Lecture 17. Estimating Time Constants of Linear Circuit Networks – Part 2

Jaeha Kim Mixed-Signal IC and System Group (MICS) / ISDL Seoul National University jaeha@ieee.org

Overview

- Readings
 - Y. I. Ismail, et al., "Equivalent Elmore Delay for RLC Trees," TCAD, 01/2000.

Introduction

We will look at an alternative method to estimate the time constants of linear circuit networks. While the OCT was suitable for estimating the dominant pole position, Elmore delay is more suitable for estimating the delay or rise time. This lecture introduces an extended Elmore delay for linear circuits including inductors.

RC Elmore Delay Review

Elmore delay estimates 50% delay in the step response by approximating it as that of <u>a first-order linear system</u>:

$$H(s) = \frac{1 + a_1 s + a_2 s^2 + \dots + a_n s^n}{1 + b_1 s + b_2 s^2 + \dots + b_n s^n} \quad \square \searrow \quad \frac{1}{1 + b_1 s}$$

Delay of a Single-Pole System

4

2.5

2

out

Use "Moment Matching" to Find τ (=b₁)

Look at the step response waveforms of both circuits
 Specifically, look at the area below the waveforms (1st moment)
 Choose the single pole τ such that the areas match

The area under an exponential is τ:

$$\int_{0}^{\infty} e^{-t/\tau} dt = \tau$$

Matching Moments of RC Network

- For a general RC network, we want to find the area under its step response
 - $\hfill\square$ And approximate the area as the optimal time-constant τ for a single-pole model
- Luckily, there is an easy way

Matching Moments of RC Network (2)

- To change its value, a current must flow through each C
 - □ This current I_k is $C_k \cdot dV_k/dt$, for the capacitor at node 'k'
 - Only way for the charge to leave the system is: to flow through the resistors between C_k and Gnd (or Vdd)
 - \Box Voltage is dropped across each resistor that carries I_k
 - **D** But, computing I_k directly is not easy in general

Matching Moments of RC Network (3)

- While I don't know what I_k is □ I DO know what the integral of this current is $\rightarrow Q_k = C_k \Delta V_k!$
- And we can compute the area under the response as: $V = \sum_{R \in I} R$

$$V_i = \sum_k R_{ik} I_k I_k$$

$$\sum_k V_i \cdot dt = \sum_k R_{ik} \int_0^\infty I_k \cdot dt = \sum_k R_{ik} C_k \Delta V_i$$

Elmore Time Constant

The time constant of a single-pole network that estimates the response of the network $\hat{\tau} = \hat{R}_i \hat{C}_i$ is: $V = \sum P_i I_i$

$$V_i = \sum_k R_{ik} I_k$$
$$\int_0^\infty V_i \cdot dt = \sum_k R_{ik} C_k \Delta V_i = \hat{R}_i \hat{C}_i \Delta V_i$$

- R_{ik} = the resistance that the resistive path from input to node k and the resistive path from input to node i (=output) have in common
- If all ΔV_i 's are equal (e.g. = Vdd), then:

$$\sum_{k} R_{ik} C_k = \hat{R}_i \hat{C}_i$$

"Elmore time constant"

Elmore Time Constant (2)

$$\sum_{k} R_{ik} C_k = \hat{R}_i \hat{C}_i$$

"Elmore time constant"

- This is the first moment of the RC network
 - And our estimate of the circuit's time constant
 - \square Hence, the 50% Vdd delay is: $D = ln(2) \cdot \hat{R}_i \hat{C}_i$
- Side note:
 - □ When the RC circuit is a "tree" (i.e. with no resistor loops)
 - It's easy to find R_{ik} by inspection
 - Find the common resistance of the paths (in, i) and (in, k)
 - □ Even for other RC networks, R_{ik} always exists
 - R_{ik} is simply the voltage change seen at the output i, by a current injected at node k.

Elmore Delay Example

- To determine R_{ik}, just look for the common resistors on the current flow path back to the input
- □ The purple line is the current flow from C3 to the input
 - If the output is node '2', $R_{ik}=R_{23}=R1$
- □ The blue line is the current flow from C2 to the input
 - If the output is node '2', $R_{ik}=R_{22}=R1+R2$
- Another (more formal) way to determine R_{ik} :

Inject a current at node k, and measure the voltage induced at node 'i'; $R_{ik} = V_i$ / injected current

Elmore Delay Summary

■ In summary, the delay estimate is easy to find:

- 1. Find every capacitor in the circuit that changes its value
- Find the voltage that a current injected from this capacitor (k) will produce at the output (i), and define the effective resistance, R_{ik}, equal to this voltage/current
- 3. Sum $C_k \cdot R_{ik}$, over all nodes k that change value
 - This sum is an estimate of the time constant
- We can apply this to distributed elements like wires too
 - Look at a small segment of the wire of length dL, and then add up delay contribution from all of these small segment

