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Outlines
 Readings

 G Gielen and R Rutenbar “Computer-Aided Design of G. Gielen and R. Rutenbar, Computer-Aided Design of 
Analog and Mixed-Signal Integrated Circuits,” Proceedings of 
IEEE, pp. 1825-1852, Dec. 2000.

 Overview
 There are “circuit optimizers” which claim to automatically 

size your circuits for the best performance, but this class will y p
describe why they are not your saviors. Despite their decade 
long history in the circuit field and maturity, they still have not 
made into the mainstream design flow and there are reasons. 
This class will examine some misconceptions about analog 
circuit optimizers and discuss what is the best way to utilize 
the techniques most effectively for circuit design. It is 
noteworthy that designer’s understanding of circuits is worthnoteworthy that designer’s understanding of circuits is worth 
thousands of hours in simulation/optimization time 
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Circuit Optimizer: The Savior? 
 Difficulty in analog circuit design is to realize the design 

intent in the presence of device non-idealitiesintent in the presence of device non idealities
 Channel length modulation, carrier velocity saturation, short-

channel effects, DIBL, proximity effects, mismatch/variation, …

 Drives many designers to
become “SPICE monkeys”become SPICE monkeys
 Repeating so many simulations

while sweeping parameters
in the hope that one day a goodin the hope that one day a good
design will be found

 Can one automate this? –
an optimizer!an optimizer!
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Optimization in General
 A general optimization problem can be formulated as: 

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m

where

x = (x1, . . . , xn): optimization variables

f0 : Rn → R: objective function

fi : Rn → R, i = 1, . . . ,m: constraint functionsfi : R  R, i  1, . . . ,m: constraint functions

 Optimal solution x has the smallest value of f0 among 0
all vectors that satisfy the constraints
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Special Optimization Problems
 A certain types of problems have reliable and efficient 

algorithms to solvealgorithms to solve

 Least squares: 

minimizeminimize 

 Linear programming:

minimize
subject to

C ti i ti ( h f ( ) d f ( ) Convex optimization (where f0(x) and fi(x) are convex 
functions):

minimize f (x)minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m 5



Nonlinear Optimization Problems
 General nonlinear problems are much more difficult 

and often involve compromisesand often involve compromises

 Local optimization methods (nonlinear programming)
 Finds a point that minimizes f0 among feasible points near it Finds a point that minimizes f0 among feasible points near it
 Fast, can handle large problems
 Requires initial guess

P id i f ti b t di t t ( l b l) ti Provides no information about distance to (global) optimum

 Global optimization methods
 E g simulated annealing genetic algorithms E.g. simulated annealing, genetic algorithms
 Finds the (global) solution
 Worst-case complexity grows exponentially with problem size
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Circuit Optimization Problems
 Most existing optimizers address “sizing”, for example:

 Design variables: device widths (W) and lengths (L) Design variables: device widths (W) and lengths (L)
 Minimize power dissipation of a VCO
 Subject to frequency range, output swing, area constraint, 

tetc.

 Commercial circuit optimizers can be classified largely Commercial circuit optimizers can be classified largely 
into two categories:
 Simulation-based optimizers
 Equation-based optimizers
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Simulation-Based Circuit Optimizers
 The objective/constraint functions are evaluated by 

circuit simulatorscircuit simulators
 Time consuming; roughness
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Equation-Based Circuit Optimizers
 The objective/constraint functions are written as 

analytical equations; fast only if you can write them inanalytical equations; fast only if you can write them in 
sufficient accuracy
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Who Uses Circuit Optimizers?
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Then What Do Designers Want?
 Introducing our main characters:

Joe: novice analog circuit designer. Wants to 
improve his design productivity with 

t t d i it ti i b t tautomated circuit optimizers but got 
frustrated after a few trials.

Pat: analog EDA researcher. She has strong 
backgrounds in numerical and optimization 
techniques. Also frustrated with slow 
adoption of circuit optimizers despite their 
strengths
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Myth 1: Designers Want Faster Optimizers

“I like your optimizer but it took 5 days to finish. I 
will adopt it if it can finish in 1 day instead ”will adopt it if it can finish in 1 day instead…

Should Pat believe him and build a faster one?

 No – Joe is expecting an almighty optimizer that can 
find the global solution in no time
 Something that can’t be delivered in the near future Something that can t be delivered in the near future
 And Joe will never be satisfied – you know he is also asking for 

faster SPICE after 3~4 orders of magnitude improvement!

