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Slip System

Plastic deformation of single crystal in uniaxial tension
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발표자
프레젠테이션 노트
Crystalline solids may undergo plastic deformation under the larger stress than the yield stress of the materials.
In crystalline material, plastic deformation occurs by a shear process.
This motion can be sketched like this figure under the uniaxial stress state.
Form this deformation, we can define slip plane and slip direction.

For the material to remain continuous, the slip direction must lie within the slip plane.
The slip direction is represented by the unit vector, b.
The slip plane is represented by the unit vector n, the normal of this plane.

What’s the length of this one.
This is one of the interatomic spacing of the material.

The combination of a particular slip plane and a particular slip direction is called a slip system.  
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Slip System

Metal Crystal | Purity, Slip Slip Shear stress, Reference
structure % plane | direction MPa

Zn hcp 99.999 | (0001) | <11-20> 0.18 Jillson

Mg hcp 99.996 | (0001) | <11-20> 0.77 Burke

Cd hcp 99.95 | (0001) | <11-20> 0.43 Burke

Ti hcp 99.996 | (0001) | <11-20> 0.58 Schmid
99.996 | (0001) | <11-20> 0.57 Boas
99.99 | (1010) | <11-20> 13.7 Churchman

99.9 (1010) | <11-20> 90.1 Churchman

Ag fcc 99.999 | {111} <110> 0.37 daC. Andrade

Al fcc 99.99 {111} <110> 0.48 Rosi

Au fcc 99.97 {111} <110> 0.73 Rosi

Cu fcc 99.93 {111} <110> 1.3 Rosi

Ni fcc 99.996 | {111} <110> 1.02 Rosi, MCW
99.99 {111} <110> 0.91 Sachs
99.999 | {111} <110> 0.65 Rosi
99.98 {111} <110> 0.94 Rosi

99.8 {111} <110> 5.7 Rosi
Fe bcc 99.96 {110} <111> 27.5 Cox
Mo bcc {112} <111> 49.0 Maddin
{123} <111>
{110} <111>

>


발표자
프레젠테이션 노트
In FCC material, the slip system is {111} plane <110> direction.
In BCC material, generally, the slip system is {110} plane <111> direction. But sometimes, {112} <111> and {123} <111> are possible.

Generally, the slip direction lies in the direction of the shortest lattice vector, and slip plane normal lies perpendicular to the most widely-spaced planes.


Slip System for Crystal Deformation

Tablel.l. Slip systems of some crystal structures

Number of
Metals Slip Plane Slip Direction Slip Systems

Face-Centered Cubic

Cu, Al, Ni, Ag, Au 111) (110) 12
Body-Centered Cubic
a-Fe, W, Mo {110} (111) 12
a-Fe, W {211] (111) 12
a-Fe, K 1321 (111) 24
Hexagonal Close-Packed
Cd, Zn, Mg, Ti, Be 10001} (1120) 3
Ti, Mg, Zr {1010} (1120) 3
Ti, Mg {1011} (1120) 6
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발표자
프레젠테이션 노트
Total number of slip system in FCC is 12.
Total number of slip system in BCC can 12 or 12+12 or 12+12+24.



Schmid's Law

- Plastic deformation is initiated
at the critical resolved shear
stress (CRSS).

- The CRSS is the stress at which
dislocations begin to move.

Slip plane
normal

Resolved Shear Stress
I Talyor factor

Tres = ——COSPCOSA =g/ m

0 SchmicTFactor

direction

Plastic flow is initiated when tx<s reaches a critical value, characteristic

of the material, called critical RSS, when m tcres = 6,5 (Schmid law).
2010-10-27 <]E>


발표자
프레젠테이션 노트
Plastic deformation is initiated at the critical resolved shear stress (CRSS).  
The CRSS is the stress at which dislocations begin to move at the slip system.

Let’s consider the cylindrical crystal sketched in this figure.

Next page…. 1.

Plastic flow is initiated when RSS reaches a critical value.
We called this stress critical RSS.

Next page…..2.

What’s the meaning of cos pai and cos lamda ?
Cos pai is the direction cosine between the stress direction and slip plane normal.
Cos lamda is the direction cosine between the stress direction and slip direction.
Cos pai  x Cos lamda is usually referred to as the Schmid factor, or reciprocal of Taylor factor m. 


Schmid factor

MAXIMUM Resolved Shear Stress occurs when ¢ = A = 45°
called trgs max- S1IP Is on the planes 45° from the applied stress.

