Context-Free Grammars

■ Dragon book Ch. 4.1 — 4.3

Outline

Introductory grammar theory

- □ Phase structure grammar
- □ Derivation and derivation tree
- □ Ambiguous grammar
- ☐ The Chomsky grammar hierarchy

Phrase Structure Grammars

- A *production* is written $\alpha \rightarrow \beta$ or $\alpha ::= \beta$
 - □ describes hierarchical structure of a language
 - □ Ex: if-else statements of C: if (expr) stmt else stmt
 stmt → if(expr) stmt else stmt
- A phrase structure grammar (PSG) G is a quadruple (N, T, P, S)
 - □ N: finite set of *Nonterminals*
 - □ T: finite set of *Terminals* (i.e., tokens)
 - \square P: Productions of the form $\alpha \to \beta$, where α must contain at least one nonterminal
 - \square S : Start symbol: S \subseteq N

An Example of a PSG

- \blacksquare G1 = ({A,S}, {0,1}, P, S) where P is:
 - $\square S \rightarrow 0A1$
 - $\square 0A \rightarrow 00A1$
 - $\square A \rightarrow \epsilon$
 - \square EX: S \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 0011
 - What is the language of this grammar?

$$\{0^n1^n|n\geq 1\}$$

Notational Conventions

- Nonterminals: A, B, C, ..., <stmt>
- Terminals: a, b, c, +, ...
- Strings of grammar symbols: α , β , ... $\alpha = (N \cup T)*$
- Strings of terminals: x, y, z, ...
 x = T*

Derivation, Sentence, Language

- If $\gamma\alpha\delta$ is a string in $(N \cup T)*$ and $\alpha\rightarrow\beta$ is a production in G, then we say $\gamma\alpha\delta$ directly derives $\gamma\beta\delta$ and writes $\gamma\alpha\beta$ ⇒ $\gamma\beta\delta$
 - $\square \Rightarrow +$: one or more derivations
 - □ ⇒ * : zero or more derivations
- If $S \Rightarrow * \alpha$ then α is called a sentential form of G
- If S ⇒ * x then x is called a sentence of G
- The language generated by G, written L(G), is
 - \square L(G) = {x|x \in T* and S \Rightarrow * x}
 - Ex: $L(G1) = \{0^n1^n | n \ge 1\}$

ĸ.

The Chomsky Hierarchy

- Type 0 Unrestricted grammars
 - \square Any $\alpha \rightarrow \beta$
- Type 1 Context sensitive grammar (CSG)

```
□ For all \alpha \rightarrow \beta, |\alpha| \leq |\beta|

□ Ex: G_2 = (\{S,B,C\}, \{a,b,c\}, P, S) and P is S \rightarrow aSBC

S \rightarrow abC

CB \rightarrow BC
```

 $bC \rightarrow bc$ $cC \rightarrow cc$

 $bB \rightarrow bb$

What is L(G2)?

 $\{a^nb^nC^n \mid n \geq 1\}$

The Chomsky Hierarchy

- Type 2 Context-free grammars (CFG)
 - \square For all $\alpha \rightarrow \beta$, $\alpha \in \mathbb{N}$ (i.e., $A \rightarrow \beta$)
 - \square P of G₃ is: E \rightarrow E + E|E * E|(E)|num|id
 - What are derivations for id + num * id? $F \rightarrow F + F \rightarrow id + F \rightarrow id + F * F \rightarrow id$
 - $\mathsf{E} \to \mathsf{E} + \mathsf{E} \to \mathsf{id} + \mathsf{E} \to \mathsf{id} + \mathsf{E} \times \mathsf{E} \to \mathsf{id} + \mathsf{num} \times \mathsf{E} \to \mathsf{id} + \mathsf{num} \times \mathsf{id}$
- Type 3 Right or left linear grammars
 - \square Right-linear if all productions are of the form A \rightarrow x or A \rightarrow xB
 - \square Left-Linear if all productions are of the form $A \rightarrow x$ or $A \rightarrow Bx$
 - \square Regular if all are A \rightarrow a or A \rightarrow aB; Equivalent to regular languages
 - what is a grammar for $(a|b)^*abb$? S → aS, S → bS, S → aB, B → bC, C → bD, D → ϵ
 - In our compiler context, a grammar means the CFG.

M

Derivation and Derivation Tree

Leftmost derivation and rightmost derivation

```
□ E → E + E

→ id + E

→ id + E * E

→ id + num * E

→ id + num * id
```

Parse (Derivation) Trees:

Graphical Representation for a derivation

- □ Internal nodes: Nonterminal
- □ Leaves: Terminals

Ambiguous Grammars

- A grammar that produces more than one parse tree for some sentence
 - □ Produces more than one leftmost or more than one rightmost derivation
 - □ Eliminating ambiguity
 - □ Sometimes we use ambiguous grammars with disambiguating rules for simplicity of parsing

M

Inherently Ambiguous Languages

No unambiguous grammar that accepts it

$$\Box L = \{0^{i}1^{j}2^{k} \mid i = j \text{ or } j = k; i, j, k \ge 0\}$$

□ One CFG for L is

$$A \rightarrow 0A | \epsilon$$

$$B \rightarrow 1B2 | \epsilon$$

$$C \rightarrow 0C1|\epsilon$$

$$D \rightarrow 2D | \epsilon$$

Why is this grammar ambiguous?

• When deriving $\{0^i 1^j 2^k | i = j = k\}$

Languages and Grammar Hierarchy

Non Context-Free Languages

- \blacksquare L = $\{0^n1^n|^n \ge 1\}$ is not regular
 - □ Is it context-free? Then, what is the CFG?
 - □ What about $\{0^n1^n2^n|n \ge 1\}$?
- Is $\{wcw|w \in (a|b)^*\}$ context free?
 - □ Check if a variable is used after declaration in C
 - C grammar does not specify characters in an identifier
 - Use a generic token id and rely on semantic analysis
 - □ What about $\{wcw^R | w \in (a|b)^*\}$?

M

- Is $L = \{a^nb^mc^nd^m|n, m \ge 1\}$ context free?
 - Checking if the number of formal parameters equals to that of actual parameters
 - C grammar cannot specify the number of parameters, so we rely on semantic analysis
 - What about $L = \{a^nb^nc^md^m|n, m \ge 1\}$?
 - What about $L = \{a^nb^mc^md^n|n, m \ge 1\}$?
- "C" itself is not context-free, yet CFG is used for parsing and non-CFG features are handled by semantic analysis

Summary

- A phrase structure grammar and productions
- Grammar hierarchy
- Ambiguous grammar
- Non-CFG features of C