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Overview
 Readings

 Verilog A Langauge Reference Manual:  Verilog-A Langauge Reference Manual: 
http://www.vhdl.org/verilog-ams/htmlpages/public-
docs/lrm/VerilogA/verilog-a-lrm-1-0.pdf

 Designer’s guide website (http://www.designers-guide.org)

 Background
 To describe ideal behaviors of analog circuits, we used to 

build artificial circuits with ideal sources/RLC, switches, and 
dependent elements  Analog behavioral description language dependent elements. Analog behavioral description language 
lets you do this procedurally. While the original intent of 
Verilog-A is to ease writing compact models, I find it most 

f l hil  iti  t tb huseful while writing testbenches.
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Device Model Writer’s Nightmare

S t
EldoVBIC ACM

Spectre

ADS
SmashHiCUMBSIM

USIM

HSIM
HiCUMBSIM

Mextram
NanosimAPLAC

HSPICE
HiSIM

PSP

HVEKV

AMS
Golden
Gate

HVEKV

MM20

3
from McAndrew, BMAS 2003



The Solution
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Verilog-A: Analog Behavioral Modeling
 The original intent: replace C compact device models
 Versatile and simulator-independent 
 No need to explicitly compute the derivativesp y p

module mos(d,g,s,b);
inout d,g,s,b;

module mos(d,g,s,b);
inout d,g,s,b;,g, , ;

analog
I(d,s) <+ 

k*(V(g s)-Vth)^alpha;

,g, , ;
analog

I(d,s) <+ 
$table model(k (V(g,s) Vth) alpha;

endmodule
$table_model(
“mos_IV.dat”, V(g,s));

endmodule 
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Verilog-A: Jump Start
 Verilog-A borrows the syntax from Verilog

 Intuitive and easy to read and learn Intuitive and easy to read and learn

 Based on through and across variables
S t  i  f  KCL d KVL Set up is for KCL and KVL

 Understand the “contribution” operator
I(di,si) <+ Ids;
V(d ,di) <+ I(b_rd)*rd;

 Dynamic flows are done via ddt()
I(t,b) <+ ddt(C * V(t,b));
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Verilog-A: First Example
module cg_amp(in,out,vdd);
inout in, out, vdd;
electrical in, out, vdd;
parameter real Cg = 100f;
parameter real CL = 1p;
parameter real k = 100u;
Parameter real alpha = 1.25;
analog begin
I(in) <+ Cg*ddt(V(in));
I(out) <+ k*(V(in)-Vth)^alpha;
I(out) <+ CL*ddt(V(out));
I(vdd,out) <+ V(vdd,out)/R;

end
endmodule
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Input/Output Ports
 Conservative systems (electrical)

 Two values are associated with every node: potential  Two values are associated with every node: potential 
(voltage) and flow (current)

 The system obeys the KVL and KCL: their values need to be 
solved by an ODE

 In general, signals flow bidirectional

 Signal-flow systems (voltage, current)
 Only voltage or current is associated with the node Only voltage or current is associated with the node
 Unidirectional signal flow: their values are determined by 

simple assignments
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Contribution Operator “<+”
 Only valid within the analog block

 You cannot assign both flow and potential to the same branch You cannot assign both flow and potential to the same branch
analog begin

I(n1,n2) <+ expression;I(n1,n2) <+ expression;
V(n3,n4) <+ expression;

end

 “<+” accumulates the contributions on the branch within 
the simulation cycle
 Differs from ‘=‘ in that the contributions are accumulated
 Differs from ‘+=‘ in that the value is reset every time step

9

y p



But Verilog-A Can Also Do:
 Run-time measurement 
 Assertion checks
 Stimuli generationg
 Testbenches
 Solve and optimization Solve and optimization
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Verilog-A: Run-time Measurement
 Recording the transition times of a clock

 No need to store tr0; can auto start/stop No need to store .tr0; can auto-start/stop
module snork (clk);
input clk;p
parameter real threshold = Vdd/2;
integer file;

analog beginanalog begin
@(initial_step) file = $fopen(“clk_transition”);
@(cross(V(clk)-threshold, +1, 1e-12))

