Lecture 6. Tutorial on Cadence Virtuoso Schematic Editor

Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University jaeha@ieee.org

Schematic Editor

- Schematic editor (e.g. Cadence Virtuoso) lets you express the circuits graphically
 - More intuitive and less error prone than typing the text-based SPICE netlists

The SPICE netlists
 can be generated which
 is then included in the
 simulation deck

Refer to the Virtuoso
Tutorial on the website

Motivation for Portable Design

- A fabless semiconductor IP company needs to deliver its circuit designs in multiple IC technologies
- For digital designs, it is straightforward

Process A

- Designs are represented in process-independent HDL codes
- Reusing designs across different technologies is common

Process B

M I C S

Motivation (2)

- But for analog designs, process difference is a barrier
 - IC foundries call their transistors with their own names and own parameter sets – even if they are the same NMOS!
 - This difference often leads to incompatible IC design flows
- Analog design reuse still relies on manual effort
 - Even when porting circuit schematics across technologies

Existing Approaches for Porting Schematics

- Use a standardized symbol library upon agreement
 - The library must be limited to the common feature set
 - No one is happy; can't express fully in a given process
- Use conversion scripts to port between processes
 - □ CAD managers' nightmare: # scripts required = N·(N-1)

Our Solution: P.I. SCHEMA

- Process-Independent Schematic Symbol Library
- A symbol library that aims to represent circuit schematics in all IC process technologies
 - Schematics can fully express the features of each technology with its tailored parameters and value conventions
 - The same look-and-feel as the dedicated symbol library
- Schematics can be exchanged across technologies as-is without explicit conversion steps
 - Copy design entries between different design database
 - Share common circuit blocks from a central library
 - Copy-and-paste part of the circuits from one schematic to another

How P.I. SCHEMA Works

Shadow Parameters

- Store the design intents in process-independent way
 - □ So they can be mapped to any process technology
 - □ Hidden from the users hence called "*shadow parameters*"
- Any design entry gets translated into a processindependent form before being stored in the database
 - The design database is not attached to any particular process

On-the-Fly Conversions

- Design entries in the database display differently depending on the choice of the IC technology
 - Converts from the shadow parameter values "on the fly"
 - □ Users only see the parameters being displayed and *think* that the designs have been converted for the technology
 - But the designs themselves don't change

Implementation Details

- With shadow parameters and on-the-fly conversions, we can create an *illusion* that each user is using a customized symbol library for their IC technology
 - □ With a single symbol library (P.I. SCHEMA)
 - With the same design database
- Key is to note that such illusion can be realized with:
 - Symbol labels tailored to the process
 - Parameter editing interface tailored to the process

Tailoring Symbol Labels to the Process

- Use executable labels
 - □ In Cadence Virtuoso, they are SKILL labels (ilLabel)
 - The "pisDispLabel" functions return process-specific values by translating the shadow parameters based on the process
 - The process technology is specified by a library property named "pisProcess"

Tailoring Parameter Editing Interface

Tailoring Parameter Editing Interface (2)

Technology Configuration File

- A configuration file for each process technology defines:
 - Conversion from shadow to display parameters
 - Conversion from display to shadow parameters
 - Symbol labels (pisDispLabel)
 - Parameter editing interface
 - Netlisting format
- These are defined as "virtual functions" that are selected based on the technology choice (pisProcess property)
 - In Cadence, object-oriented programming using SKILL++

Demo 1: Porting Schematics

- Simply switch the conversion layer to convert the way the design is displayed
- For the users, it means just updating the "pisProcess" from one process (ibm12s) to another (tsmc65)

Demo 2: Copy-and-Pasting

- All design databases use a single, shared symbol library regardless of their IC technologies
- You can freely copy-and-paste part of the circuits between the schematics based on different processes

Comparison with Existing Approaches

- vs. using a standardized symbol library
 - P.I.SCHEMA can fully express all features of any technology
- vs. using conversion scripts
 - CAD manager manages N configurations instead of N·(N-1)

Conclusions

- P.I.SCHEMA provides an abstract representation of analog circuits without sacrificing ease of use
 - Schematics stored in the database are process-independent
 - Schematics displayed to each user are process-specific
- P.I.SCHEMA facilitates share and reuse of analog circuits among diverse design communities
 - Circuit schematics can be freely exchanged regardless of process technology differences
 - IC design flows dependent on symbol library can now converge

