Lecture 6. Tutorial on Cadence
Virtuoso Schematic Editor

Jaeha Kim
Mixed-Signal IC and System Group (MICS)
Seoul National University
jaeha@ieee.org
Schematic Editor

- Schematic editor (e.g. Cadence Virtuoso) lets you express the circuits graphically
 - More intuitive and less error prone than typing the text-based SPICE netlists

- The SPICE netlists can be generated which is then included in the simulation deck

- Refer to the Virtuoso Tutorial on the website
Motivation for Portable Design

- A fabless semiconductor IP company needs to deliver its circuit designs in multiple IC technologies.

- For digital designs, it is straightforward:
 - Designs are represented in process-independent HDL codes.
 - Reusing designs across different technologies is common.

\[X \rightarrow Y \quad \text{"Y = \neg X"} \]

Process A

\[X \rightarrow Y \quad \text{"Y = \neg X"} \]

Process B
Motivation (2)

- But for analog designs, process difference is a barrier
 - IC foundries call their transistors with their own names and own parameter sets – even if they are the same NMOS!
 - This difference often leads to incompatible IC design flows

- Analog design reuse still relies on manual effort
 - Even when porting circuit schematics across technologies
Existing Approaches for Porting Schematics

- Use a standardized symbol library upon agreement
 - The library must be limited to the common feature set
 - No one is happy; can’t express fully in a given process

- Use conversion scripts to port between processes
 - CAD managers’ nightmare: # scripts required = \(N \cdot (N-1) \)
Our Solution: P.I. SCHEMA

- **Process-Independent Schematic Symbol Library**

- A symbol library that aims to represent circuit schematics in *all* IC process technologies
 - Schematics can fully express the features of each technology with its tailored parameters and value conventions
 - The same look-and-feel as the dedicated symbol library

- Schematics can be exchanged across technologies *as-is* without explicit conversion steps
 - Copy design entries between different design databases
 - Share common circuit blocks from a central library
 - Copy-and-paste part of the circuits from one schematic to another
How P.I. SCHEMA Works

User A

- tonmos
 - 0.8/0.112

User B

- nmos_12
 - 1.2/0.12

On-the-fly Conversions

"ibm12s" Conversion

"tsmc65" Conversion

Design Database

Shadow Parameters

- nmos:tox
 - 40/4
Shadow Parameters

- Store the design intents in process-independent way
 - So they can be mapped to any process technology
 - Hidden from the users – hence called “shadow parameters”

- Any design entry gets translated into a process-independent form before being stored in the database
 - The design database is not attached to any particular process
On-the-Fly Conversions

- Design entries in the database *display differently* depending on the choice of the IC technology
 - Converts from the shadow parameter values “on the fly”
 - Users only see the parameters being displayed and *think* that the designs have been converted for the technology
 - But the designs themselves don’t change
Implementation Details

- With shadow parameters and on-the-fly conversions, we can create an *illusion* that each user is using a customized symbol library for their IC technology
 - With a single symbol library (P.I. SCHEMA)
 - With the same design database

- Key is to note that such illusion can be realized with:
 - Symbol labels tailored to the process
 - Parameter editing interface tailored to the process
Tailoring Symbol Labels to the Process

- Use executable labels
 - In Cadence Virtuoso, they are SKILL labels (ilLabel)
 - The “pisDispLabel” functions return process-specific values by translating the shadow parameters based on the process
 - The process technology is specified by a library property named “pisProcess”
Tailoring Parameter Editing Interface

- **pisProcess “ibm12s”**

- **Shadow→Display (formInitProc)**
 - SDW_model
 - SDW_width
 - SDW_length

- **Edit Object Properties**
 - model: tonmos
 - width: 0.8
 - length: 0.112

- **Buttons:**
 - OK
 - Cancel
Tailoring Parameter Editing Interface (2)

Shadow → Display

- tonmos
- 1.6/0.112

Edit Object Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>tonmos</td>
</tr>
<tr>
<td>width</td>
<td>1.6</td>
</tr>
<tr>
<td>length</td>
<td>0.112</td>
</tr>
</tbody>
</table>

SDW_width = 80
Technology Configuration File

- A configuration file for each process technology defines:
 - Conversion from shadow to display parameters
 - Conversion from display to shadow parameters
 - Symbol labels (pisDispLabel)
 - Parameter editing interface
 - Netlisting format

- These are defined as "virtual functions" that are selected based on the technology choice (pisProcess property)
 - In Cadence, object-oriented programming using SKILL++
Demo 1: Porting Schematics

- Simply switch the conversion layer to convert the way the design is displayed.
- For the users, it means just updating the “pisProcess” from one process (ibm12s) to another (tsmc65).
Demo 2: Copy-and-Pasting

- All design databases use a single, shared symbol library regardless of their IC technologies.
- You can freely copy-and-paste part of the circuits between the schematics based on different processes.
Comparison with Existing Approaches

- vs. using a standardized symbol library
 - P.I.SCHEMA can fully express all features of any technology

- vs. using conversion scripts
 - CAD manager manages N configurations instead of N·(N-1)
Conclusions

- P.I.SCHEMA provides an abstract representation of analog circuits without sacrificing ease of use
 - Schematics stored in the database are process-independent
 - Schematics displayed to each user are process-specific

- P.I.SCHEMA facilitates share and reuse of analog circuits among diverse design communities
 - Circuit schematics can be freely exchanged regardless of process technology differences
 - IC design flows dependent on symbol library can now converge