Lecture 2. Analog Abstraction

Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University jaeha@ieee.org

Key to Effective Design: "Abstraction"

- Note that digital tools leverage "abstractions" effectively
 Digital abstraction: Boolean (value), synchronous (time)
 - Tools that simulate abstraction models, convert between abstraction layers, check equivalence, measure coverage, …

So, analog tools must leverage abstractions – but what is the proper abstraction for analog?

- No notion on analog abstraction; SPICE treats any circuit as a general nonlinear system
- Designers scream for *faster* SPICE; although it's not the solution

Analog vs. Digital

- Continuous vs. discrete?
- A and D are different in their world views What do you see in this picture?

Let's Learn from the Digital World

Q: Verify this two-input AND gate

Digital Abstraction is the Key

- States become discrete and countable
- Verify property (Y=A·B) for each state

Verification in Analog Circuits

Q: Verify this op-amp

Analog Abstraction: Linear System

Our conjecture: all analog circuits have *linear intent*!
 Then, the proper abstraction for analog is a linear system

Linear System Review

What defines a linear system?

- □ If $y_1(t)$ is the system's response to an input $x_1(t)$ (i.e. $x_1(t) \rightarrow y_1(t)$), then $a \cdot x_1(t) \rightarrow a \cdot y_1(t)$
- $\square \quad \text{If } x_1(t) \rightarrow y_1(t) \text{ and } x_2(t) \rightarrow y_2(t), \text{ then } x_1(t) + x_2(t) \rightarrow y_1(t) + y_2(t)$
- Called <u>"superposition principle"</u>

Linear System Review (2)

Superposition principle basically says the output of a linear system can be expressed as <u>a linear sum</u> of the inputs at different times:

$$y(t) = \int_{-\infty}^{+\infty} h(t,\tau) \cdot x(\tau) d\tau$$

- \Box h(t, τ) denotes the gain between input x(τ) and output y(t)
- **Causality implies:** $h(t, \tau) = 0$ if $t < \tau$ if t
- Time-invariance implies: $h(t, \tau) = h(t-\tau)$, i.e., the gain is a function of t-τ only
- \Box h(t- τ) is called the *impulse response* of a system

Leverage Linear Abstraction

- As Boolean abstraction did for digital, linear abstraction can greatly simplify analog verification
- For example, abstraction lets us define "coverage"
 How thoroughly do we need to run the simulations
 Boolean reduces # of points along each state dimension (2)
 - Linear allows each input to be tested independently

$$y = \sum_{i} \alpha_{i} \cdot x_{i}$$
 (superposition)

 \square # of tests required is actually far less for analog (N+1 vs. 2^N)

* J. Kim, et al., "Leveraging Designer's Intent: A Path Toward Simpler Analog CAD Tools," CICC'09.

Linear AC: Formal Method for Analog

- If the intent is linear, AC analysis is the most effective way of validating it
 - □ AC analysis can measure the transfer function (TF) of a circuit
 - TF is a Fourier transform of the impulse response; therefore it can <u>completely describe</u> the linear system of interest
- Therefore, AC analysis <u>formally</u> verifies the linear intent
 Gain Bandwidth
 Frequency f

Is LS Indeed the Abstraction for Analog?

- Note that not everyone agrees with my conjecture
- Designers easily agree because:
 - Linear system theory is the only tool they are trained with in order to understand the real world
 - "Engineers see the world as a first-order system; although it's really a second-order one"
 - Designers don't know how to analyze general nonlinear systems: how can you design a system you don't understand?

Is LS Indeed the Abstraction for Analog?

- CAD researchers don't agree easily
 - □ They are people who write numerical simulators like SPICE
 - They are very good with nonlinear equations; in fact linear equations are too elementary to them
- They say, "no real circuits are linear!"
 - □ And my designer friend said nonlinearity is really important!
 - □ True, but no real gates are Boolean, either
 - □ That does not mean the circuit doesn't have a linear intent
 - Question is, can we describe the circuit as
 - an approximate linear system and
 - its deviations from that linear system?

Weakly Nonlinear Systems

- A system whose behavior can be approximated mostly as linear system yet may possess mild nonlinearities are called "weakly nonlinear systems"
 - Can be expressed with Volterra series (~ Taylor series for dynamical systems)

$$y(t) = y_0 + \int_{-\infty}^{+\infty} h_1(\tau_1) \cdot x(t - \tau_1) d\tau_1 + \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h_2(\tau_1, \tau_2) x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 + \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h_3(\tau_1, \tau_2, \tau_3) x(t - \tau_1) x(t - \tau_2) x(t - \tau_3) d\tau_1 d\tau_2 d\tau_3$$

Don't be scared by the equation; point is that there exists a systematic way of analyzing a weakly nonlinear system

Example: Low-Noise Amplifier (LNA)

- Its specification parameters can be categorized into:
- Linear parameters:
 - □ Gain (S₂₁)
 - □ Center frequency
 - □ Noise figure
- Nonlinear parameters
 - □ 1-dB compression point: gain saturation
 - □ 3rd-order interception point (IP3): harmonic generation
- Others
 - □ Power, area, supply voltage, technology node, ...

