Introduction

m Read Chapter 1

What i1s a Compiler?

m [ranslator from one Ianguage (SOUFCG Ianguage)
to another language (target language)
source program

Input a program in one language l
Qutput an equivalent program in
another language
One important role is to report any l
errors in the source program target program

Compiler

_
Programming Lang. Compilers

Compile source program and run target program

C/C++ program

input output

Machine—-language Running the target program
Program (executable)

Interpreter (Emulator)

m Another form of running program

Instead of producing a target program with
translation, directly execute the source program

source
program

input—

Interpreter

> output

An interpreter

Slower than machine program, but faster to
develop and better handling of errors

A hybrid compiler

m Combines compilation and interpretation
Java program is compiled to bytecode, which is

then interpreted on the virtual machine

m Better portability source program
s Mainstream these days l

= JavaScript, Python, Translator
RUby,

l

intermediate —

program Vlrtual
inout —»| Machine

A hybrid compiler

—soutput

Other Usage ot Co

m While compilers most preva
programming language tran

mpilers

ently participate In
slation, other form of

compiler technology has also been utilized

Compiler—compilers:

Tex: regular expressions — scanner (lexer)

yacci Ianguage grammars — parser
Text processing: LaTex, Tex,

Database query processors
Predicates — commands to search the

troff

DB

Silicon compilers: Circuit spec — VLSI layouts
m [he goal of every compiler is correct and

efficient translation

Language Processing System

source program

é|é

modified source program

é|é

target assembly program

é|é

relocatable machine code

library files
relocatable object files

é|é

target machine code

Structure of Modern Compilers

m Requires the analysis of the source language and
the synthesis of the target language
Analysis: Front—end
m Lexical, syntactic, semantic with symbol table

Synthesis: Back—end

m Intermediate code (representation) generation
E.g., P-code (Pascal), U-code, bytecode, parse tree,...

= machine—independent optimization

s Machine code generation and optimization
Runtime architecture

m Linking, loading, shared libraries

Structure of Modern Compilers

FRONT—ENDs STRUCTURE OF A COMPILER

Fortran

Source FRONT—ENDs \

|

| - " -
Svmbo Code | o Intermediate Optimization

) Generato) | Code

Tables] |

| MIDDLE-Ends

¥ - ‘l’ _______

Scanner —»=| Parser Code

Generator

(Lexer) |-

Low—TLeve

Intermediate
Code

|
|
|
I BACK—-ENDs
|
|
|

Relocatable
Object Code

Linker

J Optimizer

11

Computer

executabls
a.ouwt

Loades
(dld.sl)

" A
Two Viewpoints of Compilers

m Compilers interact both with programming
languages and with processor architectures
m [herefore, compilers atfect
Programming language (PL) design
Processor architecture (ISA) design

Compilers and PL Design

m PL feature and compiler techniques
Virtual methods (C++, Java): dispatch table
Non-locals (Pascal): static links

Automatic memory deallocation (Lisp, Java):
garbage collection (GC)

Call-by—name (Algol): thunks
Static links, GC, thunks are expensive: not in C

Compilers and ISA

m Old wisdom
CPUs have CISC ISA and compiler tries to generate CISC code

m Current wisdom

CPUs provide orthogonal RISC ISA and the compiler (optimizer)
make the best use of these instructions for better performance

m |t iS not easy to generate complex CISC instructions; €.g.,
int A[10]; for for (i = 1; 1 < 10; i++) X 4= A[i];
VAX ISA has a CISC instruction to get the address of Ali]
Index(A,1i,low,high): if (low<=i<= high) return (A+4xi) else error;
RISC ISA will do the same using simple additions/multiplications

m RISC H/W is simpler without complex instructions, while
optimizing compiler generates high—performance code

" A
Compiler Optimizations

m Compiler Optimization

Transform a computation to an equivalent
but better computation

Not actually optimal

What Can an Optimizer

DO"?

m Execution time of a program Is decided by
Instruction count (# of instructions executed)
CPI (Average # of cycles/instruction)

Cycle time of the machine

m Compiler can reduce the first two items

How?

m Reduce the # of instructions in the code

m Replace expensive instructions with simpler
ones (e.g., replace multiply by add or shift)

m Reduce cache misses (both instruction and
data accesses)

m Grouping independent instructions for parallel
execution (for superscalar or EPIC)

m Sometimes reducing the size of object code
(e.g., for DSPs or embedded microcontrollers)

" A
Why Optimizations Interesting ?

m Seriously affects computer performance

Overall performance of a program is determined by H/W
performance and by quality of its code

H/W is fixed once it is released while compiler optimizations
keep improving the performance (e.g., SPEC numbers)

Many architectural features are primarily controlled by compiler
m €.9., prefetch instructions, EPIC, non—blocking caches, ...