Elmore Delay – Limitation

- Works well in most cases
 - Output at the end of a long line can almost always modeled as a single-pole model

Then decays with time constant Clarge (Rlarge + R1)

- □ Works even when two poles are closely spaced
- Poor where there is a pole-zero pair:
 - Output is sum of two exponentials
 - One is slow with low amplitude
 - One is fast with full amplitude
 - □ In example shown on right
 - Decays with R1C1 to R1/(R1+Rlarge)
- M I C S

Example – A Pole-Zero Pair

- This plot shows a 'bad' output (circuit below)
 Tail is 10 times slower
 With only .3 full swing
- Moments are not the best model for this case

Elmore Delay for RLC Network?

- With inductors, there may exist complex poles in the circuits (i.e. resonance)
 - Its step response may exhibit ringing its non-monotonic response cannot be approximated by a first-order system
- Why worry about L?
 On-chip interconnect wires do exhibit L effects
 - Due to high-frequency operation and low resistance (thick top

Why Use L? – Inductive Peaking

ShuntShunt and SeriesShunt and Double-PeakingPeakingSeries Peaking

Inductors delay current flows; each C charges faster

The Simplest RLC Circuit

Its normalized TF (i.e. gain=1) is:

$$H(s) = \frac{1}{s^2 L C + s R C + 1}$$

which can be expressed by the natural frequency (ω_n) and damping factor (ζ):

$$H(s) = \frac{1}{s^2/\omega_n^2 + s2\zeta/\omega_n + 1}$$

where

$$\omega_n = \frac{1}{\sqrt{LC}} \qquad \qquad \zeta = \frac{1}{2} \frac{RC}{\sqrt{LC}}$$

 V_{out}

Ľ

 V_{in}

R

The Time-Domain Response

• The step response of the second-order system *H(s)*:

$$s(t) = 1 + \frac{1}{2\sqrt{\zeta^2 - 1}} \left[\frac{e^{\omega_n t(-\zeta + \sqrt{\zeta^2 - 1})}}{-\zeta + \sqrt{\zeta^2 - 1}} - \frac{e^{\omega_n t(-\zeta - \sqrt{\zeta^2 - 1})}}{-\zeta - \sqrt{\zeta^2 - 1}} \right]$$

And the 50% propagation delay and 10-90% rise time can be estimated as:

$$t_{pd} \approx (1.047e^{\zeta/0.85} + 1.39\zeta)/\omega_n$$
$$t_r \approx (6.017e^{\zeta^{1.35}/0.4} - 5e^{(\zeta^{1.25}/0.64)} + 4.39\zeta)/\omega_n$$

Note: I think these expressions have typos – fix them

Extended Elmore Delay

- Let's approximate a general RLC network as a second-order system, since it can express nonmonotonic responses (when $\zeta < 0.7$)
- How do we determine ω_n and ζ ?
 - □ In the spirit of Elmore delay, match the first and second moments $(m_1 \text{ and } m_2)$

RLC Elmore Delay – First Moment

RLC Elmore Delay – Second Moment

Skipping some intermediate steps...

$$m_1^2 - m_2 \equiv \left[\int_0^\infty V_i(t) dt \right]^2 - \int_0^\infty V_i^2(t) dt \qquad ???$$
$$= \left[\sum_k R_{ik} C_k \right]^2 \Delta V^2 - \left[\sum_k \sum_j C_k R_{ik} C_j R_{kj} - \sum_k C_k L_{ik} \right] \Delta V^2$$
$$\approx \sum_k L_{ik} C_k \cdot \Delta V^2$$
$$\equiv \hat{L}_i \hat{C}_i \cdot \Delta V^2$$

Summary

You can approximate an arbitrary RLC network as a second-order system with:

$$\hat{\omega}_{n} = \frac{1}{\sqrt{\hat{L}_{i}\hat{C}_{i}}} = \frac{1}{\sqrt{\sum_{k}L_{ik}C_{k}}} \qquad \hat{\zeta} = \frac{1}{2}\frac{\hat{R}_{i}\hat{C}_{i}}{\sqrt{\hat{L}_{i}\hat{C}_{i}}} = \frac{1}{2}\frac{\sum_{k}R_{ik}C_{k}}{\sqrt{\sum_{k}L_{ik}C_{k}}}$$

- Important observation:
 - □ For a given ζ (for the desired settling response), there is a determined ratio between RC and sqrt(LC)
 - □ It implies that the delay is still a linear function of RC
 - □ Therefore, the Logical Effort framework will still apply!!

$$t_{pd} \approx (1.047 e^{\zeta/0.85} + 1.39\zeta)/\omega_n$$

