d

)](
2
1[d

3
2d

λσ=ε

λσ=ε

λσ=ε

σ+σ−σλ=ε

σ+σ−σλ=ε

σ+σ−σλ=ε

Levy and von Mises suggested this relationship under von-Mises 
yield criterion.  dλ : a positive constant. 

σ
ε

=λ
pdd

ij
p

ij

p
dddW εσ=εσ=

'd'd
3
2d ij

p
ij

pp εε=ε
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General Stress-Strain Relations
Note that plastic flow relation must be incremental form 
         ε=σ d:d epC  
  epC ; the elastic -plastic stiffness tensor (4th order) 
  σd ; stress increment 
  εd ; strain increment 

0),(F =ασ  ; yield condition 

plastic deformation cause    
α+α→α
σ+σ→σ

d
d

 

σ+σ d , α+α d   must be on the subsequent yield surface   0)d,dF( =α+ασ+σ  

0d:Fd:F),(F)d,d(F =α
∂α
∂+σ

∂σ
∂+ασ=α+ασ+σ

 

0d:Fd:FdF =α
∂α
∂

+σ
∂α
∂

=  
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General Stress-Strain Relations
(Isotropic Hardening)

0k)(f),(F =−σ=ασ          
p
eε=α  or pW=α   )(kk α=    

∂σ
∂λ=εσ=ε

− Fd,d:d pee 1

C
     

0dFd:FdF =α
α

+=
∂
∂

σ
∂σ
∂    0)d

d
dk(d:F p

ep
e

=ε
ε

−+= σ
∂σ
∂  

 2/1
p
e

)f:f(
6

2)
d

kd(d:f
∂σ
∂

∂σ
∂

σ
∂σ
∂

λ
ε

−+=   

2/1
p
e

)f:f(
d
dk

6
2

d:f

∂σ
∂

∂σ
∂

σ
∂σ
∂

ε

=λ∴ 
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General Stress-Strain Relations
(Isotropic Hardening)

σ
∂σ
∂

= d:fl ,   
2/1)f:f(

f

∂σ
∂

∂σ
∂

∂σ
∂

=n  (unit normal to the yield surface) 

 

Thus  
∂σ
∂

ε
Fd p λ=      

∂σ
∂

∂σ
∂

∂σ
∂

∂
∂

ε
f

)f:f(
d
dk

6
2

d:f

d
2/1

p
e

p

ε

σ
σ=

σ
σ

ε

=

ε

=
∂
∂f)d:(

d
dk2

6

d
dk2

l6

p
e

p
e
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using 2/1ppp
e )d:d(

6
2d εε=ε     l

)
d
dk(

1

)
d
dk(

d:f

d
p
e

p
e

p
e

εε

σ
∂
∂

ε == σ  
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General Stress-Strain Relations
(Isotropic Hardening)

using additive decomposition of strain  

pe ddd ε+ε=ε σ
∂σ
∂

σ d:f
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e 1
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General Stress-Strain Relations
(Isotropic Work Hardening)

0dW
W
Fd:FdF p

p =
∂
∂

+σ
∂σ
∂

=  

0)k(W)(f)W,(F pp =−σ=σ  

Using  
pp dW

dk
W
F −=

∂
∂ ,  

∂σ
∂

εεσ
f:d:d:dW ppp λ=== SS  
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∂
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p ∂σ
∂

=λ∴   

l
:f)
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dk(

f

d
p

p

S
∂σ
∂

∂σ
∂

=ε     (associated flow rule) 
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General Stress-Strain Relations
(Isotropic Work Hardening)

using von Mises   0
3
1 J 2

y2 =−′ σ  

*  Strain hardening 

      0)(
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1 J p

e
2
y2 =εσ−′     S=

′
=

∂σ
∂

∂σ
∂  Jf 2 ,   p

e
yp

e

2
y

p
e d

d
3
2

d
)(d

3
1

d
dk

ε
σ

σ=
ε

σ
=

ε
 

 

1

p
e

y2
y

eep

d
d

4

91

−



















ε
σ

σ
+=

− SSCC  

*  Work hardening 

      0)W(
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General Stress-Strain Relations
(Kinematic Hardening)

For the von Mises criterion, 
 

    

[ ]1/2)(s:)(s
)(sn

(s:)s

αα
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σααασ
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=−−−=−− 0
3
1)(

2
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Thus epC is 

   
1

e
ep )(:)(
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−
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α
ss

sCC  

using constitutive eqn.( pdcd ε=α ) and associated flow rule(
∂σ
∂

ε
fd p λ=  ) 
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General Stress-Strain Relations
(Combined Isotropic and Kinematic)
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