Note: most circuits strive to achieve zero nonlinearities!

What about ADC and DAC?

- A/D and D/A converters are one exception to our conjecture they possess "strong nonlinearity"
- And it is an intended behavior; even an ideal ADC should quantize the input signal ADC should quantize the input signal of the signal of th
- Nonlinearity in a DC sense is easy to describe and understand
 - An extended framework to include strong DC-nonlinearities within the realm of "weakly nonlinear system" is called "modified Volterra Series"

D. Mirri, "A modified Volterra series approach for nonlinear dynamic systems modeling", TCAS-I, Mar 2006.

What About PLL/DLL?

- A PLL/DLL is highly nonlinear from a voltage perspective
 - □ Large-signal clock in, large-signal clock out
 - □ Isn't this a counter-example to my conjecture?

PLL/DLL is a Linear System

- A PLL/DLL is highly nonlinear from a voltage perspective
 Large-signal clock in, large-signal clock out
- But it is linear in its phase/delay variables
 - □ The design intent is to control the "phase or delay" not voltage

What About Phase Interpolators?

 A phase interpolator takes two clock inputs and produces a clock with the phase in-between
 Is this circuit analog or digital? Is it linear?

Phase Interpolators are Linear

It has a linear relationship between the input phases and the output phase

Phase Interpolator with Control Inputs

- Some phase interpolators have control inputs which can adjust the interpolation weight w
- Q: is this circuit still linear?

Circuits with Control Inputs

- We can understand these circuits as <u>two linear systems</u>
 - \Box One between the main inputs (Φ_A, Φ_B) and output (Φ_{OUT})
 - □ The other between the control inputs (Vc+/-) and the weight (w)
 - □ A similar example is a variable gain amplifier (VGA)

Phase Interpolator with Digital Control

Now, is this circuit still linear?

Functionally yes, except that we have an implicit DAC between the digital control inputs and the interpolation weight

What About a Delta-Sigma ADC?

- A Δ - Σ ADC or a bangbang PLL has a strongly nonlinear element (i.e. the quantizer or binary PD) within the loop
 - □ Makes the loop behavior strongly nonlinear, too
 - □ Can we still consider them as linear systems?

Their Behaviors are Random

- Due to nonlinear (digital) components in the feedback
 - □ e.g. binary PLL/CDRs, digital calibration loops, etc.
 - □ Aperiodic dithering near locked states
- Often, randomness is intentional
 - \Box $\Delta\Sigma$ data converters: quantization errors \Rightarrow out-of-band noise
 - □ Dynamic element matching: mismatch ⇒ out-of-band noise
 - □ Aperiodic calibration: periodic tones ⇒ random noise
 - Dithering: to improve linearity and suppress periodicity

Yet, the Intent is Still a Linear System

- Despite the randomness, these nonlinear feedback loops are designed with a certain "linear system" in mind
- Most of them have "analog" counterparts
 - Bangbang PLL/CDRs
 - Digital calibration/correction loops
 - $\Box \quad \Delta \Sigma \text{ data converters}$
- Hence, the functionality is "analog (linear)"
 - Phase transfer function (bandwidth, peaking)
 - Calibration bandwidth, stability
 - □ Signal or noise transfer functions

Extending LS to Stochastic Systems

- Bangbang PLLs and $\Delta\Sigma$ data converters:
 - □ Intent is linear but
 - □ They have neither DC nor periodic steady states
- They do have steady states in a <u>stochastic</u> sense!
 - □ Steady state is an ensemble of waveforms with probabilities
 - □ e.g. PDF (jitter histogram), PSD (noise spectrum), etc.
 - □ In other words, their operating point is probablistic
- Given the steady state (OP), we can find its equivalent linear system
 - □ J. Kim, et al., "Stochastic Steady-State and AC Analyses of Mixed-Signal Systems", DAC 2009.

Limitation of Linear Analysis

- Linear analysis verify only the <u>LOCAL</u> linear properties
- All circuits are eventually nonlinear

- Serious failures can occur when the circuits do not operate at the desired operate points
 - The system can behave completely different

Functional Failure Example in PLLs

- When the VCO starts at too high a frequency, a PLL may get into a dead-lock condition
- But the PLL functions correctly otherwise
 - And it's very easy to overlook this bug during design time

It's Global Convergence Problem

- Happens in nonlinear systems: converge to different equilibrium points depending on the initial points
- It calls for a way to ensure that the system will always converge to the desired OP and the desired LS