Then, Trgs max = 0 COS*Gp = o /2 at ¢ = A = 45°,

°t

l \ TRSS’ MaxXx

Slip system , 1/m of which is maximum, operates.
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Critical Resolved Shear Stress
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Fig.2.2. Yield behavior of anthracene single crystals. (a) Axial stress-strain curves of
crystals having different orientations relative to loading axis; (b) Axial stress vs. Schmid

factors. Dotted curve represents Eq.4.2.2 where 7_ = 137 kPa [Robinson, Scott, 1967].
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발표자
프레젠테이션 노트
If crystals are loaded, the normal yield stress  can be measured as a function of the orientation of the slip system as Schmid factor. 
This figure shows …….
From this, the slip occurs when the resolved shear stress attains a critical value, the critical resolved shear stress. The minimum is here. 
Slip occurs when 1/m is maximum.


Fi1g.2.3. Tensile strain de of specimen of unit length subjected to shear strain dy .
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Schmid Factor

m=dy/de= olt,
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Schmid Factor

The work done per unit extension (e = 1) is
W=mrt_, A

The work done is least for the slip system with the smallest m, the system
that slips preferentially.

g
‘\/f: f/"":e=bc05/l
/ v
Alcos ¢
-

2010-10-27 Fig.2.4. Relation between extension e and slip displacement b.



Critical Resolved Shear Stress

Example problem |

Calculate the tensile stress that is applied along
the [1-20] axis of a gold crystal to cause slip on the
(1-1-1)[0-11] slip system. The critical resolved
shear stress is 10 MPa.
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memm Table 4-4 Room-temperature slip systems and critical resolved 11
shear stress for metal single crystals

Critical
Crystal Purity, Slip Slip shear stress, —
Metal structure % plane direction MPa Ref.
Zn hep 99999  (0001)  [1120) 0.18 8
Mg hep 99.996  (0001)  [1120] 0.77 b
cd hep 99996  (0001)  [1130] 0.58 ¢
Ti hep 99.99 (1010)  [1120) 13.7 d
99.9 (1010)  [1130] 90.1 d
Ag fec 99.99 (111) (110] 0.48 ‘
99.97 (111) [110] 0.73 .
99.93 (111) [110] 1.3 «
Cu fee 99.999 (111) [110] 0.65 ‘
99.98 (111) [110] 0.94 ¢
Ni fee 99.8 (111) (110] 57 e
Fe bec 99.96 (110) [111] 27.5 f
(112)
(123)
Mo bee (110) [111) 49.0 g

“D. C. Jillson, Trans. ATME, vol. 188, p. 1129, 1950.

PE. C. Burke and W. R. Hibbard, Jr., Trans. ATME, vol. 194, p. 295, 1952.

“E. Schmid, “International Conference on Physics,” vol. 2, Physical Socicty, London. 1935.
“YA. T. Churchman, Proc. R. Soc. London Ser. A, vol. 226A, p. 216, 1954.

“F. D. Rosi, TRans., AIME, vol. 200, p. 1009, 1954,

/1. 1. Cox, R. F. Mehl, and G. T. Horne, Trans. Am. Soc. Met., vol. 49, p. 118, 1957.

! ]
2010-10-27 R. Maddin and N. K. Chen, Trans. ATME, vol. 191, p. 937, 1951. <]E>



Example II:

FCC Cu with Loading axis [112]

» What is most likely initial slip system?

+ If CRSS i 50 MPa, whatjsthe lensile ess At wiich il siart o deform plagtically?

Slip Plane | Slip direction nl sl Schmidt factor c (MPa)
n S COSd COSA COSd COSA
(111) _
[110] 24213 0 0 Not def.
T J3/6 J6/9 184
[101]
011] J3/6 V619 184
@n
[110] 213 | 43/3 J6/9 184
[101] -J3/2 -J61/6 122 <
— 367
[011] V316 J6 /18
(L11)
[110] V213 |33 J61/9 184
T -367
[101] \/_/6 \/_/18 )
(111) 1 0 0 0 def
—(17 [110] Not def.
(I 11) [101] J3/2 0 Not def.
ro11] J3/2 0 Not def.

Initial Slip Systems (plane, direction) are then

2010-10-27
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smallest
stress to
cause slip

(yielding)
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Example I11:

Crystal with simple cubic structure :
slip planes {100} and slip directions <010>

Load is applied along [010].
Determine Schmid factor and what slip occurs.

slipplane | ¢, coso slip dir. A, COSA. m
n l. S .
o «l's COSh COSA
(100) 90°, 0.0 [010] 0% 1.0 0
[001] 90°, 0.0 1=[010]
(010) 0% 1.0 [100] 90°, 0.0 0
[001] 90°, 0.0
(001) 90°, 0.0 [100] 90°, 0.0 0
[010] 0% 1.0

2010-10-27

Is there any slip? Why?

