Lecture 12. Aperture and Noise Analysis of Clocked Comparators

Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University jaeha@ieee.org

Clocked Comparators

- a.k.a. regenerative amplifier, sense-amplifier, flip-flop, latch, etc.
- At every clock edge, sample the input (continuous) and decide whether it is 0 or 1 (binary)
 - □ Therefore, it's inherently nonlinear operation

Comparator Characteristics

- Offset and hysteresis
- Sampling aperture, timing resolution, uncertainty window
- Regeneration gain, voltage sensitivity, metastability
- Random decision errors, input-referred noise

Can be analyzed and simulated based on a linear, timevarying (LTV) model of the comparator

Clocked Comparator Operation

- 4 operating phases: reset, sample, regeneration & decision
- Sampling & regeneration phases can be modeled as LTV

An Ideal Comparator Model

• A realistic comparator acts on a filtered version of $V_i(t)$

LTV Model for Clocked Comparator

- Assumes a noisy, nonlinear filter before the sampling
- The filter's small-signal response is modeled with ISF $\Gamma(\tau)$

* J. Kim, et al., "Simulation and Analysis of Random Decision Errors in Clocked Comparators," IEEE TCAS-I, 08/2009.

ISF for Oscillators

Impulse sensitivity function (ISF) $\Gamma(\tau)$ is defined as:

 $\Gamma(\tau)$ = the final shift in the oscillator phase due to a unit impulse arriving at time τ

* A. Hajimiri and T. H. Lee, "A General Theory of Phase Noise in Electrical Oscillators," IEEE JSSC, Feb. 1998.

ISF for Oscillators (2)

ISF describes the time-varying response of a oscillator
 □ Responses to each impulse add up via superposition
 □ For arbitrary noise input n(t), the resulting phase shift \D\$\phi\$ is:

$$\Delta \phi = \int_{-\infty}^{\infty} \Gamma(\tau) \cdot n(\tau) \, d\tau$$

- ISF led to some key oscillator design idioms:
 - □ Sharpen the clock edge to lower ISF (i.e. minimize Γ_{RMS})
 - □ Align noise events within low-ISF period
 - Balance ISF (i.e. $\Gamma_{DC}=0$) to prevent 1/f-noise up-conversion

ISF for Samplers and Comparators

For sample-and-hold circuits, the sampled voltage V_s can be expressed via a "sampling function" f(t):

$$V_s = \int_{-\infty}^{\infty} f(\tau) \cdot V_i(\tau) \, d\tau$$

* H. O. Johansson, C. Svensson, "Time Resolution of NMOS Sampling Switches Used on Low-Swing Signals," JSSC, Feb. 1998.

For clocked comparators, we simply add the "decision":

$$D_k = \operatorname{sgn}(V_k) = \operatorname{sgn}\left(\int_{-\infty}^{\infty} \Gamma(\tau) \cdot V_i(\tau) \, d\tau\right)$$

* P. Nuzzo, et al., "Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures," TCAS-I, July 2008.

ISF for Clocked Comparators

- ISF shows sampling aperture, i.e. timing resolution
- In frequency domain, it shows sampling gain and BW

Generalized ISF

In general, ISF is a subset of a so-called *time-varying impulse response* $h(t, \tau)$ for LTV systems*:

$$y(t) = \int_{-\infty}^{\infty} h(t,\tau) \cdot x(\tau) \, d\tau$$

- □ $h(t, \tau)$: the system response at *t* to a unit impulse arriving at τ □ For LTI systems, $h(t, \tau) = h(t-\tau) \rightarrow$ convolution
- ISF $\Gamma(\tau) = h(t_0, \tau)$
 - \Box t_0 : the time at which the system response is observed
 - **D** For oscillators, $t_0 = +\infty$
 - **\Box** For comparators, t_0 is before the decision is made (more later)

* <u>L. Zadeh, "Frequency Analysis of Variable Networks," Proc.</u> I.R.E. Mar. 1950.

