

BJT Fundamentals

Sung June Kim <u>kimsj@snu.ac.kr</u> http://helios.snu.ac.kr

Contents

- Diffusion
- □ Generation-Recombination
- **□** Equations of State

□ Terminology

✓ The BJT is a device containing three adjoining, alternately doped regions, with the middle region being very narrow compared to the diffusion length

✓ All terminal currents are positive when the transistor is operated in the standard amplifying mode

 \checkmark The current flowing into a device must be equal to the current flowing out, and voltage drop around a closed loop must be equal to zero

 $I_{\rm E} = I_{\rm B} + I_{\rm C}$

 $V_{\rm EB} + V_{\rm BC} + V_{\rm CE} = 0$ $(V_{\rm CE} = -V_{\rm EC})$

✓ The basic *circuit configuration* in which the device is connected and the *biasing mode*

Biasing Mode	Biasing Polarity E-B Junction	Biasing Polarity C-B Junction
Saturation	Forward	Forward
Active	Forward	Reverse
Inverted	Reverse	Forward
Cutoff	Reverse	Reverse

 ✓ Although the *npn* BJT is used in a far greater number of circuit applications and IC designs, the *pnp* BJT is a more convenient vehicle for establishing operational principles and concepts

Electrostatics

- ✓Two independent pn junctions
- ✓ Assuming the *pnp* transistor regions to be uniformly doped and taking

□ Introductory Operational Considerations

Carrier activity in a pnp BJT under active mode biasing

✓ The primary carrier activity in the vicinity of the forward-biased E-B junction is majority carrier injection across the junction
✓ The *p*⁺-*n* nature of the junction leads to many more holes being injected than electrons being injected

The vast majority of holes diffuse completely through the quasineutral base and enter the C-B depletion region
The accelerating electric field in the C-B depletion region rapidly sweeps these carriers into the collector

✓ I_{Ep} : the hole current injected into the base, I_{En} : the electron current injected into the emitter, I_{Cp} : a current almost exclusively resulting from the injected holes that successfully cross the base, I_{Cn} : a current from the minority carrier electrons in the collector that wander into the C-B depletion region and are swept into the base

✓ Very few of the injected holes are lost by recombination in the base → $I_{\rm Cp} \approx I_{\rm Ep}$

✓ d.c. current gain: I_C/I_B , where I_B is an electron current in a *pnp* BJT and I_C is predominantly a hole current

Schematic visualization of amplification in a *pnp* BJT under active mode biasing

 \checkmark Control of the larger $I_{\rm C}$ by the smaller $I_{\rm B}$ is made possible

Performance Parameters

• Emitter Efficiency

$$\gamma = \frac{I_{E_P}}{I_E} = \frac{I_{E_P}}{I_{E_P} + I_{E_n}}$$

 $0 \le \gamma \le 1$

 \checkmark Current gain is maximized by making γ as close as possible to unity

Base Transport Factor

✓ The fraction of the minority carriers injected into the base that successfully diffuse across the quasineutral width of the base and enter the collector

$$\alpha_T = \frac{I_{C_p}}{I_{E_p}} \qquad \qquad 0 \le \alpha_T \le 1$$

 \checkmark Maximum amplification occurs when $\alpha_{\rm T}$ is as close as possible to unity

Bioelectronic & Systems Lab.

Common Base d.c. Current Gain

 \checkmark When connected in the common base configuration,

$$I_C = \alpha_{dc} I_E + I_{CB0}$$

where is α_{dc} the common base d.c. current gain and I_{CB0} is the collector current that flows when $I_E=0$

$$I_{\rm Cp} = \alpha_{\rm T} I_{\rm Ep} = \gamma \alpha_{\rm T} I_{\rm E}$$
$$I_{\rm C} = I_{\rm Cp} + I_{\rm Cn} = \gamma \alpha_{\rm T} I_{\rm E} + I_{\rm Cn}$$
$$\alpha_{\rm dc} = \gamma \alpha_{\rm T} \qquad 0 \le \alpha_{\rm dc} \le 1$$

$$I_{\rm CBO} = I_{\rm Cn}$$

- Common Emitter d.c. Current Gain
 - \checkmark When connected in the common emitter configuration,

$$I_C = \beta_{dc} I_B + I_{CE0}$$

where is β_{dc} the common emitter d.c. current gain and I_{CE0} is the collector current that flows when $I_{B}=0$

$$I_C = \alpha_{dc} (I_C + I_E) + I_{CE0}$$

$$\therefore I_C = \alpha_{dc} I_E + I_{CB0},$$
$$I_E = I_C + I_B$$

✓ Rearranging and solving for $I_{\rm C}$,

$$I_{C} = \frac{\alpha_{dc}}{1 - \alpha_{dc}} I_{B} + \frac{I_{CB0}}{1 - \alpha_{dc}}$$
$$\beta_{dc} = \frac{\alpha_{dc}}{1 - \alpha_{dc}} \quad \beta_{dc} \gg 1$$
$$I_{CE0} = \frac{I_{CB0}}{1 - \alpha_{dc}}$$

$$\beta_{\rm dc} = \frac{I_{\rm C}}{I_{\rm B}}$$

If $I_{\rm CE0}$ is negligible compared to $I_{\rm C}$

Semiconductor Device Fundamentals

Chapter 10. BJT Fundamentals

Summary

Semiconductor Device Fundamentals

Chapter 10. BJT Fundamentals

Summary

Chio BJT 11/03/10

Althi APC SPZ=Pr(e8VEB/K7-1) = Pre8VEB/K9 diffusionez. $\frac{d^2 \circ p(x_n)}{dx_n^2} = -\frac{\circ p(x_n)}{Lp^2} \left(= D \frac{d^2 x p}{dx_n^2} = -\frac{\circ p}{c} \right)$ Sol. Ap (x1)= (1 e 4 + (2 e -x1/2p $\Delta P(x_n) = \Delta P \epsilon \cdot \frac{e^{wb/4}e^{-X_n/4} e^{-wb/4}e^{X_n/4}e}{e^{wb/4}e^{-e^{wb/4}}e}$ if dre = 0 Pitterence in them Fou slopes differin Fur slopes diffe Left (unert Ip (xn)= - SANp daplan) -> IEp= Ip (Xn=0 = gA Pp (c2-c1)= --= IE (Emother Injection Efficience (=1) feasonable. $\int \Theta C P = J P \left[\chi_{n=Wb} = 9A \frac{P_{P}}{C_{P}} \left(c_{2} e^{-w_{n}/c_{P}} - C_{1} e^{w_{0}/c_{P}} \right) \right]$ = IC (igning saturater Rev. bias sat unert

.

4

ch 10.

Iceo = Icoo 1-21c

 $I_{cB0} = I_{cn}$ Sat cumut. Sat cumut. OR ~ | eaky cumt tem furt i clodes other generat - cumt.

教

素