
Lecture 9. Introduction to Analog
Behavioral Description LanguageBehavioral Description Language

Jaeha Kim
Mixed-Signal IC and System Group (MICS)
Seoul National University
jaeha@ieee.org

1

Overview
 Readings

 Verilog A Langauge Reference Manual:  Verilog-A Langauge Reference Manual:
http://www.vhdl.org/verilog-ams/htmlpages/public-
docs/lrm/VerilogA/verilog-a-lrm-1-0.pdf

 Designer’s guide website (http://www.designers-guide.org)

 Background
 To describe ideal behaviors of analog circuits, we used to

build artificial circuits with ideal sources/RLC, switches, and
dependent elements Analog behavioral description language dependent elements. Analog behavioral description language
lets you do this procedurally. While the original intent of
Verilog-A is to ease writing compact models, I find it most

f l hil iti t tb huseful while writing testbenches.
2

Device Model Writer’s Nightmare

S t
EldoVBIC ACM

Spectre

ADS
SmashHiCUMBSIM

USIM

HSIM
HiCUMBSIM

Mextram
NanosimAPLAC

HSPICE
HiSIM

PSP

HVEKV

AMS
Golden
Gate

HVEKV

MM20

3
from McAndrew, BMAS 2003

The Solution

EldoVBIC ACM

ce

Spectre

ADS
SmashHiCUM

ACM

USIM

nt
er

fa
c Smash

HSIM
HiCUMBSIM

Mextram

el
in

g
In NanosimAPLAC

HSPICE
HiSIM

PSP
M

od
e

AMS
Golden
Gate

HSPICE

MM20

HVEKV

4
from McAndrew, BMAS 2003

Verilog-A: Analog Behavioral Modeling
 The original intent: replace C compact device models
 Versatile and simulator-independent
 No need to explicitly compute the derivativesp y p

module mos(d,g,s,b);
inout d,g,s,b;

module mos(d,g,s,b);
inout d,g,s,b;,g, , ;

analog
I(d,s) <+

k*(V(g s)-Vth)^alpha;

,g, , ;
analog

I(d,s) <+
$table model(k (V(g,s) Vth) alpha;

endmodule
$table_model(
“mos_IV.dat”, V(g,s));

endmodule

5

Verilog-A: Jump Start
 Verilog-A borrows the syntax from Verilog

 Intuitive and easy to read and learn Intuitive and easy to read and learn

 Based on through and across variables
S t i f KCL d KVL Set up is for KCL and KVL

 Understand the “contribution” operator
I(di,si) <+ Ids;
V(d ,di) <+ I(b_rd)*rd;

 Dynamic flows are done via ddt()
I(t,b) <+ ddt(C * V(t,b));

6

Verilog-A: First Example
module cg_amp(in,out,vdd);
inout in, out, vdd;
electrical in, out, vdd;
parameter real Cg = 100f;
parameter real CL = 1p;
parameter real k = 100u;
Parameter real alpha = 1.25;
analog begin
I(in) <+ Cg*ddt(V(in));
I(out) <+ k*(V(in)-Vth)^alpha;
I(out) <+ CL*ddt(V(out));
I(vdd,out) <+ V(vdd,out)/R;

end
endmodule

7

Input/Output Ports
 Conservative systems (electrical)

 Two values are associated with every node: potential  Two values are associated with every node: potential
(voltage) and flow (current)

 The system obeys the KVL and KCL: their values need to be
solved by an ODE

 In general, signals flow bidirectional

 Signal-flow systems (voltage, current)
 Only voltage or current is associated with the node Only voltage or current is associated with the node
 Unidirectional signal flow: their values are determined by

simple assignments

8

Contribution Operator “<+”
 Only valid within the analog block

 You cannot assign both flow and potential to the same branch You cannot assign both flow and potential to the same branch
analog begin

I(n1,n2) <+ expression;I(n1,n2) <+ expression;
V(n3,n4) <+ expression;

end

 “<+” accumulates the contributions on the branch within
the simulation cycle
 Differs from ‘=‘ in that the contributions are accumulated
 Differs from ‘+=‘ in that the value is reset every time step

9

y p

But Verilog-A Can Also Do:
 Run-time measurement
 Assertion checks
 Stimuli generationg
 Testbenches
 Solve and optimization Solve and optimization