 You’d help Joe more by not giving him a false hope
 It’s quite likely that Joe is abusing the optimizer – e.g. making 

simulations overly long setting the variable ranges too widesimulations overly long, setting the variable ranges too wide, …
 Teach him how to stop this; otherwise you can’t win this race

12



Truth: Designers Want Quick Turn-Around
 Circuit design is an iterative process

 All but the last answer will be thrown away All but the last answer will be thrown away
 Exact values of those answers don’t matter as long as we 

can correctly determine that they are wrong

 So is the process with a circuit optimizer
 Key to its successful use is to ask the right question!
 Otherwise it is very good at giving you stupid answers Otherwise, it is very good at giving you stupid answers
 Designers keep refining the question 

until they get the answer they want
 Don’t want the optimizer to waste time

finding bogus answers

 Can optimizers help shorten this cycle? Can optimizers help shorten this cycle?
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Example: Buffer Chain Optimization

Give me the fastest buffer chain that can drive 
l l d Ca large load CLOAD

That’s simple –That s simple 
a very large buffer!

Well – that’s not the solution I was looking 
for. Now I need to figure how to drive this 

bi i t l d f thi i teven bigger input load of this inverter…
Oh, I know – I forgot to constrain the input 
load of the buffer chain!

14



Possible Ways Optimizers Can Help
 Return quick-and-dirty estimates on the final answer

 Based on simpler models or equations Based on simpler models or equations
 e.g. in the buffer example, RC switch model would suffice
 Help determine if the problem is fully constrained

 Provide interactive sessions with designersg
 Show how the optimizer is trying to improve the current 

design and why
 e g sizing up the buffer since it reduces the e.g. sizing up the buffer since it reduces the 

delay without being subject to any constraints
 Check if it is consistent with what a designer 

would dowould do
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Myth 2: Designers Want Global Solutions

“My optimizer guarantees to find globally optimal 
solution regardless of initial guess Sometimes itsolution regardless of initial guess. Sometimes, it 
will surprise you with solutions that no designers 
have ever found!”

 Not necessarily – Joe

Should Joe Feel Comfortable About This Optimizer?

Not necessarily Joe 
wonders if this surprising 
solution is the one he’d 
want and can trustwant and can trust
 Isn’t the optimizer exploiting 

some unspecified constraints 
d li tif t ?or modeling artifacts?
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Truth: Designers Need to Know More
 About the suggested solution and why it is optimal

 Designers won’t accept ones that they cannot understand Designers won t accept ones that they cannot understand
 Esp. if the solution is different from what hand analysis  or 

intuition provides
I ti t th di d fi th h d l i Investigate the discrepancy and refine the hand analysis 
models/equations until the answers match

 Visual aids go a long way here

 Designers are worried about:
 Solutions stuck at local optima
 Bogus solutions due to missing constraints or wrong 

assumptions
 Unrealistic solutions that are too sensitive to variations in 

parameters or operating conditions
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Myth 3: Designers Need Precise Solutions

“Here are solutions found by the optimizer: 
W1=32 147um and W2=19 898um They wereW1=32.147um and W2=19.898um. They were 
refined to your grid resolution of 0.001um.”

“Thanks – I will use W1=32um and W2=20um.”

 Designers are aware of model uncertainties and that it 
doesn’t pay off to set the parameter values to their lastdoesn t pay off to set the parameter values to their last 
digits

 Then, why should the optimizer use precise values?Then, why should the optimizer use precise values?

18



Why Optimizers are Slow
 Modern optimizers are all about:

 Finding the local optimums Finding the local optimums
 Evaluate at finer steps while converging

to the local optimum

 Getting out of the local optimums
 Relying on randomness to try unexplored

area and eventually find the global optimumy g p

 Can waste computational efforts 
 Refining the solution to the irrelevant precision
 Following unsuccessful escape attempts
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Variability May Ease the Problem
 Model uncertainties and parameter variations 

effectively smoothe out the objective functioneffectively smoothe out the objective function
 It is not possible to have finely-spaced local optima

 Global optimum can perhaps be found via coarse-p p p
gridded search and interpolation
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Myth 4: Circuit Problems are Many-D

“Analog circuits involve many design parameters 
such as device sizes Therefore optimizers mustsuch as device sizes. Therefore, optimizers must 
be good at solving high-dimensional problems…”

“That sounds logical, but I wonder how on earth 
people have been designing circuits so far? I bet 
none of my colleagues can solve many-

D i i lif i it bl i t ith

none of my colleagues can solve many-
parameter problems by hand…”

