
Lexical Analysis 

 Dragon Book Chapter 3 
 Formal Languages 
 Regular Expressions 
 Finite Automata Theory 
 Lexical Analysis using Automata 



Phase Ordering of Front-Ends 

 Lexical analysis (lexer) 
 Break input string into “words” called tokens 
 

 Syntactic analysis (parser) 
 Recover structure from the text and put it in a parse tree 

 

 Semantic Analysis 
 Discover “meaning” (e.g., type-checking)  
 Prepare for code generation 
 Works with a symbol table 



Similarity to Natural Languages 

Tokens and a Parse Tree 

             문장                                    :   non-terminals 

  주어                       목적어              서술어           :   non-terminals 

  
대명사   조사           명사           조사        동사            :  Tokens (also called terminals) 

__   __     ____   __   ____ 

나   는     학교   를   간다   



What is a Token? 

 A syntactic category 

 In English: 
 Noun, verb, adjective, … 

 In a programming language: 
 Identifier, Integer, Keyword, White-space, … 

 A token corresponds to a set of strings 

 



Terms 

 Token 
 Syntactic “atoms” that are “terminal” symbols in the 

grammar from the source language 

 A data structure (or pointer to it) returned by lexer 

 Patten 
 A “rule” that defines strings corresponding to a token 

 Lexeme 
 A string in the source code that matches a pattern 



An Example of these Terms 

 int foo = 100; 
 
 
 
 
 

 
 
  
 
 

 

 The lexeme matched by the pattern for the token 
represents a string of characters in the source 
program that can be treated as a lexical unit 



What are Tokens For? 

 Classify substrings of a given program 
according to its role 

 Parser relies on token classification 
 e.g., How to handle reserved keywords? As an 

identifier or a separate keyword for each? 

 Output of the lexer is a stream of tokens 
which is input to the parser 

 How parser and lexer co-work? 
 Parser leads the work 



Lexical Analysis Problem 

 Partition input string of characters into 
disjoint substrings which are tokens 

 

 

 

 

 Useful tokens here: identifier, keyword, relop, 
integer, white space, (, ), =, ; 



Designing Lexical Analyzer 

 First, define a set of tokens 

Tokens should describe all items of interest 

Choice of tokens depends on the language 
and the design of the parser 

 

 Then, describe what strings belongs to 
each token by providing a pattern for it  



Implementing Lexical Analyzer 

 Implementation must do two thing: 
 Recognize substrings corresponding to tokens 

 Return the “value” or “lexeme” of the token: the substring 
matching the category 

Reading left-to-right, recognizing one token at a time 
 

 The lexer usually discards “uninteresting” tokens that 
do not contribute to parsing  
 Examples: white space, comments 

 

 Is it as easy as it sounds? Not actually! 
 Due to lookahead and ambiguity issues (Look at the history) 



Lexical Analysis in Fortran 

 Fortran rule: white space is insignificant 
 Example: “VAR1” is the same as “VA R1” 

 Left-to-right reading is not enough 
 DO 5 I = 1,25   ==> DO  5  I  =  1 , 25 
 DO 5 I = 1.25   ==> DO5I = 1.25 

 Reading left-to-right cannot tell whether DO5I is a 
variable or a DO statement until “.” or “,” is reached 

 “Lookahead” may be needed to decide where a token 
ends and the next token begins 

 Even our simple example has lookahead issues 
 e.g, “=“ and “==“ 



Lexical Analysis in PL/I 

 PL/I keywords are not reserved 

 IF THEN ELSE THEN = ELSE; ELSE ELSE = THEN 
 

 PL/I Declarations 

 DECLARE (ARG1, .. ,ARGN) 
 

 Cannot tell whether DECLARE is a keyword or an array 
reference until we see the charater that follows “)”, 

requiring an arbitrarily long lookahead 



Lexical Analysis in C++ 

 C++ template syntax: 

Foo<Bar> 

 C++ io stream syntax: 

Cin >> var; 

 But there is a conflict with nested templates 

Foo<Bar<int>> 



Review 

 The goal of lexical analysis is to 
 Partition the input string into lexemes 

 Identify the token of each lexeme 
 

 Left-to-right scan, sometimes requiring lookahead 
 

 We still need 
 A way to describe the lexemes of each token: pattern 

 A way to resolve ambiguities 
 Is “==“ two equal signs “=“ “=“ or a single relational op? 



