Lexical Analysis

m Dragon Book Chapter 3

m Formal Languages

m Regular Expressions

m Finite Automata Theory

m Lexical Analysis using Automata

Phase Ordering of Front—Ends

—*| Parser
g ——

Lexer

m Lexical analysis (lexer)
Break input string into “words” called fokens

m Syntactic analysis (parser)
Recover structure from the text and put it in a parse tree

m Semantic Analysis
Discover “meaning” (e.g., type—checking)
Prepare for code generation
Works with a symbol table

" S
Similarity to Natural Languages

Tokens and a Parse Tree

S SES) : non—-terminals

CHYAF EAb o4 A} T A S A : Tokens (also called terminals)

" A
What is a Token?

m A syntactic category
In English:
= Noun, verb, adjective, ...
In a programming language:
m |[dentifier, Integer, Keyword, White—space, ...

m A token corresponds to a set of strings

" A
Terms

m /oken

Syntactic “atoms” that are “terminal” symbols in the
grammar from the source language

A data structure (or pointer to it) returned by lexer
m FPatten

A “rule” that defines strings corresponding to a token
m [exeme

A string in the source code that matches a pattern

An Example of these Terms

m int foo = 100;

Source .

Program gimine a token Parse Tree

Charaﬂﬂ? SLEIH = Parser -

1 yWCANNETr

string {) token

Tint" decl

"foo" S/ “,

=" g y . int stmit

00" Token | Example | Informal desc. of pattern | T —

o int it int (reserved word) | id assn expr ;émi_cnl

id foo boo | letter followed by letter o |

symhbol table exl or digit | | |
entry assgn = = | | num |

num 11.34 any numeric constant i l ' |
semicol| - | ot oo = 100
||1'|.||.'|1| 100 l I"E'I.ﬂp == <=3 == gr < or <= Oor = 0f _

m [he lexeme matched by the pattern for the token
represents a string of characters in the source
program that can be treated as a lexical unit

What are Tokens

—0r?

m Classify substrings of a given program

according to its role

m Parser relies on token classification

e.g., How to handle reserved keywords? As an
identifier or a separate keyword for each?

m Output of the lexer is a stream of tokens

which is input to the parser

m How parser and lexer co—work?

Parser leads the work

Lexical Analysis Problem

m Partition input string of characters into
disjoint substrings which are tokens

if (i==j)

z = 0; => \tif (i==j)\n\t\tz = 0;\n\telse\n\t\tz = 1;
else

z = 1;

m Useful tokens here: identifier, keyword, relop,
integer, white space, (,), =, ;

Designing Lexical Analyzer

m First, define a set of tokens
Tokens should describe all items of interest

Choice of tokens depends on the language
and the design of the parser

m [hen, describe what strings belongs to
each token by providing a pattern for it

" A
Implementing Lexical Analyzer

m |[mplementation must do two thing:

Recognize substrings corresponding to tokens

Return the “value” or “lexeme” of the token: the substring
matching the category

Reading left—to-right, recognizing one token at a time

m [he lexer usually discards “uninteresting” tokens that
do not contribute to parsing
Examples: white space, comments

m |S it as easy as it sounds? Not actually!
Due to lookahead and ambiguity issues (Look at the history)

Lexical Analysis in Fortran

m Fortran rule: white space is insignificant
Example: “VAR1” is the same as “VA R1”

Left—to—-right reading is not enough

mDO5I=1,25 ==>DO0 5 I = 1, 25

mDO 5T =1.25 ==> DO5I = 1.25

Reading left—-to-right cannot tell whether DO5T is a
variable or a DO statement until “.” or “,” is reached

“Lookahead” may be needed to decide where a token
ends and the next token begins

Even our simple example has lookahead issues
. e.g’ “=“ and “==“

Lexical Analysis in PL/I

m PL/I keywords are not reserved
IF THEN ELSE THEN = ELSE; ELSE ELSE = THEN

m PL/I Declarations
DECLARE (ARGl, .. ,ARGN)

m Cannot tell whether DECLARE is a keyword or an array
reference until we see the charater that follows “)”,
requiring an arbitrarily long lookahead

" A
Lexical Analysis in C++

m C++ template syntax:
Foo<Bar>

m C++ |0 stream syntax:
Cin >> var;

m But there Is a conflict with nested templates
Foo<Bar<int>>

Review

m [he goal of lexical analysis is to
Partition the input string into lexemes
ldentify the token of each lexeme

m Left—to—-right scan, sometimes requiring lookahead

m We still need
A way to describe the lexemes of each token: pattern

A way to resolve ambiguities
m |S “=="two equal signs “=* “=* or a single relational op”?