If no slip, what must happen finally to material as load is increased?<ht:>
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Line defects (one dimension)

¢ Edge Dislocation

WL 7 I 1l

Direction
of motion

Edge dislocation line moves parallel to applied stress

2010-10-27 D>
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Imension

|_ine defects (one d

Screw Dislocation

b

*%
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\

[T
[T ]
[T/ 7))

Burgers vector b

Direction

of motion \

DT

>

Screw dislocation line moves perpendicular to applied
stress
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Slip - dislocation

(Si ~
ip :
Plane Slip

Plane

2010-10-27 <:I:>



Slip system

17

General rule:

- slip plane: the densest
atomic packing

- slip direction: close-
packed atomic direction

In certain ionic solids, slip

can happen in nonclose-
packed directions.

2010-10-27

1) FCC is consistent with the general rule, i.e,
Nonparallel Slip direction
Slip plane Slip direction plane per plane Slip system
{111} <110 > 4 X 3 = 12
2) BCC
Preferable
Nonparallel Slip direction
Slip plane Slip direction plane per plane Slip system
{110} <111> 6 X 2 = 12
Observable
Nonparallel Slip direction
Slip plane Slip direction plane per plane Slip system
{112} <111> 12 X 1 = 12
{123} <111 > 24 X 1 - 24
3) HCP
Nonparallel Slip direction
Slip plane Slip direction plane per plane Slip system
{0001} <1120 > 1 X 3 = 3
{1010} <1120 > 3 X 1 = 3
{1011} <1120 > 6 X 1 = 6
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Perfect Dislocation (FCC)

€ {1111<1-10> slip system = Burgers vector : a/2<110> - E oc 2a2/4

€ 1/2<110> is a translation vector for the FCC lattice.— Perfect dislocation

2010-10-27 <]E>
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Characteristics of dislocations

Type of Dislocation
Dislocation Characteristic Edge | Screw | Mixed
Slip direction fftob | /ftob | Not/itoh
Relation between dislocation line and b 1 il Mot // or
Direction of line movement relative to b I 1 {land |

Dislocations imaged in NiAl-0.5Zr single crystals deformed at
elevated temperatures.

o
o

islocation
2010-10-27 Most dislocations are curved. <::||::>

Mixe
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Dislocations move via slip

i ¢Edge

Screw unslipped

Schematic representation of a dis/ocation loop

2010-10-27 <:I:>
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Multiplication of Dislocations
(Frank-Read Source)

=+ SIMULATION 3D CFC
STEP: U [001]

2010-10-27
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Intersection of Dislocations

2010-10-27
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Deformation of single crystals

A
Oy
ﬂ
T
0
0,
/
z-CRSS
Stage | Stage Il Stage Il
>
/4

Stage I:
e After vielding, the shear stress for plastic deformation is essentially

constant. There is little or no work hardenina.

*This is typical when there is a single slip system operative.

Dislocations do not interact much with each other. “Easy glide”

eActive slip system is one with maximum Schmid factor. >

2010-10-27
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Deformation of single crystals

A
Oy
ﬂ
T
0
0,
/
z-CRSS
Stage | Stage Il Stage Il
>
/4

Stage II:

*The shear stress needed to continue plastic deformation begins to increase
In an almost linear fashion. There is extensive work hardening (6=G/300).
*This stage begins when slip is initiated on multiple slip systems.

*\Work hardening is due to interactions between dislocations moving on
Intersecting slip planes.

2010-10-27 <]E>
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Deformation of single crystals

>

A
Oy
ﬂ
T
0
0,
/
z-CRSS
Stage | Stage Il Stage Il
/4

Stage Il1:

*There Is a decreasing rate of work hardening.

*This decrease IS due to an increase in the deqree of cross slip

resulting in a parabolic shape to the curve.