Specifying Tokens: Regular Languages 

 There are several formalisms for specifying tokens 
but the most popular one is “regular languages” 
 

 Regular languages are not perfect but they have 
 ∃a concise (though sometimes not user-friendly) 

expression: regular expression 

 ∃a useful theory to evaluate them  finite automata 

 ∃a well-understood, efficient implementation 
 ∃a tool to process regular expressions  lex 

 Lexical definitions (regular expressions)  lex   

    a table-driven lexer (C program) 



Formal Language Theory 

 Alphabet ∑ : a finite set of symbols (characters) 
 Ex: {a,b}, an ASCII character set 

 

 String: a finite sequence of symbols over ∑ 
 Ex: abab, aabb, a over {a,b}; “hello” over ASCII 
 Empty string є : zero-length string 

 є≠Ø≠ {є} 
 

 Language: a set of strings over ∑ 
 Ex: {a, b, abab} over {a,b} 
 Ex: a set of all valid C programs over ASCII 



Operations on Strings 

 Concatenation (·): 
 a · b = ab, “hello” · ”there” = “hellothere” 

 Denoted by α · β = αβ 
 

 Exponentiation: 
 hello3 = hello · hello · hello = hellohellohello, hello0 = є  

 

 Terms for parts of a string s 
 prefix of s : A string obtained by removing zero or more trailing 

symbols of string s: (Ex: ban is a prefix of banana) 

 proper prefix of s: A non-empty prefix of s that is not s 



Operations on Languages 

 Lex X and Y be sets of strings 
 Concatenation (·): X · Y = {x·y|x ∈ X, y ∈ Y} 

 Ex: X = {Liz, Add} Y = {Eddie, Dick} 

 X · Y = {LizEddie, LizDick, AddEddie,AddDick} 
 

 Exponentiation: X2 = X · X 
 X0 = є  

 

 Union: X∪Y = {u|u ∈ X or u ∈ Y} 
 

 Kleene’s Closure: X* =        Xi 

 Ex:X = {a,b}, X* = {є , a, b, aa, ab, ba, bb, aaa, ..} 



Regular Languages over ∑ 

 Definition of regular languages over ∑ 

Ø is regular 

{a} is regular 

{є} is regular 

R∪S is regular if R, S are regular 

R·S is regular if R, S are regular 

Nothing else 



Regular Expressions (RE) over ∑  

 In order to describe a regular language, we can use a 
regular expression (RE), which is strings over ∑ 
representing the regular language 
 

 Ø is a regular expression  
 є is a regular expression 
 a is regular expression for a ∈ ∑ 

 Let r, s be regular expressions. Then, 
 (r) | (s) is a regular expression 
 (r) · (s) is a regular expression 
 (r)* is a regular expression 

 Nothing else 
 

 Ex: ∑ = {a, b}, ab|ba* = (a)(b)|((b)((a)*)) 



Regular Expressions & Languages 

 Let s and r be REs 
 L(Ø) = Ø, L(є ) = {є}, L(a) = {a} 

 L(s·r) = L(s) · L(r), L(s|r) = L(s) ∪ L(r) 

 L(r*)=(L(r))* 

 Anything that can be constructed by a finite number of 
applications of the rules in the previous page is a regular 
expression which equally describe a regular language 
 

 Ex: ab* = {a, ab, abb, …} 

 Quiz: what is a RE describing at least one a and any number of b’s 
 (a|b)*a(a|b)*  or  (a*b*)*a(a*b*)* 



Non-Regular Languages 

 Not all languages are regular (i.e., cannot be 
described by any regular expressions) 

 Ex: set of all strings of balanced parentheses  
 {(), (()), ((())), (((()))),  …} 

 What about (* )* ? 

 Nesting can be described by a context-free grammar 

 Ex: Set of repeating strings  
 {wcw| w is a string of a’s and b’s} 

 {aca, abcab, abacaba, …} 

 Cannot be described even by a context-free grammar 

 Regular languages are not that powerful  



RE Shorthands 

 r? = r|Є (zero or one instance of r) 

 r+ = r·r*   (positive closure) 

 Charater class: [abc] = a|b|c, [a-z] = a|b|c|…|z 

 Ex: ([ab]c?)+ = {a, b, aa, ab, ac, ba, bb, bc,…} 



Regular Definition 

 For convenience, we give names to regular expressions and define 
other regular expressions using these names as if they are symbols 
 

 Regular definition is a sequence of definitions of the following form, 
d1  r1 

d2  r2 

… 
dn  rn 

 di is a distinct name 
 ri is a regular expression over the symbols in ∑ ∪{d1,d2,…,di-1} 

 
 For lex we use regular definitions to specify tokens; for example, 

 letter  [A-Za-z] 
 digit  [0-9] 
 id  letter(letter|digit)* 



Examples of Regular Expressions 

 Our tokens can be specified by the following 
 for  for 

 id  letter(letter|digit)* 

 relop  <|<=|==|!=|>|>= 

 num  digit+(.digit+)?(E(+|-)?digit+)? 

 Our lexer will strip out white spaces 
 delim  [ \t\n] 

 ws  delim+ 



More Regular Expression Examples 

 Regular expressions are all around you! 

Phone numbers: (02)-880-1814 

  ∑ = digit∪{-,(,)} 

 exchange  digit3 

 phone  digit4 

 area  (digit3) 

 phone_number = area – exchange - phone 



Another Regular Expression Example 

 E-mail addresses: smoon@altair.snu.ac.kr 
∑ = letter∪{.,@} 

Name = letter+ 

Address = 
name‘@’name‘.’name‘.’name‘.’name 

Real e-mail address will be more elaborate but 
still regular 

 Other examples: file path names, etc. 



Review and the Next Issue 

 Regular expressions are a language specification that 
describe many useful languages including set of tokens for 
programming language compilers 
 

 We still need an implementation for them 
 

 Our problem is 
 Given a string s and a regular expression R, is s ∈ L(R) ? 