"
Specitying Tokens: Regular Languages

m [here are several formalisms for specifying tokens
but the most popular one is “regular languages”

m Regular languages are not perfect but they have

Ja concise (though sometimes not user—friendly)
expression: regular expression

- a useful theory to evaluate them =» finite automata

- a well-understood, efficient implementation
da tool to process regular expressions = lex
Lexical definitions (regular expressions) =2 Tex =

a table—driven lexer (C program)

-ormal Language Theory

m Alphabet > : a finite set of symbols (characters)
Ex: {a,b}, an ASCI| character set

m String: a finite sequence of symbols over >
Ex: abab, aabb, a over {a,b}; “hello” over ASCII

Empty string €: zero—length string
m e+ {e}

m Language: a set of strings over >
Ex: {a, b, abab} over {a,b}
Ex: a set of all valid C programs over ASCI|

" A
Operations on Strings

m Concatenation (+):

a-b=ab, “hello” - "there” = “hellothere”
Denoted by a - B = af

m Exponentiation:
hello® = hello - hello - hello = hellohellohello, hello® =€

m [erms for parts of a string s

orefix of s . A string obtained by removing zero or more trailing
symbols of string s: (Ex: ban is a prefix of banana)

oroper prefix of s: A non—empty prefix of s that is not s

" A
Operations on Languages

mLex X and Y be sets of strings

Concatenation (1): X - Y =4{xvylx € X,y € Y}
m Ex: X ={Liz, Add} Y = {Eddie, Dick}
m X - Y ={LizEddie, LizDick, AddEddie,AddDick}

Exponentiation: X2 =X - X
m XO=¢

Union: XUY ={ulu e Xoru € Y}

Kleene’s Closure: X* = U;oo X
s Ex:X ={a,b}, X*={e, a, b, aa, ab, ba, bb, aaa, ..}

Reqgular Languages over >

m Definition of regular languages over >
@ is regular
1a} is regular
1e} is regular

RUS Is regular if R, S are regular

R-S Is regular it R, S are regular

Nothing else

Regular Expressions (RE) over

m [n order to describe a regular language, we can use a
regular expression (RE), which is strings over >
representing the regular language

@ is a regular expression

€ IS a regular expression

a is regular expression fora € >

Let r, s be regular expressions. Then,
m (r) | (s)is aregular expression
m (r) - (s) is a regular expression
m (r)* is a regular expression

Nothing else

Ex: > ={a, b}, ablba* = (a)(b)|((b)((a)"))

Regular Expressions & Languages

m Let s and r be REs
L(@) = @, L(e) = {e}, L(a) = {a}
L(sr) = L(s) - L(r), L(s|r) = L(s) U L(r)
L(r)=(L(r))*
m Anything that can be constructed by a finite number of

applications of the rules in the previous page is a regular
expression which equally describe a regular language

Ex: ab* ={a, ab, abb, ...}
Quiz: what is a RE describing at least one a and any number of b’s
s (a|lb)*aCalb)® or (a’b*)*a(a*b*)”

= S
Non—Regular Languages

m Not all languages are regular (i.e., cannot be
described by any regular expressions)

Ex: set of all strings of balanced parentheses

= {O, (O, CCON, CCCOIN), -}
s What about (*)* 7

m Nesting can be described by a context—free grammar
Ex: Set of repeating strings

s {wcw| wis a string of a’'s and b’s}

= {aca, abcab, abacaba, -}

m Cannot be described even by a context—free grammar

m Regular languages are not that powerftul

RE Shorthands

r? = r|€ (zero or one instance of r)

r* =r-r* (positive closure)

