
Lecture 9. Introduction to Analog
Behavioral Description LanguageBehavioral Description Language

Jaeha Kim
Mixed-Signal IC and System Group (MICS)
Seoul National University
jaeha@ieee.org

1

Overview
 Readings

 Verilog A Langauge Reference Manual: Verilog-A Langauge Reference Manual:
http://www.vhdl.org/verilog-ams/htmlpages/public-
docs/lrm/VerilogA/verilog-a-lrm-1-0.pdf

 Designer’s guide website (http://www.designers-guide.org)

 Background
 To describe ideal behaviors of analog circuits, we used to

build artificial circuits with ideal sources/RLC, switches, and
dependent elements Analog behavioral description language dependent elements. Analog behavioral description language
lets you do this procedurally. While the original intent of
Verilog-A is to ease writing compact models, I find it most

f l hil iti t tb huseful while writing testbenches.
2

Device Model Writer’s Nightmare

S t
EldoVBIC ACM

Spectre

ADS
SmashHiCUMBSIM

USIM

HSIM
HiCUMBSIM

Mextram
NanosimAPLAC

HSPICE
HiSIM

PSP

HVEKV

AMS
Golden
Gate

HVEKV

MM20

3
from McAndrew, BMAS 2003

The Solution

EldoVBIC ACM

ce

Spectre

ADS
SmashHiCUM

ACM

USIM

nt
er

fa
c Smash

HSIM
HiCUMBSIM

Mextram

el
in

g
In NanosimAPLAC

HSPICE
HiSIM

PSP
M

od
e

AMS
Golden
Gate

HSPICE

MM20

HVEKV

4
from McAndrew, BMAS 2003

Verilog-A: Analog Behavioral Modeling
 The original intent: replace C compact device models
 Versatile and simulator-independent
 No need to explicitly compute the derivativesp y p

module mos(d,g,s,b);
inout d,g,s,b;

module mos(d,g,s,b);
inout d,g,s,b;,g, , ;

analog
I(d,s) <+

k*(V(g s)-Vth)^alpha;

,g, , ;
analog

I(d,s) <+
$table model(k (V(g,s) Vth) alpha;

endmodule
$table_model(
“mos_IV.dat”, V(g,s));

endmodule

5

Verilog-A: Jump Start
 Verilog-A borrows the syntax from Verilog

 Intuitive and easy to read and learn Intuitive and easy to read and learn

 Based on through and across variables
S t i f KCL d KVL Set up is for KCL and KVL

 Understand the “contribution” operator
I(di,si) <+ Ids;
V(d ,di) <+ I(b_rd)*rd;

 Dynamic flows are done via ddt()
I(t,b) <+ ddt(C * V(t,b));

6

Verilog-A: First Example
module cg_amp(in,out,vdd);
inout in, out, vdd;
electrical in, out, vdd;
parameter real Cg = 100f;
parameter real CL = 1p;
parameter real k = 100u;
Parameter real alpha = 1.25;
analog begin
I(in) <+ Cg*ddt(V(in));
I(out) <+ k*(V(in)-Vth)^alpha;
I(out) <+ CL*ddt(V(out));
I(vdd,out) <+ V(vdd,out)/R;

end
endmodule

7

Input/Output Ports
 Conservative systems (electrical)

 Two values are associated with every node: potential Two values are associated with every node: potential
(voltage) and flow (current)

 The system obeys the KVL and KCL: their values need to be
solved by an ODE

 In general, signals flow bidirectional

 Signal-flow systems (voltage, current)
 Only voltage or current is associated with the node Only voltage or current is associated with the node
 Unidirectional signal flow: their values are determined by

simple assignments

8

Contribution Operator “<+”
 Only valid within the analog block

 You cannot assign both flow and potential to the same branch You cannot assign both flow and potential to the same branch
analog begin

I(n1,n2) <+ expression;I(n1,n2) <+ expression;
V(n3,n4) <+ expression;

end

 “<+” accumulates the contributions on the branch within
the simulation cycle
 Differs from ‘=‘ in that the contributions are accumulated
 Differs from ‘+=‘ in that the value is reset every time step

9

y p

But Verilog-A Can Also Do:
 Run-time measurement
 Assertion checks
 Stimuli generationg
 Testbenches
 Solve and optimization Solve and optimization