Noise in LTV Systems

- If the input x(t) to an LTV system is a noise process, then the output y(t) is a <u>time-varying</u> noise in general
 Expressions become very complex (cyclo-stationary at best)
- We can keep things simple if we are interested in the noise only at one time point (in our case: $t_0 = t_{obs} + kT$)

LTV Output Noise at $t = t_0$

$$\sigma_{y}^{2}(t_{0}) = \mathbb{E}\left[y^{2}(t_{0})\right] = \mathbb{E}\left[y(t_{0}) \cdot y(t_{0})\right]$$
$$= \mathbb{E}\left[\left(\int_{-\infty}^{\infty} h(t_{0}, u) \cdot x(u) du\right) \cdot \left(\int_{-\infty}^{\infty} h(t_{0}, v) \cdot x(v) dv\right)\right]$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{E}\left[x(u) \cdot x(v)\right] \cdot h(t_{0}, u) \cdot h(t_{0}, v) du dv$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{xx}(u, v) \cdot h(t_{0}, u) \cdot h(t_{0}, v) du dv$$

• $R_{xx}(u, v)$ is the auto-correlation of the input noise x(t)

Response to White and 1/f Noises

If the input x(t) is white noise, i.e. $R_{xx}(u, v) = \sigma_x^2 \cdot \delta(u-v)$:

$$\sigma_y^2(t_0) = \sigma_x^2 \cdot \int_{-\infty}^{\infty} h^2(t_0, u) \, du = \sigma_x^2 \cdot \int_{-\infty}^{\infty} \Gamma^2(\tau) \, d\tau$$

- If the input x(t) is 1/f noise, i.e. $R_{xx}(u, v) = \sigma_x^2$: $\sigma_y^2(t_0) = \sigma_x^2 \cdot \left[\int_{-\infty}^{\infty} h(t_0, u) \, du\right]^2 = \sigma_x^2 \cdot \left[\int_{-\infty}^{\infty} \Gamma(\tau) \, d\tau\right]^2$
- Agrees with Hajimiri/Lee's low-noise design idioms:
 To minimize contribution of white noise, minimize Γ_{RMS}
 To minimize contribution of 1/f noise, make Γ_{DC} = 0

Random Decision Error Probability

If we have multiple noise sources, their contributions add up via RMS sum assuming they are independent:

$$\sigma_{y,total}^{2}(t_{o}) = \sum_{j} \sigma_{y,j}^{2}(t_{o})$$

If the comparator has signal V_o and noise $\sigma_{n,o}$ at $t_{obs'}$ the decision error probability P(error) can be estimated as:

$$\sqrt{SNR} = V_o(t_{obs}) / \sigma_{n,o}(t_{obs})$$

$$P(error) = Q\left(\sqrt{SNR}\right) = \frac{1}{\sqrt{2\pi}} \int_{\sqrt{SNR}}^{\infty} \exp(-x^2/2) \, dx$$

Circuit Analysis Example

- A variant of StrongARM comparator
- When clk is low, the comparator is in reset

1. Sampling Phase $(t = t_0 \sim t_1)$

1. Sampling Phase $(t = 0 \sim t_1)$

• S.S. response to M1 noise:

$$\frac{v_{out}(s)}{i_{n1}(s)} \cong \frac{g_{m2}}{s^2 C_{out} C_x}$$

$$\Gamma_{n1}(t) \cong \frac{t_1 - t}{g_{m1}\tau_{s1}\tau_{s2}} \cdot G_R$$

S.S. response to M2 noise:

18

2. Regeneration Phase ($t = t_1 \sim t_2$)

Putting It All Together

$$\sigma_{n,i}^{2} = \sigma_{n,o}^{2} / G^{2}$$

$$\cong \frac{16kT\gamma}{3C_{x}} \cdot \frac{\tau_{s1}}{t_{1} - t_{0}} + \frac{16kT\gamma}{C_{out}} \cdot \frac{\tau_{s1}^{2} \cdot \tau_{s2}}{(t_{1} - t_{0})^{3}}$$

Most of the noise is contributed by M1 and M2 pairs during the sampling phase

Design Trade-Offs

The input-referred noise can be approximated as:

$$\sigma_{n,i}^{2} \cong \frac{16kT\gamma}{3C_{x}} \cdot \frac{\tau_{s1}}{t_{1} - t_{0}} + \frac{16kT\gamma}{C_{out}} \cdot \frac{\tau_{s1}^{2} \cdot \tau_{s2}}{(t_{1} - t_{0})^{3}}$$

where

$$\frac{\tau_{s1}}{t_1 - t_0} \cong \frac{C_x}{C_{out}} \bigg/ \bigg(\frac{g_{m1}}{I_{d1}} \cdot V_{Tp} \bigg), \quad \frac{\tau_{s2}}{t_1 - t_0} \cong 1 \bigg/ \bigg(\frac{g_{m2}}{I_{d2}} \cdot V_{Tp} \bigg)$$