Charater class: [abc] = alblc, [a-z] = alblc|:]|z
Ex: ([ab]c?)" ={a, b, aa, ab, ac, ba, bb, bc, -}

" S
Regular Definition

m For convenience, we give names to regular expressions and define
other regular expressions using these names as if they are symbols

m Regular definition is a sequence of definitions of the following form,
d; 2,
d, 215
d, =2 r,
d; is a distinct name
r, is a regular expression over the symbols in > U{d,,d,,"--,d_;}

m For Tex we use regular definitions to specify tokens; for example,
letter > [A-Za-2z]
digit > [0-9]
id = letter(letter| digit)*

=xamples of Regular Expressions

m Our tokens can be specified by the following

for = for
id > letter(letter| digit)*
relop = <|<=|==|1=|>|>=

num = digit*(.digit*)?(E(+|-)?digit*)?
m Our lexer will strip out white spaces
delim > [WtWhn]

ws =2 delim*

More Regular

—XPression

—xamples

m Regular expressions are all around you!

Phone numbers: (02)-880-1814

m > =digitu{-,(,)}
m exchange - digit3

m phone - digit?
m area > (digitd)

m phone_number = area — exchange — phone

Another Regular Expression Example

m E—mail addresses: smoon@altair.snu.ac.kr
> = letterU{., @}
Name = letter?
Address =
name @ name’.’name’.’ name’. name
Real e—mail address will be more elaborate but
still regular

m Other examples: file path names, etc.

Review and the Next Issue

m Regular expressions are a language specification that
describe many useful languages including set of tokens for
programming language compilers

m We still need an implementation for them

m Our problem is
Given a string s and a regular expression R, is s € L(R) ?

m Solution for this problem is the base of lexical analyzer

m A naive solution: transition diagram and input buffering

m A more elaborate solution
Using the theory and practice of deterministic finite automata (DFA)

Transition Diagram

m A flowchart corresponding to regular expression(s) to keep
track of information as characters are scanned

Composed of states and edges that show transition

= —
—= @ @) |® return (relop, GE)
' other 7N
\————————?@l retract(l)
lette rr/{;l}iigi ¢ return(relop,GT)
letter - other -
— @ ,_-b f——@_jj\ retract(l)
~install_id()

<ﬂ%m return(gettoken)

delim
N o\ other
7 o @J - '@ retract(1)

Input Butfering

f A forward pointer

lexeme beginning

m (WO pointers are maintained
Initially both pointers point the first character of the next lexeme

Forward pointer scans; if a lexeme is found, it is set to the last
character of the lexeme found

After processing the lexeme, both pointers are set to the
character immediately the lexeme

"
Making Lexer using Transition Diagrams

m Build a list of transition diagrams for all regular expressions

m Start from the top transition diagram and if it fails, try the
next diagram until found; fail() is used to move the forward
pointer back to the lexeme_beginning

m |f alexeme is found but requires retract(n), move the
forward pointer n charcters back

m Basically, these ideas are used when implementing
deterministic finite automata (DFA) in Tex

Deterministic Finite Automata (DFA)

m Language recognizers with finite memory contained in states

A DFA accepts/rejects a given string if it is/is not a language of the DFA
m Regular languages can be recognized by DFAs

accept
a string x DFA xin LiM)
— -
JM -\-\-\-\-\--\-"\-\.___\-
reject
Ex: identifier —> letter(letter|digit)* x not in L(M)

T letter | digit
start — letter

= letter |-dioit
—={_ j—""©' final/accept state m— C\?
. start letter
0%\ ¢ other Y Y

—=_J

N\

O non—final state

Y

-ormal Definition of a DFA

m A deterministic finite state automata M = (3, Q, 6, q,, F)
> alphabet
Q: set of states
0: Qx> =2 Q, a transition function

dy- the start state
F: final states

m Arun on an input xis a sequence of states by “consuming” x
m A string xis accepted by M if its run ends in a final state

m A language accepted by a DFA M, L(M) = {x|M accepts x}

Graphic Representation of DFA

]) Ve letter
A state : () starting state %D final state /CD\ transition @—— =

Example - \/
O) “\ 7Y
P AT)

A DFA Example: A Number

digit .

dig t@ dig @ E - dig t/d*?ﬁ

—~ 070~ 00 :0_-0—+0
— _E

Jigit

m num = digit™(.digit™) ?(E(+|-)?digit™)?