26
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[001] stereographic projection of
cubic crystal

100
110
101
111 ~ 111
i Standard
010 _ 001" gl23 010 .
il LT Triangle
111 111
101
2 slip _
110 110 systems 111
2 planes; 1
direction in
100 each

2010-10-27

112

1 slip system 2 slip

<—systems
1 plane; 2

(FCC) directions

001T 013 1 023 Tm

8 slip 2 slip 4 slip
systems systems systems
4 planes; 2 2 planes; 1 2 planes; 2
directions in direction in directions in

each each each

>
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Influence of stress axis

orientation

The stress axis orientation
plays a major role in the

More slip systems means a

stress-strain behavior of a

“harder”’material.

single crystal

A

6 slip systems

2010-10-27

FCC Crystal

2 slip systems

1 slip system

NOTE: thereis no
stage | for crystals
that contain multiple
slip systems?
WHY?

>
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Work/Strain Hardening

2010-10-27
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Work/Strain Hardening

€75 — constant a
s - P o

where:
r_= Intrinsic flow strength for L free material

o = constant (0.2 for FCC, 0.4 for BCC)

30
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Work/Strain Hardening

[0
1

-

Resolved shear stress (MN/m® ) =3

,_
-
-~

'

Resolved shear stress (psi)——

Ir
[ ' 0= T 1 TR

Dislocation density, p{m ")

Figure 5.4

Critical resolved shear stress as a function of dislocation density for Cu single crys-
tals and polycrystals. The observed slope of ¥ on the logarithmic coordinates verifies
that Eq. (5.5) describes the Mow strength of work-hardened materials as it relates to
dislocation density. [], polycrystalline Cu; (), single-crystal Cu—one slip system; ¢,
single-crystal Cu—two slip systems; A\, single-crystal Cu—six slip systems, (Afrer

H. Weidersich, J. Metals, 16, 425, 1964.)
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Implications for polycrystalline

materials

32

*Plastic deformation within an individual grain is constrained by the neighboring grains.

*Since plastic deformation of a single grain is restrained by its neighboring grain, a

polycrystalline material will have an intrinsically greater resistance to plastic flow than

would a single crystal.

2010-10-27

A B
E =&
X X
A B
E =&
A B
J/x: o }/:r:

Required to maintain
continuity of the grain
boundary

>
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Implications for polycrystalline
materials

Because one grain has a larger value of cos ¢ cos A

[smaller Taylor factor (1/m)], the above constraints restrict the
deformation of this more favorably oriented grain and result
in a higher Yield Strength (greater work-hardening response of
the bicrystal.

1400~
Polycrystal B b
B 1200
P = ~45000
: 1000
e ~4000
o -
................ ’ ¢ T Y A E &) v "‘ l
o Vs - ﬂ.z E{miﬂ E
H'“}"“..! anentation I
600 g
s Pl L
Ll
grain boundary |
w0 —{ 10
] 1 i | I l
0.1 0.2 0.3 0.4 0.5 06 07 08 0e

2010-10-27 Niobium (bcc) <>
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Geometrically necessary dislocations

(«> statistically stored dislocations)

Plastic bending of a crystal

¥
l - ——=] ——

Slip plane and direction

Strain gradient=strain difference/thickness

25I 0
- =—=7
( ) T
dlfference of the atomic planes
_(+a1) (-41)
b b

density of geometrical dislocation

the number of dislocation 5 ol _ strain gradient
surface area bit b

Ps =

Generally,

strain gradient
b

ps=a

2010-10-27
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Geometrically necessary dislocations

Single crystal without geometrically Polycrystal: grain boundary
necessary dislocation +
T slip direction y/ slip plane
strain gradient _
=

~ Ed /b — g Overlap
=747 7 and —_— A
d : diameter of grain

£ average strain

2010-10-27
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Plastic deformation (for metals)

e

~=1. Initial . Small load ~z3. Unload

& planes
shear

______ FA
Plastic means permanent! linear linear
elastic elasti

> >0

2010-10-27 Oplastic <



37

Plastic Yielding

€ What is yielding?
Slip, Glide of Dislocation on Slip System

€ What is yield criterion ?
Distinction between elastic region and plastic region.

€ What is yield stress, locus and surface ?
Uniaxial stress (1-c) : Yield stress : Avalue
Plane Stress (2-c) : Yield Locus . Aline
3 dimensions (6-c) : Yield surface : Asurface

Yield surface divides the stress space into elastic region and
plastic region”

2010-10-27 D>




Yielding

Plastic deformation (yielding)
¢ Slip process
¢ (Maximum) Shear stress

Yield Criteria

¢ Tresca (Maximum-Shear-Stress) Yield Criteria

O, —O
Thax = 1 3 :—k
2

¢ VVon-Mises Yield Criteria
J2’ = k2

2010-10-27
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Yield Criteria

Tresca (Maximum-Shear-Stress) Yield Criteria

« We can determine k from a simple tensile test. In uniaxial
tension, yielding occurs when o, = o, (yield stress), o, = o, =0.

