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Key to Effective Design: “Abstraction”

m Note that digital tools leverage “abstractions” effectively

O
O

Digital abstraction: Boolean (value), synchronous (time)

Tools that simulate abstraction models, convert between
abstraction layers, check equivalence, measure coverage, ...

So, analog tools must leverage
abstractions — but what is the proper
abstraction for analog?

No notion on analog abstraction; SPICE treats any circuit as a
general nonlinear system

Designers scream for faster SPICE; although it's not the
solution




Analog vs. Digital

m Continuous vs. discrete?

m A and D are different in their world views
What do you see in this picture?




Let’s Learn from the Digital World

0 0 A

Q: Verify this two-input AND gate




Digital Abstraction Is the Key

m States become discrete and countable

m Verify property (Y=A-B) for each state




Verification in Analog Circuits




Analog Abstraction: Linear System

m Design intentis to
use the linear region
around the OP

m  Anideal circuit has
linear 1/O relationship
AY = o-AA + 3-AB

m Ingeneral, it's a
linear dynamical
system

m  Our conjecture: all analog circuits have linear intent!
O Then, the proper abstraction for analog is a linear system




Linear System Review

m What defines a linear system?

x(t) —» System — y(t)

O Ify,(t) is the system’s response to an input x,(t)

(i.e. %,(t) > y,(0)), then a-x,(t) > ay,(t)
0 1 x,(t) > y4(t) and xy(t) > y,(t), then X, (()#x,() = Y30+ v, (1)
0 Called “superposition principle”




Linear System Review (2)

m Superposition principle basically says the output of a
linear system can be expressed as a linear sum of the
inputs at different times:

y(t) = [ h h(t,7)-z(7)dT

oo

O h(t, t) denotes the gain between input x(t) and output y(t)

O Causality implies: h(t, t) =0ift<tift

0 Time-invariance implies: h(t, t) = h(t-t), I.e., the gain is a
function of t-t only

O h(t-t) is called the impulse response of a system




Leverage Linear Abstraction

m  As Boolean abstraction did for digital, linear
abstraction can greatly simplify analog verification

m For example, abstraction lets us define “coverage”
o How thoroughly do we need to run the simulations
0 Boolean reduces # of points along each state dimension (2)
O Linear allows each input to be tested independently

y = Z&i * X (superposition)
i

O # of tests required is actually far less for analog (N+1 vs. 2N)

* J. Kim, et al., “Leveraging Designer’s Intent: A Path Toward Simpler Analog
CAD Tools,” CICC’09.
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Linear AC: Formal Method for Analog

m Ifthe intentis linear, AC analysis is the most effective
way of validating it
o AC analysis can measure the transfer function (TF) of a circuit

o TFis a Fourier transform of the impulse response; therefore it

can completely describe the linear system of interest
A

m Therefore,
AC analysis
formally verifies
the linear intent

N I
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Bandwidth
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>

Frequency f
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Is LS Indeed the Abstraction for Analog?

m Note that not everyone agrees with my conjecture

m Designers easily agree because:
O Linear system theory is the only tool they are trained with in
order to understand the real world
O “Engineers see the world as a first-order system; although it's
really a second-order one”

O Designers don't know how to analyze general nonlinear
systems: how can you design a system you don’t understand?
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Is LS Indeed the Abstraction for Analog?

m CAD researchers don't agree easily
O They are people who write numerical simulators like SPICE

O They are very good with nonlinear equations; in fact linear
equations are too elementary to them

m They say, “no real circuits are linear!”
0 And my designer friend said nonlinearity is really important!
O True, but no real gates are Boolean, either
O That does not mean the circuit doesn’'t have a linear intent
0O Question Is, can we describe the circuit as
- an approximate linear system and
- Its deviations from that linear system?
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Weakly Nonlinear Systems

m A system whose behavior can be approximated mostly

as linear system yet may possess mild nonlinearities are
called “weakly nonlinear systems”

O Can be expressed with Volterra series (~ Taylor series for
dynamical systems)

400
y(f) — Yo —+ / hal (7'1) . I(f — Tl)d?"l
jrD-(-Soo +oo
+ / / h;Q(Tl, Tg).’ﬁ(t — Tl)ﬁ(ﬁ — Tg)d’?_ld’}"g

400 —+o0 400
— / / / hs(71, 7o, 73)2(t — 1) x(t — To)x(t — T3)dTdTodTS

o Don'the'scared by the equation: point is that there exists a
systematic way of analyzing a weakly nonlinear system
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Example: Low-Noise Amplifier (LNA)

m Its specification parameters can be categorized into:

m Linear parameters:

o Gain (Sy)
o Center frequency Note: most circuits
O Noise figure strive to achieve zero

: nonlinearities! _
m Nonlinear parameters

0 1-dB compression point: gain saturation -
0O 3rd-order interception point (IP3): harmonic generation

m Others
O Power, area, supply voltage, technology node, ...
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What about ADC and DAC?

