
Context-Free Grammars 

 Dragon book Ch. 4.1 – 4.3 

 



Outline 

Introductory grammar theory 

 Phase structure grammar 

 Derivation and derivation tree 

 Ambiguous grammar 

 The Chomsky grammar hierarchy 



Phrase Structure Grammars 

 A production is written α → β or α ::= β 

 describes hierarchical structure of a language 

 Ex: if-else statements of C: if (expr) stmt else stmt 

 

 A phrase structure grammar (PSG) G is a 
quadruple (N, T, P, S) 

 N : finite set of Nonterminals 

 T : finite set of Terminals (i.e., tokens) 

 P : Productions of the form α → β, where α must 
contain at least one nonterminal 

 S : Start symbol: S ∈ N 

stmt → if( expr ) stmt  else stmt 



An Example of a PSG 

 G1 = ({A,S}, {0,1}, P, S) where P is: 

S → 0A1 

0A → 00A1 

A → ε  

EX: S ⇒ 0A1 ⇒ 00A11 ⇒ 0011 

What is the language of this grammar? 

{0n1n|n ≥ 1} 



Notational Conventions 

 Nonterminals: A, B, C, .., <stmt> 

 Terminals: a, b, c, +, .. 

 Strings of grammar symbols: α, β, ... 

   α = (N ∪ T)* 

 Strings of terminals: x, y, z, … 

   x = T* 



Derivation, Sentence, Language 

 If γαδ is a string in (N∪T)* and α→β is a 
production in G, then we say γαδ directly 
derives γβδ and writes γαβ ⇒ γβδ 
 

 ⇒ +  : one or more derivations 

 ⇒ *  : zero or more derivations 
 

 If S ⇒ * α then α is called a sentential form of G 
 If S ⇒ * x then x is called a sentence of G 

 

 The language generated by G, written L(G), is 
 L(G) = {x|x ∈ T* and S ⇒* x} 

 Ex: L(G1) = {0n1n|n ≥ 1} 



The Chomsky Hierarchy 

 Type 0 – Unrestricted grammars 
 Any α → β 

 

 Type 1 – Context sensitive grammar (CSG) 
 For all α → β, |α|≤|β| 

 Ex: G2 = ({S,B,C}, {a,b,c}, P, S) and P is 
      S → aSBC 
      S → abC 
    CB → BC 
    bB →  bb 
    bC →  bc 
    cC →  cc 

What is L(G2)?  

{anbnCn |n ≥ 1} 



The Chomsky Hierarchy 

 Type 2 – Context-free grammars (CFG) 
 For all α→β, α ∈ N (i.e., A → β) 
 P of G3 is: E → E + E|E * E|(E)|num|id 

 What are derivations for id + num * id ? 
   E  → E + E  → id + E  → id + E * E  → id + num * E  → id + num * id 

 

 Type 3 – Right or left linear grammars 
 Right-linear if all productions are of the form A → x or A → xB 
 Left-Linear if all productions are of the form  A → x or A → Bx 
 Regular if all are A → a or A → aB; Equivalent to regular languages  

 what is a grammar for (a|b)*abb? 
   S → aS, S → bS, S → aB, B → bC, C → bD, D → ε 

 

 In our compiler context, a grammar means the CFG. 



Derivation and Derivation Tree 

 Leftmost derivation and rightmost derivation 
 E → E + E 

   → id + E 
   → id + E * E 
   → id + num * E 
   → id + num * id 
 

 Parse (Derivation) Trees: 
   Graphical Representation for a derivation 

 Internal nodes: Nonterminal 
 Leaves: Terminals 



Ambiguous Grammars 

 A grammar that produces more than one 
parse tree for some sentence 

Produces more than one leftmost or more 
than one rightmost derivation 

Eliminating ambiguity 

Sometimes we use ambiguous grammars with 
disambiguating rules for simplicity of parsing 



Inherently Ambiguous Languages 

No unambiguous grammar that accepts it 
L = {0i1j2k |i = j or j = k; i, j, k≥0} 

One CFG for L is 
S → AB|CD 
A → 0A|ε  
B → 1B2|ε  
C → 0C1|ε  
D → 2D|ε  

   Why is this grammar ambiguous? 

    When deriving {0i1j2k |i = j = k} 



Languages and Grammar Hierarchy 

Unrestricted 

Regular 

Context-Free 

Context-Sensitive 



Non Context-Free Languages 

 L = {0n1n|n ≥ 1} is not regular 

 Is it context-free? Then, what is the CFG? 

What about {0n1n2n|n ≥ 1}? 
 

 Is {wcw|w ∈ (a|b)*} context free? 

Check if a variable is used after declaration in C 

 C grammar does not specify characters in an identifier 

 Use a generic token id and rely on semantic analysis   

What about {wcwR|w ∈ (a|b)*}? 



 Is L = {anbmcndm|n, m ≥ 1} context free? 

Checking if the number of formal parameters 
equals to that of actual parameters 

C grammar cannot specify the number of 
parameters, so we rely on semantic analysis 

 What about L = {anbncmdm|n, m ≥ 1}? 

 What about L = {anbmcmdn|n, m ≥ 1}? 
 

“C” itself is not context-free, yet CFG is 
used for parsing and non-CFG features 
are handled by semantic analysis 



Summary 

 A phrase structure grammar and productions 

 Grammar hierarchy 

 Ambiguous grammar 

 Non-CFG features of C 