EQ/_Z

0,-63=0,

2010-10-27 o>
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Stress state and stress space

G11 G12 613 Gxx ny ze
_ _ 6. —o¢ . _(6 component)
Gij =102 Op 623 - ny ny cSyz :> 1) n
_031 G32 633 _sz cyzy Gzz ]

- Stress space => 6 dimensional space

Three principal stresses

Oy —O ny Oy,
O Gzy G, -0

c'—-Jo +Joc—-J =0

2010-10-27 D>
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Stress state and stress space

J,=tr(c)=0; =0, +0,, +0,
1 1

J, SGB“?:—GG—GG +6,,6, +0,0 ~o62, —0. —0o°
2 [ 2 ij~ i 7z~ XX Xy yz ZX
1 afy
J, = §SIJk c'ch 0y =det(cy)
Using the solution of cubic equation
Q=%(3J2—Jf) R:5i4(—9J1J2+2733+2Jf)
cos0 = R
V-Q° J,=0,+0,+0,
1 1
—QCOS(§9) +§Jl Z> J, =06,6,+0,0,+0,0,
—Q(:OS(%G+§7:)+%J1 J; =0,0,0,
Gy, =2 —Qcos(%(9+%7c)+%J1
2010-10-27 D>
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Stress state and stress space

p==o
o,

Deviatoric Stress S oy =Pd; +3S,

J,=tr(S)=S, +S, +S, =S,

1 1
J,==(S; +S; +S§):§SUSij

2
‘]; 2818283
note, J’Z:%(Jf—st) => -3Q

1 =2—17(233 ~91J,+273,) => 2R
‘]; :%[(Gxx + ny + c;zz)z _B(Gxxny + nyGzz + cyzszx) - (G)2<y + cTf/z + Gix) ]
= %[(GXX —ny)2 +(o,, -6,) +(c, - GXX)2]+ Giy + Giz +6°

SN CELASICERS SUCETAY <>
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Yield Criteria

 We can determine k? from a simple tensile test. In uniaxial
tension, yielding occurs when o, = g, (yield stress), o, = o, =0.
Thus J, becomes:
1

J, =g[(0', ~-0,) +(0, -0, + (o, _0-1)2]=é[(o-0)2 +(—o-0)2]=

2
O-o

-~
)

|t represents the condition required to cause yielding.
Therefore:

« The von Mises criterion then becomes:
1 2 2 ,li2
—[(0'1—0-2) +(Uz—0'3)'+(0'3—0'1)'] =0 =0

\/5 s 0
2010-10-27 D>
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1

NG

Yield Surface

[(0'1 ~0,) +(0,-0,) + (0, - 0'1)2:'1';2 =c

Vs

=0

o

44
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von-Mises Yield Locus

N¢

,,,,,,,,,,,,,,,,,,,,

Yielding

) yielding

>



2010-10-27

Tresca Yield Locus

o0,<0,0,>0

c,>0,0,>0

N¢

yielding

Yielding

c,<0,0, <0

o, >0,0, <0

46
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Experimental comparison of
Yield Locus

- + + Steel
© Coppcr

a Nickel

/ &)
/
/ von Mises
/
a

G

47
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Yield surface

F(Gij):O

Elastic Deformation : F<0
Plastic Deformation: F=0

Using the representation of stress in principal stress space,

F(o,,0,,0,)=F(,,J,,J;) =0

For metallic material, hydrostatic stress do not effect on yielding.

F(3;,35)=0

>
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Yield surface

ol Decompose the yield function into
=
AN Stress dependent part  : f(oy)
LN
, |
1 | A X _ Stress ndependent pat : C
< N\ ) Yield surface P P
|
| pd
P ‘L - — _
,r--"’;f""{f N r1 6_3
62 - =2 :"’ !
\\"\ | - )

* Important Note on Yield surface

Closed surface in Six dimensional space

Fig. 43 Yield surface for isotropic materials

F(c;)=0 : No physical meaning: F(c;)>0

2010-10-27 <:I:>



Yield Criteria for Isotropic Metals

(Maxwell-Huber-von Mises Criterion)

Maxwell (1856) : Initial idea
Huber : 1st published

von Mises  : published

Hencky . interpret the criterion

called von Mises criterion or called “J) theory’