m A/D and D/A converters are one exception to our
conjecture — they possess “strong nonlinearity”

m Anditis an intended behavior: even an ideal ADC

should quantize the input signall,, .. 1 —

m  Nonlinearity ina DC sense is

easy to describe and understand

o An extended framework to include We may design for
strong DC-nonlinearities within the PC nonlinearities’
realm of “weakly nonlinear system” is
called “modified Volterra Series”

D. Mirri, “A modified Volterra series approach for nonlinear dynamic systems




What About PLL/DLL?

m A PLL/DLL is highly nonlinear from a voltage
perspective

O Large-signal clock in, large-signal clock out
O Isn’t this a counter-example to my conjecture?
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PLL/DLL is a Linear System

m A PLL/DLL is highly nonlinear from a voltage perspective
o Large-signal clock in, large-signal clock out

m Butitislinear in its phase/delay variables
0o The design intent is to control the “phase or delay” not voltage

compare phases adjust phase
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What About Phase Interpolators?

m A phase interpolator takes two clock inputs and

produces a clock with the phase in-between
O Is this circuit analog or digital? Is it linear?

o JL
\ I CKour
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Phase Interpolators are Linear

m It has a linear relationship between the input phases
and the output phase

e JL

CKoutr Pour

Doyt = (Pp + Dp)/2 + Dy
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Phase Interpolator with Control Inputs

m  Some phase interpolators have control inputs which
can adjust the interpolation weight w

m  Q:is this circuit still linear?

(DOUT

Doy = W-@p + (1-w)- O + D
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Circuits with Control Inputs

m  We can understand these circuits as two linear systems

O One between the main inputs (®,, ®g) and output (Oy7)
O The other between the control inputs (Vc+/-) and the weight (w)

0 A similar example is a variable gain amplifier (VGA)
Vc+

CKour

(DOUT

Doy = W-@p + (1-w)- O + D
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Phase Interpolator with Digital Control

m  Now, Is this circuit still linear?

0o Functionally yes, except that we have an implicit DAC
between the digital control inputs and the interpolation weight

Doy = W-@p + (1-w)- O + D
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What About a Delta-Sigma ADC?

m A A-XZ ADC or a bangbang PLL has a strongly nonlinear

element (i.e. the quantizer or binary PD) within the loop
0 Makes the loop behavior strongly nonlinear, too
0 Can we still consider them as linear systems?

Lo Vl'efo
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Their Behaviors are Random

m Due to nonlinear (digital) components in the feedback

O
O

e.g. binary PLL/CDRs, digital calibration loops, etc.
Aperiodic dithering near locked states

m Often, randomness is intentional

O

AY data converters: quantization errors = out-of-band noise
Dynamic element matching: mismatch => out-of-band noise
Aperiodic calibration: periodic tones = random noise
Dithering: to improve linearity and suppress periodicity
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Yet, the Intent is Still a Linear System

m Despite the randomness, these nonlinear feedback
loops are designed with a certain “linear system” in mind

m Most of them have “analog” counterparts
O Bangbang PLL/CDRs
O Digital calibration/correction loops
O AZX data converters

m Hence, the functionality is “analog (linear)”
0 Phase transfer function (bandwidth, peaking)
O Calibration bandwidth, stability
O Signal or noise transfer functions
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Extending LS to Stochastic Systems

m Bangbang PLLs and AX data converters:

O Intentis linear but
0 They have neither DC nor periodic steady states

m They do have steady states — in a stochastic sense!
O Steady state is an ensemble of waveforms with probabilities
O e.g. PDF (jitter histogram), PSD (noise spectrum), etc.
0O In other words, their operating point is probablistic

m Given the steady state (OP), we can find its equivalent

linear system

o J.Kim, etal., “Stochastic Steady-State and AC Analyses of Mixed-Signal
Systems”, DAC 20009.
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Limitation of Linear Analysis

Don't forge't_'::_'_' '~ N = Linear analysis verify
thesel)// 7777 ] only the LOCAL linear
properties

m All circuits are
eventually nonlinear

m Serious failures can occur when the circuits do not
operate at the desired operate points

m  The system can behave completely different
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Functional Failure Example in PLLS

m  When the VCO starts at too high a frequency, a PLL
may get into a dead-lock condition

m But the PLL functions correctly otherwise
O And it's very easy to overlook this bug during design time

Pushes the frequency even higher

o f{ e e
m—

Starts up
@2.5GHz
+~2 le—m—
~0.8GHz Swallows pulses
e.g. +3
o (e.9. +3) ]




It’s Global Convergence Problem

m  Happens in nonlinear systems: converge to different
equilibrium points depending on the initial points

m [t calls for a way to ensure that the system will always
converge to the desired OP and the desired LS
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