10

Verilog-A: Run-time Measurement
 Recording the transition times of a clock

 No need to store tr0; can auto start/stop No need to store .tr0; can auto-start/stop
module snork (clk);
input clk;p
parameter real threshold = Vdd/2;
integer file;

analog beginanalog begin
@(initial_step) file = $fopen(“clk_transition”);
@(cross(V(clk)-threshold, +1, 1e-12))

$fdisplay(file “%1 4g” $abstime);$fdisplay(file, %1.4g , $abstime);
@(final_step) $fclose(file);

end

Slide 11

endmodule

Verilog-A: Assertion Checks
 Check circuit behavior in run-time

 Report when violation occurs Report when violation occurs
 e.g., gate oxide breakdown checks, PN forward-bias checks,

saturation checks, …

 Checker can be instantiated as subckt
 Embed checkers in your circuit Embed checkers in your circuit
 Then each of its multiple instances will have its own checkers

automatically

12

Example: Oxide Breakdown Check
.SUBCKT nmos_ox d g s b W=W1 L=L1
M1 d g s b nmos W=W1 L=L1
X1 d g s b ox_checker Vmax=2V
.ENDS

module ox_checker(d,g,s,b);
inout d,g,s,b;

t l V i fparameter real Vmax=inf;

analog
if (V(g,s) > Vmax or V(g,d) > Vmax)

$display(“transistor is toast at %1.4g sec”,
$abstime);

endmodule

13

Verilog-A: Stimuli Generation
 Create stimuli not readily available
 e.g., clock waveform with AC jitter
module clock_w_jitter (clk, jitter);
input jitter;input jitter;
output clk;
parameter real vos, vsw, tcyc, tedge;

analog begin
V(sine) <+ cos(2*`M_PI*$abstime/tcyc + V(jitter));
V(clk) <+ vos + vsw*tanh(tcyc/tedge/`M*PI*V(sine));

end

endmodule

14

Jitter Source (Spectre Format)
 AC jitter source:

Vjtr (jitter gnd) vsource pacmag=1
Clksrc (clk jitter) clk_w_jitter
+ dd/2 dd/2 t d 100 t 1

 White jitter source:

+ vos=vdd/2 vsw=vdd/2 tedge=100p tcyc=1n

 White jitter source:

Vjtr (jitter gnd) bsource v=0
+ isnoisy=yes white_noise(var_j)
Clksrc (clk jitter) clk_w_jitter
+ vos=vdd/2 vsw=vdd/2 tedge=100p tcyc=1n

15

Verilog-A: Testbenches
 Measure input offset of a comparator

 Takes input voltage sweep with transient sim Takes input voltage sweep with transient sim

 Imagine a module that finds the input offset through
feedbackfeedback

16

The Imaginary Module
 Metastable: outp == outn at all times
 Adjust offset based on outp-outn

d l ff t(t t)module meas_comp_offset(osp, osn, outp, outn);
input outp, outn;
output osp, osn;

analog begin
V(osp,osn) <+ -0.1 * idt(V(outp,outn), 0.0);

end

endmodule

17

Simulation Response
 Single transient sim finds the offset

Before Settling After Settling
18

Before Settling After Settling

Verilog-A: Indirect Assignment
 V(x): <condition>;

Find V(x) that satisfies the <condition>

 Can describe differential equations
V() ddt(V()) A*V() + bV(x): ddt(V(x)) = A*V(x) + b;

19

Verilog-A: Solver/Optimizer
 Solve f(x) = 0:
V(f) <+ V(x)^2 - 2*V(x) – 3;
V(x): V(f) == 0;

 Minimize f(x): Minimize f(x):

V(f) <+ V(x)^2 - 2*V(x) – 3;
V(x): ddx(V(f)) == 0;

20

Verilog-A: Caveats
 Resurgence of almost forgotten errors:

“Time step too small”
“DC convergence failure”

E t it d l th t i ll ill diti d Easy to write models that are numerically ill-conditioned
 Bad news: simulator dependent

 Some rules:
 Avoid discontinuities in values and derivatives
 Avoid sharp transitions (or zero capacitance nodes)

– Ideal system for SPICE is a low-order linear system

21

Using Verilog-A in SpectreRF
 Verilog-A modules must not have “hidden states”

 Shooting method needs access to all the states in the circuit Shooting method needs access to all the states in the circuit
 States (memories) that affect the behavior, but not visible to

SPICE engine as V or I

 For example, you can’t use “absdelay”
 exp(Td*s) has infinite number of states exp(-Td s) has infinite number of states
 Internal states are not accessible by SPICE
 Instead, approximate it as a finite-bandwidth system

22