- Therefore, noise improves with larger g_m/l_d ratios and wider sampling aperture $(t_1 t_0)$
- However, sampling bandwidth and/or gain may degrade
 Controlling the tail turn-on rate is a good way to keep high gain

Simulating Aperture & Noise

- RF simulators (e.g. SpectreRF) can simulate small-signal LPTV response and noise efficiently:
 - □ Simulates linearized responses around a periodic steady-state
 - □ PAC analysis gives $H(j\omega;t)$ = Fourier transform of $h(t, \tau)$ *
 - □ PNOISE analysis can give the noise PSD at one time point
- The remaining question is how to choose t_{obs}?
 We'd like to choose it to mark the end of the regeneration
 - □ Since $\Gamma(\tau)$ in our LTV model captures sampling + regeneration

* J. Kim, et al., "Impulse Sensitivity Function Analysis of Periodic Circuits," ICCAD'08.

Comparator Periodic Steady-State (PSS)

PSS response of the comparator for a small DC input
 Near the clock's rising edge; return to reset not shown

Comparator Sampling Aperture (PAC)

Comparator Noise (PNOISE)

- Magenta line plots the rms output noise $\sigma(t)$ vs. time, obtained by integrating the noise PSD at each time point
- This is *not* "transient noise analysis" it's a time sample of cyclo-stationary noise (much more efficient)

Comparator Output SNR

Deciding on *t*_{obs}

- How to choose t_{obs} that marks the end of regeneration
- Most of the noise is contributed during the sampling phase
 Noise that enters during the sampling phase sees the full gain
 - Noise that enters during the sampling phase sees the full gain
 Noise that enters later during the regeneration phase sees an exponentially decreasing gain with time
- For the purpose of estimating decision errors, selection of t_{obs} is not critical as long as it's within regeneration phase
 The SNR and decision error probability stay ~constant
 I choose t_{obs} when the comparator has the max. small-signal gain (i.e. before the nonlinearity starts suppressing the gain)

Measurement Results

- Both receivers are based on StrongARM comparators
- Differential C_{in} ~ 2pF ⇒ thermal noise from the input termination resistors < 100µVrms</p>
- Excess noise factor γ not spec'd by foundries simulated at multiple values

Receiver A – Direct Sampling Front-End

Simulation of the decision error (BER) = $Q(V_o(t_{obs})/\sigma_o(t_{obs}))$ versus the DC input level (excess noise factor γ =2)

Receiver A – Direct Sampling Front-End

 Measurement of the decision errors (BER) based on the density of the wrong outputs (0's) versus the DC input level

Receiver A – Direct Sampling Front-End

- Fit both sets of points to the Gaussian BER model
- Compare the estimated σ 's (input-referred rms noise)

Simulation vs. Measurement

	Simulated (mV,rms)				Measured (mV,rms)
Receiver	γ=1	γ=2	γ=3	γ=4	(Pos. / Neg. / Avg.)
(A) 90nm Direct Sampling Front-End	0.59	0.79	0.94		0.79 / 0.65 / 0.72
(B) 65nm w/ Linear Front-End		0.62	0.73	0.83	0.87 / 0.83 / 0.85

• (Pos. / Neg. / Avg.) refers to measurement results for positive V_{IV} , negative V_{IV} , and their average

Noise Filtering via Finite Aperture (ISF)

In receiver B, the noise contributed by the linear frontend is filtered by the finite aperture of the comparator

Conclusions

- The linear time-varying (LTV) system model is a good tool for understanding the key characteristics of clocked comparators
 - Sampling aperture and bandwidth
 - Regeneration gain and metastability
 - □ Random decision errors and input-referred noise
- The impulse sensitivity function (ISF) has a central role in it:
 - □ As it did for oscillators
 - Guides design trade-offs between noise, bandwidth, gain, etc.
- The LTV framework is demonstrated on the analysis, simulation, and measurement of clocked comparators

Extracting ISF from h(t,τ)

Choose t_{obs} as the maximum small-signal gain point

ISF:
$$\Gamma(\tau) = h(t_{obs}, \tau)$$

Effects of the Bridging Device

Improves hold time and metastability

Effects of Input and Output Loading