, 1

' 2 _ ¢ L o 1 _ 1, : "
J2 —k* = J2 3% _ES” S 3% = 0 k: some critical value
3= 1[( 2 2 2] 2 2 2

2 E O yx _ny) + (ny _Gzz) + (Gzz — O + ny + Gyz TGy

J5 :%[(01 _02)2 +(o, _03)2 + (o, _61)2]

2010-10-27
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Yield Criteria for Isotropic Metals
(Maxwell-Huber-von Mises Criterion)

1) circle on n-plane Von Mises yield locus

2) radius r=+2kon =

3) No J, effect

y
/
¥.
Fig. 4.5 Von Mises and Tresca yield locus on the m-plane
i - 1 o o2 : Oy
for uniaxial tension o, =0,,0,=0,=0 .. gcy =k ok =E

<
<
<

(6]
for pure shear, o, =1,,otherszero. 15 =k® k=t T :T;

2010-10-27 >



Effective stress

Under von-Mises Yield Criterion

_ 1 2 2 271/2
c=—\(o,—-0,) +(0,—0; ) +(0,—0O

\/E[( 1 2) ( 2 3) ( 3 1)]
1
o =—"+[(o1—0p )2+(022_033 )2+(533_0'11)2

J2

1/2
+6(0, + 03 +03)]

2010-10-27




Yield Criteria for Isotropic Metals

2010-10-27

(Tresca condition)

T =Kk 1864 : Tresca
max

In principal stress space

1 1 1
max{i\(cl _62)‘ 1 E‘(Gz _63)" E‘(Gs _61)‘} =k

1

E (Gmax ~ O in

)=k

53
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Yield Criteria for Isotropic Metals

2010-10-27

(Tresca condition)

Other form of Tresca condition

F(Gij) = {(Gl _02)2 _4k2}' {(62 _53)2 _4k2}' {(03 _61)2 _4k2}

F(J,,d,) =433 — 2732 —36k2J2 + 96k *“J, — 64k°

=4(J, —-k*)(J, —4k?)* -27)}

for uniaxial tension o, =0, ©,=0,=0 c, =2k

for pure shear t=1,, T, =K ST, =—0

>
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Yield criteria for anisotropic
materials

General yield function for anisotropic material

F(o,L)=0
o . Cauchy Stress

L : Material Property Tensor generally called Anisotropic coefficient

* Plastic strain ratio R

During tensile testing of sheet, plastic strain ratio R is defined as

R = de,,
de,

de, : Strain increment along width direction

w

de, : Strain increment along thickness direction

>
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Yield criteria for anisotropic
materials

In isotropic material , F= J’2 _k%=0 :

R=1 in all direction

In anisotropic material,

R =R(0) 0 : Angle from rolling direction

The best anisotropic vield function is one of the most important goal for
the material engineers and scientists.

The best anisotropic vield function is the yield function which can describe
exact vielding behavior with limited number of coefficient.

2010-10-27 <:I:>
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Yield criteria for anisotropic
materials (Continuum Based Function)

* Hill(1948)

2f(c;) =F(o, —0,)* +G(o, —0,)* +H(o, —05,)° +2L15, + 2Mt, + 2Nt}

* Hosford(1979)

F‘Gy -0, ) +Glo, —Gx|m +H|o, —Gy‘m =0,
* Hill(1979)

F‘Gy -0, ) +G|c5Z —Gx|m +Hlo, —Gy‘m

+L[20, -0, —03|m +M|20, -, —G3|m +N|26, -0, -0, " =gl

* Hill(1990)

m/2
(o, —Gy)2 + 40)2(y

o, +Gy‘m +(c™/t™)

(m/2)-1
+lo2+02+202 [ {-2a(c? +62)+b(o, —5,)? }= (25,)"

2010-10-27 <]E>




58

Yield criteria for anisotropic
materials (Continuum Based Function)

* Gotoh

4 3 2 __2 3 4 2 2 2 4 4
C,o, +C,o050, +C,0,0, +C,0,0, +Cso, +0,,(C4o, +C,0,06, +Cyo)) +Cyo,, =,

* Bassani

o, +0,|" +%(1+ R)o! ™|, —o,|" = {1+%(1+ 2R)}c;“

* CMTP

F= a{‘sll _Szz‘n + ‘Szz _Sss‘n + ‘533 _Sll‘n}+ ZB{‘Slz‘m + ‘st‘m + ‘831‘m}1

* Barlat(1991)
@ =[S, -S,|" +[S,-S|" +[s,-S,|" =25"

S. =L.c. L : Symmetry Operation tensor

2010-10-27 <]E>
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Yield function development for aluminum alloy sheets

T T T T
o Experiments i :
TBH i

-0.5 0.0 0.5 1.0 1.5
clo
X

1735

Fig. 5. Experimental, polycrystal and phenomenological (Y1d91) yield loci for material BLA (low cold
reduction followed by SHT, 2.5% Mg, 150 pym grain size). Coefficients for Y1d91: a = 8, ¢, = 1.017,

2010-10-27

¢; = 1.023, ¢; = 0.976, c., ¢s and ¢, irrelevant in this case.