m An example of a large software system

Problem solving: find common cases, formulate mathematically,
develop algorithm, implement, evaluate on real data

Software engineering Issues
s Hard to maintain and debug (why? Compiler output is code)

Structure of Modern Optimizers

m Phase—by—phase structure
Better code as phases proceed
Phase ordering problem
Register allocation is most time consuming
m Based on graph coloring which is NP—complete

m Optimization levels
-01: basic optimizations only
-02 (which is —0): stable optimizations
—-0x (x>2): aggressive but not always stable

Structure of Optimizing Compilers

Graph Representation of
Intermediate Code

Basic Block Optimization

¥
Dataflow Analysis Interval Analvsis
¥
Global Common Subexpression Elimination
¥
Promotion of Memory Operations
¥

Loop Invariant Code Motion

Induction Variable Analysis

¥

Register Reassociation

¥
Register Weh (Live Range) Builder

Instruction Scheduling

-
¥

Register Allocation —
¥

Peephole Optimization
¥

Instruction Scheduling -

}

Graph Representation of
Optimized Code

What can Optimizations do for You?

m Let’'s see an example: a bubble sort program

2define N 100 Wg c.om.piled with/without

main () optimizations for the PA-RISC CPU
Lo AN i cc -S bubblesort.c
1nt1£mp; b cc -0 -S bubblesort.c

for (i = N-1; 1 >= 0; i--)
for (j =0; j < i; j++)

{

if (A[J] > A[J+1D) {
temp = A[J];
Al3] = A[J+1];
A[j+1] = temp;

}

LD 99, %r 1 | LOWX,S %r20(%r21),%r22; A[j+1]
STW %r1,-48(%r30) ; 99->i | LOW ~44(%r30),% 1 ;5]

LOW ~48(%r30) ,%r 31 | LDO ~448(%r30),%r31; &A
COMIBF,<=,N 0,%r31,$002; i>=0 ? | SHPADD %r1,%r31,% 19 ; A[j]
$003 | STWS %r22,0(%r19);A[j+1]1->Al]]
STW %0,-44(%r30) ; 0->j | LOW ~44(%r30) ,%r 20;

LOW ~44(%r30) ,%r 19 | LDO 1(%r20) ,%r21

LOW ~48(%r30) ,%r 20 | LOW ~40(%r30) , %r 22

COMBF,<,N %r19,%r20,$001; j<i ? | LDO ~448(%r30) , %r 1
$006 | SH2ADD %r21,%r1,%r31

LOW ~44(%r30) ,%r 21 STWS %r22,0(%r31);temp—>A[j+1]
LDO 1(%r21),%r22 ;5 j+1 $004

LDO ~448(%r30),%r1 ; 8A LOW ~44(%r30),%r19 ;]

LOW ~44(%r30),%r31 ;] LDO 1(%r19),%r20 ; j++
LOWX,S %r31(%r1),%r19 ; A[j] STW %r 20, —44(%r 30)

LDO ~448(%r30),%r20; 8&A LOW ~44(%r30) ,%r 21

LOWX,S %r22(%r20),%r21; A[j+1] LOW ~48(%r30),%r22 ; |

LOO —448(%r30),%r22 ;8&A NOP

LOW —44(%r30),%r1 ;] $001

LOWX,S %r1(%r22),%r31 ; A[j] LOW -48(%r30),%r1 ;5 i
STW %r31,-40(%r30) ;A[j]—>temp LOO =1(%r1),%r31 5 i—
LOW =44(%r30) ,%r 19 STW %r31,-48(%r30) ;

LOO 1(%r19),%r20 ; LOW =48(%r30) ,%r 19

|
|
|
|
|
|
|
COMB.<=,N %r19,%r21,$004;A[jI<A[j+1] | ~ COMB,< %r21,%r22,$006 : j<i ?
|
|
|
|
|
|
|

LDO —448(%r30),%r21 ; &A COMIB,<= 0,%r19,$003 ; i>=0 ?

Optimized Assembly Code

LD 99,%r 31
$003
COMBF,<,N %r0,%r31,$001
LDO ~444(%r30) ,%r23
SUBI 0,%r31,%r24
$006

LDWS -4(%r23) ,%r25
LDWS MA 4(%r23) ,%r26
COMB,<=,N %25 ,%r 26, $007
STWS %r26,-8(%r23)
STWS %r25,-4(%r23)

$007
ADDIB, <N 1,%r24 $006+4
LDWS -4(%r23) ,%r25

$001
ADDIBF, < -1,%r31,$003
NOP

$002

m Compare the Number of Instructions in the Loop!

What you can get from this class?

m Understanding of compilation technology

m Make yourself familiar with
lex and yacc
compilation tools
gcc tool set

m Understanding code optimizations,

virtual machine technology, garbage
collection