$fdisplay(file “%1 4g” $abstime);$fdisplay(file, %1.4g , $abstime);
@(final_step) $fclose(file);

end

Slide 11
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Verilog-A: Assertion Checks
 Check circuit behavior in run-time

 Report when violation occurs Report when violation occurs
 e.g., gate oxide breakdown checks, PN forward-bias checks, 

saturation checks, …

 Checker can be instantiated as subckt
 Embed checkers in your circuit Embed checkers in your circuit
 Then each of its multiple instances will have its own checkers 

automatically

12



Example: Oxide Breakdown Check
.SUBCKT nmos_ox d g s b W=W1 L=L1
M1 d g s b nmos W=W1 L=L1
X1 d g s b ox_checker Vmax=2V
.ENDS

module ox_checker(d,g,s,b);
inout d,g,s,b;

t l V i fparameter real Vmax=inf;

analog
if (V(g,s) > Vmax or V(g,d) > Vmax)

$display(“transistor is toast at %1.4g sec”,
$abstime);

endmodule
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Verilog-A: Stimuli Generation
 Create stimuli not readily available
 e.g., clock waveform with AC jitter
module clock_w_jitter (clk, jitter);
input jitter;input jitter;
output clk;
parameter real vos, vsw, tcyc, tedge;

analog begin
V(sine) <+ cos(2*`M_PI*$abstime/tcyc + V(jitter));
V(clk) <+ vos + vsw*tanh(tcyc/tedge/`M*PI*V(sine));

end

endmodule
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Jitter Source (Spectre Format)
 AC jitter source:

Vjtr (jitter gnd) vsource pacmag=1
Clksrc (clk jitter) clk_w_jitter
+ dd/2 dd/2 t d 100 t 1

 White jitter source:

+ vos=vdd/2 vsw=vdd/2 tedge=100p tcyc=1n

 White jitter source:

Vjtr (jitter gnd) bsource v=0 
+ isnoisy=yes white_noise(var_j)
Clksrc (clk jitter) clk_w_jitter
+ vos=vdd/2 vsw=vdd/2 tedge=100p tcyc=1n
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Verilog-A: Testbenches
 Measure input offset of a comparator

 Takes input voltage sweep with transient sim Takes input voltage sweep with transient sim

 Imagine a module that finds the input offset through 
feedbackfeedback
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The Imaginary Module
 Metastable: outp == outn at all times
 Adjust offset based on outp-outn

d l ff t( t t )module meas_comp_offset(osp, osn, outp, outn);
input outp, outn;
output osp, osn;

analog begin
V(osp,osn) <+ -0.1 * idt(V(outp,outn), 0.0);

end

endmodule
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Simulation Response
 Single transient sim finds the offset

Before Settling After Settling
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Verilog-A: Indirect Assignment
 V(x): <condition>;

Find V(x) that satisfies the <condition>

 Can describe differential equations
V( ) ddt(V( )) A*V( ) + bV(x): ddt(V(x)) = A*V(x) + b;
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Verilog-A: Solver/Optimizer
 Solve f(x) = 0:
V(f) <+ V(x)^2 - 2*V(x) – 3; 
V(x): V(f) == 0;

 Minimize f(x): Minimize f(x):

V(f) <+ V(x)^2 - 2*V(x) – 3; 
V(x): ddx(V(f)) == 0;
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Verilog-A: Caveats
 Resurgence of almost forgotten errors:

“Time step too small”
“DC convergence failure”

E  t  it  d l  th t  i ll  ill diti d Easy to write models that are numerically ill-conditioned
 Bad news: simulator dependent

 Some rules:
 Avoid discontinuities in values and derivatives
 Avoid sharp transitions (or zero capacitance nodes)

– Ideal system for SPICE is a low-order linear system
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Using Verilog-A in SpectreRF
 Verilog-A modules must not have “hidden states”

 Shooting method needs access to all the states in the circuit Shooting method needs access to all the states in the circuit
 States (memories) that affect the behavior, but not visible to 

SPICE engine as V or I

 For example, you can’t use “absdelay”
 exp( Td*s) has infinite number of states exp(-Td s) has infinite number of states
 Internal states are not accessible by SPICE
 Instead, approximate it as a finite-bandwidth system  
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