 Designers simplify circuit problems into ones with 
small number of parameters
 Only that way, they can visualize trade-offs and build insightsy y y g
 Can optimizers help in this regard?
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Example: Optimization of 20GHz LC-VCO

 Negative-R 
LC t ill tLC-resonant oscillator 
 Used coupled microstrips 

as inductive element
(</4; short-circuited)

 Design parameters:
 Active device sizes
 Varactor sizes
 Transmission line Transmission line 

geometry (e.g. length )

22

J. Kim, et al., “A 20-GHz Phase-Locked Loop for 40-Gb/s 
Serializing Transmitter in 0.13-μm CMOS”, JSSC 04/2006.



VCO Design Constraints
 Power : Ibias (10mA)

 Start-up : gactive  min  gtank (min = 3~5)

 Osc freq : o
2 = 1/LtankCtank (20GHz)

 Tuning range: Cvaractor/Ctank (+/-10%)

 Minimize phase noise

23



VCO Optimization via Iteration
 The problem can broken into two sub-problems

 With only two independent variables – C and g With only two independent variables – Ctank and gtank

 The other variables can be determined from Ctank or gtank
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Graphical Interpretation
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Iteration Minimizes Phase Noise
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Problem Reducer?
 A helpful tool for designers might be the one that:

 Takes a circuit problem and makes it simpler Takes a circuit problem and makes it simpler
 Determine the dimensionality of the feasible solution space 

and identify its key variables
H f ll # f k i bl i l 2 3 th f ibl Hopefully, # of key variables is only 2~3 so the feasible 
space can be visualized easily

“Optimizers already do that when solving aOptimizers already do that when solving a 
problem with constraints – they reduce the 
search space. There are also many available 
techniques for dimensionality reduction ”techniques for dimensionality reduction.”

“That’s a great news – can designers access 
some of those information and build insights?”
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Intent-Leveraged Circuit Optimization
 Main difficulty in analog circuit design is to realize the 

design intent in the presence of device non-idealitiesdesign intent in the presence of device non idealities
 What is the best incarnation of my ideal circuit in this world?
 Can optimizers help answer this?

 Some designers address this challenge by
becoming “SPICE monkeys”

R i bli d h ti Running blind, exhaustive
simulations without 
understanding how
circuits really workcircuits really work

 Most optimizers just help them
being more efficient monkeys
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Design Intents of Analog Circuits
 Every device has its own purpose of existence

 Even though they may all look the same Even though they may all look the same
 This is the design intent – valuable information itself
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Circuit Design Would Be Easy If…
 The devices behave just as intended

 The current source flows I the load has R and the input The current source flows IBIAS, the load has RL, and the input 
device has Gm following the long-channel model

 We can derive simple equations and find optimal solutions

 Of course, the reality bites
 Errors are likely due to

various realistic effectsvarious realistic effects
 But  most intuition still 

works

LBIASoxLm RI
L
WCRGGain  

1Bandwidth 
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Circuit Optimization via Homotopy
 How do we leverage the solution from the ideal design 

equations to find the real solution based on simulation?equations to find the real solution based on simulation?
 It may not necessarily serve as a good initial solution
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Circuit Optimization via Homotopy (2)
 Create a set of intermediate problems in-between and 

solve them sequentially leveraging previous solutionssolve them sequentially leveraging previous solutions
 Quick refinement of the solution at each step
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Promising Results
 Intent-based design equations make good guides to 

the real solutions even when their answers are off

Ckt # of vars / 
constrs

# of evaluations
Intent-based Fixed-point Sequentialconstrs
Homotopy Homotopy Convex

Ring Osc 2 / 3 36 44 26

SupplySupply 
Regulator 7 / 3 349 1935 681

Clocked 
Comparator 7 / 2 573 688 Not feasibleComparator

2-stage 
OpAmp 8 / 7 62 149 153
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PLL 11 / 4 1051 2463 1183



Summary
 Key to effective use of circuit optimizers is to align the 

expectations between the users and developersexpectations between the users and developers
 Designers haven’t been expressing well what they want
 Circuit optimizers are powerful but don’t know how to help

 Knowing the real needs breaks the problem into 
smaller pieces:

H d I h k if I t th i ht ti i ti bl ? How do I check if I setup the right optimization problem?
 Will my circuit perform well at least in the ideal world?
 If yes, how do I find its closest incarnation in the real world?
 Can the optimizer help me understand the circuit better?

 What did I miss in the design equations?
 What are the key variables governing the trade-offs?y g g

34