10

Verilog-A: Run-time Measurement
 Recording the transition times of a clock

 No need to store tr0; can auto start/stop No need to store .tr0; can auto-start/stop
module snork (clk);
input clk;p
parameter real threshold = Vdd/2;
integer file;

analog beginanalog begin
@(initial_step) file = $fopen(“clk_transition”);
@(cross(V(clk)-threshold, +1, 1e-12))

$fdisplay(file “%1 4g” $abstime);$fdisplay(file, %1.4g , $abstime);
@(final_step) $fclose(file);

end

Slide 11

endmodule

Verilog-A: Assertion Checks
 Check circuit behavior in run-time

 Report when violation occurs Report when violation occurs
 e.g., gate oxide breakdown checks, PN forward-bias checks,

saturation checks, …

 Checker can be instantiated as subckt
 Embed checkers in your circuit Embed checkers in your circuit
 Then each of its multiple instances will have its own checkers

automatically

12

Example: Oxide Breakdown Check
.SUBCKT nmos_ox d g s b W=W1 L=L1
M1 d g s b nmos W=W1 L=L1
X1 d g s b ox_checker Vmax=2V
.ENDS

module ox_checker(d,g,s,b);
inout d,g,s,b;

t l V i fparameter real Vmax=inf;

analog
if (V(g,s) > Vmax or V(g,d) > Vmax)

$display(“transistor is toast at %1.4g sec”,
$abstime);

endmodule

13

Verilog-A: Stimuli Generation
 Create stimuli not readily available
 e.g., clock waveform with AC jitter
module clock_w_jitter (clk, jitter);
input jitter;input jitter;
output clk;
parameter real vos, vsw, tcyc, tedge;

analog begin
V(sine) <+ cos(2*`M_PI*$abstime/tcyc + V(jitter));
V(clk) <+ vos + vsw*tanh(tcyc/tedge/`M*PI*V(sine));

end

endmodule

14

Jitter Source (Spectre Format)
 AC jitter source:

Vjtr (jitter gnd) vsource pacmag=1
Clksrc (clk jitter) clk_w_jitter
+ dd/2 dd/2 t d 100 t 1

 White jitter source:

+ vos=vdd/2 vsw=vdd/2 tedge=100p tcyc=1n

 White jitter source:

Vjtr (jitter gnd) bsource v=0
+ isnoisy=yes white_noise(var_j)
Clksrc (clk jitter) clk_w_jitter
+ vos=vdd/2 vsw=vdd/2 tedge=100p tcyc=1n

15

Verilog-A: Testbenches
 Measure input offset of a comparator

 Takes input voltage sweep with transient sim Takes input voltage sweep with transient sim

 Imagine a module that finds the input offset through
feedbackfeedback

16

The Imaginary Module
 Metastable: outp == outn at all times
 Adjust offset based on outp-outn

d l ff t(t t)module meas_comp_offset(osp, osn, outp, outn);
input outp, outn;
output osp, osn;

analog begin
V(osp,osn) <+ -0.1 * idt(V(outp,outn), 0.0);

end

endmodule

17

Simulation Response
 Single transient sim finds the offset

Before Settling After Settling
18

Before Settling After Settling

Verilog-A: Indirect Assignment
 V(x): <condition>;

Find V(x) that satisfies the <condition>

 Can describe differential equations
V() ddt(V()) A*V() + bV(x): ddt(V(x)) = A*V(x) + b;

19

Verilog-A: Solver/Optimizer
 Solve f(x) = 0:
V(f) <+ V(x)^2 - 2*V(x) – 3;
V(x): V(f) == 0;

 Minimize f(x): Minimize f(x):

V(f) <+ V(x)^2 - 2*V(x) – 3;
V(x): ddx(V(f)) == 0;

20

Verilog-A: Caveats
 Resurgence of almost forgotten errors:

“Time step too small”
“DC convergence failure”

E t it d l th t i ll ill diti d Easy to write models that are numerically ill-conditioned
 Bad news: simulator dependent

 Some rules:
 Avoid discontinuities in values and derivatives
 Avoid sharp transitions (or zero capacitance nodes)

– Ideal system for SPICE is a low-order linear system

21

Using Verilog-A in SpectreRF
 Verilog-A modules must not have “hidden states”

 Shooting method needs access to all the states in the circuit Shooting method needs access to all the states in the circuit
 States (memories) that affect the behavior, but not visible to

SPICE engine as V or I

 For example, you can’t use “absdelay”
 exp(Td*s) has infinite number of states exp(-Td s) has infinite number of states
 Internal states are not accessible by SPICE
 Instead, approximate it as a finite-bandwidth system

22