-1.0 -0.5 0.0 0.5 1.0 1.5

clo
X
Fig. 6. Experimental, polycrystal and phenomenological (Y1d91) yield loci for material BHE (high cold

reduction followed by SHT, 2.5% Mg, 150 um grain size). Coeflicients for YId91: a = 8, ¢, = 1.005,
¢; = 1.036, ¢y = 0.963; ¢4, ¢; and ¢, irrelevant in this case.

>
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Yield criterion of Powder

AJ +BJ =Y’

P A-2 1-3B (1 =2v) .
P - T 214w g ———T} =Y}

: 2 2 3
£33 = = -
Authors n v
Green [10] = GI(EEn
_ T L . P | [ S BT
wherex =l n L) and 3 = [0
Shima and R _ 1-2(2.49/3P(1 — k)"
D:.l:;i ??1] 1249 37 (1- R = 2 1H2.49/300 Ry |
3 4r? 14R
Gurson [12] S ol
Doraivelu et al. [13] 2R*—1 0.5R?
Lee and Kim [14] (pe)’ 0.5R?
Park and Han [(R-R)/QA-R)I 0.5R’

2010-10-27 <]E>
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Yield criterion of powder

2010-10-27
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Isotropic hardening and
Kinematic hardening

Yield surface movement in stress space
- Expansion

- Translation

- Distortion

Isotropic hardening Kinematic hardening
1) yield locus center is fixed. 1) yield locus center is translated.
I1) Expansion of size I1) same size
. 1l ylel L y
itial ,_1.f..'Ir.j 1Ce
‘ .‘_‘.( e -' !_. <
.'. ‘ﬁ " ."'.I ..-\', \
£ — ] aary il
i e

WwiDsequent __‘||-.|;; surface

2010-10-27 s subsequent yield surface <:”:>
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Isotropic hardening and
Kinematic hardening

Typical Example of Yield Function with Hardening
Isotropic : J,=K-¢;

Kinematic : f(S—a)=Kk a : back stress

I

To consider Bauschinger effect

General yield surface with hardening

F(L,G,oci):O

>
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Plastic Potential Theory and

Plastic work

1928, von Mises proposed a Potential function Q = Q(Gij) which satisfies

Plastic Potential Theory

Q ; Plastic Potential Function (Scalar Function)

Flat

% g( %) =

Ep_ 3f
d i A 30

a Smooth

Plastic potential
fq{ U.".) = const.

I
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Plastic Potential Theory and
Plastic work

1928, von Mises proposed a Potential function Q = Q(oij) which satisfies

Plastic Potential Theory

Q ; Plastic Potential Function (Scalar Function)
1. Geometric representation
Qloy)=Coll A% Waoz &7 Ay

(use definition of gradient) thus called as “Normality Rule”

2. 1sotropy  : Q=Qlo;)=Q(3,,9,,3,) Anisotropy : Q=Q(o;,B,) k=12,..n

3. Incompressibility of plastic flow : Q=Q(J,,J;)
Porous material (J, sensitive) : Q=0Q(J,,J,,J,)

>
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Plastic Potential Theory and

Plastic work

*FlowRule : &= ,0Q

00
Associated Flow Rule Nonassociated Flow Rule
£ = xs—; £ = xs_ci
Q=F Q=F

Typically deformation of metal - associated flow rule
Concrete, soil - nonassociated

* Prantl-Reuss Equation ( or Levy-Mises Equation)
Associated flow rule based on von Mises yield function

F= ESijSij -k > * =3,
2 0o,
oF . :
&) = xa— AS; > Prantl-Reuss equation
O..