From Regular Expression to DFA

Regular Exp. DFA
. stm;t, ~
TN

Regular Exp.

H'.:'-:

at

DFA
EN
start hﬁ
s
()
start a =
CIEIS

From DFA to Regular Expression

m We can determine a RE directly from a DFA either by
inspection or by “removing” states from the DFA

oo

@L.%’\f:/_@ = @_.84.@@3@

E@ﬂ,@

ab*c(db* o)~
© ~

» I
Nondeterministic Finite Automata (NFA)

m Conversion from RE to NFA Is more straightforward
e —transition e ®

O

Multiple transitions on a single inputi.e.,d: Qx> = 2¢

m We will not cover much of NFA stuff in this lecture
Conversion of NFA to DFA: subset construction Ch. 3.6
From RE to an NFA: Thomson’s construction Ch. 3.7

Minimizing the number of states in DFA: Ch. 3.9

m Equivalence of RE, NFA, and DFA:
L(RE) = L(INFA) = L(DFA)

" A
Subset Construction

m Basic ldea

Each DFA state corresponds to a set of NFA states: keep track of
all possible states the NFA can be in after reading each symbol

The number of states in DFA is exponential in the number of states
of NFA (maximum 2" states)

NFA Cea
{0y | {0.1} | 10,2} | {0.3}

«% Ry

a b b = ' b —

H:-L\g)—h@—-*(%) {E’) a| {01} | {01} 10,1} {0.1} _*')\jq}_%ﬁtg @ @
b bq.h —_‘_li//

b
a
(a|b)*abb b| 0 | {02} | {03} | {0} "ﬁ;’

" A
Thomson’s Construction

mFrom RE to NFA

""@f'*@ }@E@ rjngF\S:)
— A \()___ —i\—k:j JD(:)

/(\FQE& NFA(s) NFA(D) e o
“va) o7, O QO O~
\Fa s|t

=
Lexical Analysis using Automata

m Automata vs. Lexer
Automata accepts/rejects strings

Lexer recognizes tokens (prefixes) from a longer string

Lookahead issues: number of characters that must be
read beyond the end of a lexeme to recognize it
Resolving ambiguities:

m Longest lexeme rule

m Precedence rule

Longest Lexeme Rule

m |n case of multiple matches longer ones are matched
Ex: floating—point numbers (digit*.digit*(E(+|-)?digit*)?)

dlU]T [llglr digit
Y

{llglt — dlalf
}= V‘S : <_/ r— \

:llg;lt
384E+3

3.84Eng: "3.84" "Eng"

Can be implemented with our buffer scheme: when we are in accept state,
mark the input position and the pattern; keep scanning until fail when we
retract the forward pointer back to the last position recorded

m Precedence rule of Tex

Another rule of Tex to resolve ambiguities: In case of ties Tex matches
the RE that is closer to the beginning of the lex input

Pittfall of Longest Lexeme Rule

The longest lexeme rule does not always work
Ex: L ={ab, aba, baa} and input string abab

Infinite maximum lookahead is needed for ababaaba...

THIS IS A WRONG set of lexemes
Unfortunately this might be a real life situation

Ex: Floating—point numbers as defined above and
resolving “..” (DOTDOT); e.qg., 1..2

" A
Lookahead Operator of lex

m Lookahead Operator

RE for lex input can include an operator “/” such as
ab/cd, where ab is matched only if it is followed by cd

.. a b - e .. © d -
™ - 7 Y P Y
O—+=0O=0O=0O—=0O0

If matched at “d”, the forward pointer goes back to “b”
position before the lexeme ab is processed

" A
summary ot Lexical Analysis

Token, pattern, lexeme

Regular languages

Regular expressions (computational model, tools)
Finite automata (DFA, NFA)

Lexer using automata: longest lexeme rules

Tool: Tex

Programming Assignment #1

Writing a lexical analyzer for a subset of C, subc, using lTex
(nested comments, lookaheads, hash tables)