 

 Solution for this problem is the base of lexical analyzer 
 

 A naïve solution: transition diagram and input buffering 
 A more elaborate solution 

 Using the theory and practice of deterministic finite automata (DFA) 



Transition Diagram 

 A flowchart corresponding to regular expression(s) to keep 
track of information as characters are scanned 
 Composed of states and edges that show transition 

 
 
 
 
 
 

  
 
 
 
 



Input Buffering 

 

 

 

 

 Two pointers are maintained 
 Initially both pointers point the first character of the next lexeme 

 Forward pointer scans; if a lexeme is found, it is set to the last 
character of the lexeme found 

 After processing the lexeme, both pointers are set to the 
character immediately the lexeme 



Making Lexer using Transition Diagrams 

 Build a list of transition diagrams for all regular expressions 

 

 Start from the top transition diagram and if it fails, try the 
next diagram until found; fail() is used to move the forward 
pointer back to the lexeme_beginning 

 

 If a lexeme is found but requires retract(n), move the 
forward pointer n charcters back 
 

 Basically, these ideas are used when implementing 
deterministic finite automata (DFA) in lex 



Deterministic Finite Automata (DFA) 

 Language recognizers with finite memory contained in states 
 A DFA accepts/rejects a given string if it is/is not a language of the DFA  

 Regular languages can be recognized by DFAs 
 
 
 
 
 
 
 
 

  



Formal Definition of a DFA 

 A deterministic finite state automata M = (∑, Q, δ, q0, F) 
 ∑: alphabet 

 Q: set of states 

 δ: Qⅹ∑  Q, a transition function 

 q0: the start state 

 F: final states 
 

 A run on an input x is a sequence of states by “consuming” x 
 

 A string x is accepted by M if its run ends in a final state 
 

 A language accepted by a DFA M, L(M) = {x|M accepts x} 



Graphic Representation of DFA 



A DFA Example: A Number 

 

 

 

 

 num  digit+(.digit+)?(E(+|-)?digit+)? 

 



From Regular Expression to DFA 



From DFA to Regular Expression 

 We can determine a RE directly from a DFA either by 
inspection or by “removing” states from the DFA 

 

 

 

 

 

 

  

 



Nondeterministic Finite Automata (NFA) 

 Conversion from RE to NFA is more straightforward 
 є-transition 

 

 Multiple transitions on a single input i.e., δ : Qⅹ∑  2Q 
 

 We will not cover much of NFA stuff in this lecture 
 Conversion of NFA to DFA: subset construction Ch. 3.6 

 From RE to an NFA: Thomson’s construction Ch. 3.7 

 Minimizing the number of states in DFA: Ch. 3.9 
 

 Equivalence of RE, NFA, and DFA: 
 L(RE) = L(NFA) = L(DFA) 



Subset Construction 

 Basic Idea 
 Each DFA state corresponds to a set of NFA states: keep track of 

all possible states the NFA can be in after reading each symbol 
 

 The number of states in DFA is exponential in the number of states 
of NFA (maximum 2n states) 

 
 
 
 
 

   



Thomson’s Construction 

 From RE to NFA 



Lexical Analysis using Automata 

 Automata vs. Lexer 
 Automata accepts/rejects strings 

 Lexer recognizes tokens (prefixes) from a longer string 

 Lookahead issues: number of characters that must be 
read beyond the end of a lexeme to recognize it 

 Resolving ambiguities: 
 Longest lexeme rule 

 Precedence rule 



Longest Lexeme Rule 

 In case of multiple matches longer ones are matched 
 Ex: floating-point numbers (digit+.digit*(E(+|-)?digit+)?) 

 
 
 
 
 

 Can be implemented with our buffer scheme: when we are in accept state, 
mark the input position and the pattern; keep scanning until fail when we 
retract the forward pointer back to the last position recorded 

 
 Precedence rule of lex 

 Another rule of lex to resolve ambiguities: In case of ties lex matches 
the RE that is closer to the beginning of the lex input 



Pitfall of Longest Lexeme Rule 

The longest lexeme rule does not always work 

 Ex: L = {ab, aba, baa} and input string abab 

 Infinite maximum lookahead is needed for ababaaba... 

 THIS IS A WRONG set of lexemes 

 Unfortunately this might be a real life situation 

 Ex: Floating-point numbers as defined above and 
resolving “..” (DOTDOT ); e.g., 1..2 



Lookahead Operator of lex 

 Lookahead Operator 
 RE for lex input can include an operator “/” such as 

ab/cd, where ab is matched only if it is followed by cd 

 

 

 If matched at “d”, the forward pointer goes back to “b” 
position before the lexeme ab is processed 



Summary of Lexical Analysis 

 Token, pattern, lexeme 

 Regular languages 

 Regular expressions (computational model, tools) 

 Finite automata (DFA, NFA) 

 Lexer using automata: longest lexeme rules 

 Tool: lex 

 Programming Assignment #1 
 Writing a lexical analyzer for a subset of C, subc, using lex 

(nested comments, lookaheads, hash tables) 