1

66
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Plastic constitutive equation
(flow rule)

L evy and von Mises suggested this relationship under von-Mises

vield criterion. dA : a positive constant,

2 1
dePn = g dk[czz - E (033 + 611)]

2 1
dePas = gd)«[ﬁgg - E (011 + 622)]

de’2 =dAo,,

deP2s = dro,,

dePs1 =dho,,

dePus 3 deP o 3 dePas 3 dePio 3 dePos 3 dePay _ i
Cpy Gy Ca3 P Gy Gy
dePu = gd?»[cs —1(0 +0,,)] deP
3 1175 02 T Os dh = ——
c

— P

dW =ode” = o,de";

deP = \/édgpijldgpij'

67
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General Stress-Strain Relations

Note that plastic flow relation must be incremental form
do=C% :de
C* ; the elastic -plastic stiffness tensor (4" order)
do ; stress increment
de ; strain increment

68

F(o,a) =0 ; yield condition

c—>o+do
a— a+da

plastic deformation cause

c+do, a+da must be on the subsequent yield surface - F(o+do,a+da)=0

F(G+d0,oc+doc):F(c5,oc)+2F:dc+8F:doc:O

o) oo
_oF oF

dF=—:do+—:da=0
oo ° oo *

2010-10-27
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General Stress-Strain Relations

(Isotropic Hardening)

F(o,a)=f(c)—k=0
a=¢g or a=W" k=Kk(a)
oF

de® =C® :do, def =A—
0C

: P =0
oo o 66 °

_of . dk 2 af 6f)1,2
o f 60 0o

o .do
= oo
N 2 dk of of

/6 de’ (60 0o

)1/2

69
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General Stress-Strain Relations
(Isotropic Hardening)

of
of oG : :
I=a—.dc, n= 5 of (unit normal to the yield surface)
o) T Y X
60"60')
o Vol _ 6
. OF oG of ol 6 of
Thus deP=A— > de’= o = n=—-—(n:do)—
P 2 dk of of \no0 K de( °) %o
J6 de’ "0c " bo de’ de’
5 g:;:dc 1
: p__ = p . p\1/2 P — —
using dge—\@(ds :de®) 2> de! (dk) (dk)l
de? de?

€ €

2010-10-27 <:I:>
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General Stress-Strain Relations
(Isotropic Hardening)

using additive decomposition of strain

de =dg® +de” =C° :do + \/6 afn:dcz C* + \/6 61:n ‘do
dk | 6o dk | oo
2(.) 2(-)
de? i de’ |
- 71-1 - 71-1
do=|C° + V6 Mol e > co=|c 4 V6 o,
dk | 6o dk | 6o
2(-) 2(-)
i dSe 1 N dge _

2010-10-27 <:I:>
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General Stress-Strain Relations

(Isotropic Work Hardening)

oF oF

dF=—:do + dW®? =0
oc oW?
F(o,W")=f(c)-k(W")=0
Using oF @ dk , dW’=c:de”=S:de"=S: kg—f
WP~ dwP °
dk . of o o I
dF_|+(—de)x66.s_o > A= ( " )af
dw?
of
P — oo ;
de ( K ) ﬂ I (associated flow rule)
dw?
of of ] [ of of |
_| ™ 0c 0o ep _| et 56 66
de=|C +(dk)6f dc%C_Cerkaf.S
dw? i i dW® 66 _

72
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General Stress-Strain Relations

(Isotropic Work Hardening)

using von Mises

*  Strain hadening

J;—%ci(gg)zo >

> C*=|C° +

* Work hadening

J;—%oj(wp):o >

> C*=|C° +

2010-10-27

, 1
\]2—505,:0

of o3,

60'_60': ’

-1

1-1

of _g

oc

dk _1d(c,)) 2 _ do
de? 3 de? 3 7 deP

e

>
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General Stress-Strain Relations
(Kinematic Hardening)

using constitutive egn.(da. = cde”) and associated flow rule(de” = Xﬂ)

0C

For the von Mises criterion,

y

1 . 1 .2 _
f(c—a)—ko:E(s—a).(s—a)—gc =0

(s-a)

[(s—a): (s — )]

Thus C%is

C {cewl (s—a) }

P c(s—a)(s—a)

2010-10-27 D>




General Stress-Strain Relations
(Combined Isotropic and Kinematic)

f(oc —a) +k(W,)=0

ﬂ:dcr ﬁ'doc— ak dWP =0
oo oo

of

—:d

oG ° 1

A =
(af_afj dk of
d 'S
dW?" oo
dk 6f_
S

dc 0o

k =c+ dw? aG .

P of  of

oc 0o

2010-10-27

Tk, of o
oc

de? =A— = k—(n do)n

C*® = {cel

1
+—nNn

>
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