
Garbage Collection

Garbage

 Heap-allocated objects not reachable by any
chain of pointers from program variables
 Car c; c= new car(); …. c= new truck();

 Garbage collection (GC) is reclaiming the
memory space occupied by garbage
GC is performed not by the compiler but by the

run-time system (the support program linked
with the compiled code or by virtual machine)

GC recently enjoys its renewed popularity due to
Java
 Reduced time-to-market, improved S/W reliability…

Garbage Collection

 How can we identify garbage?
When we need GC (i.e., run out of memory), we

can view program variables and heap-allocated,
live objects form a DAG where variables are roots
 Why? a live object n is reachable in the DAG since

there will be a path starting from some root r to n
 An object is garbage if it is not reachable in the DAG

Reachable
objects

Garbage

Root Sets

 How to identify roots when GC occurs?

 In Java, local variables (including parameters) and
temporaries are located in stack

 If JIT compiler is employed, some of them can reside in
registers as well

 So, we need an information on locations of variables in
order to identify roots precisely
 Who knows this information? Compiler does

 Two approaches: precise GC and conservative GC

Precise GC

 Compiler generates a map of (variables,
locations) for all places in the code where
GC can possibly occur

At object allocation point: new()

Some blocking operations in some VM
 Function calls, synchronizations, loop back edges…

When GC occurs, GC gets roots using the map

Conservative GC

 Presume all locations that can potentially
have pointers as roots

 If they are really pointers, then everything is fine

 If not, then we might regard a dead object as a
live one, so GC might not be able to collect it

 Simple but not-effective GC

 Not used in a real VM

GC Techniques

 Mark-and-Sweep

 Copying

 Generational

Mark-and-Sweep Collection

 Simplest garbage collection algorithm

 Mark phase
Mark all reachable nodes by graph traversal

 E.g, depth-first traversal

 Sweep phase
Scan through the entire heap, looking for nodes

that are not marked; these nodes will be
reclaimed into a linked list (freelist)

(a) Marked (b) Swept

function DFS(x)
 if x is a pointer into the heap
 if record x is not marked
 mark(x)
 for each field f of record x
 DFS(x.f)

Sweep phase:
 p = first address in heap
 while (p < last address in heap)
 if record p is marked
 unmark p
 else let f1 be the first field in p
 p.f1 = freelist
 freelist = p
 p = p + size_of_record(p)

An Array of freelist

 For efficient allocation, an array of freelists
is used so that freelist[i] is a list of all
records of size i

Can allocate a node of size i by taking freelist[i]

 If attempt to allocate from an empty freelist[i], it
can try to grab a larger record from freelist[j]
(j > i) and split it, putting unused portion back
on freelist[j-i] (if this fails, we need GC).

Copying Collection

 Heap is divided into from-space and to-space
 Memory is allocated only from the from-space initially

 The collector traverses the DAG in the from-space,
building an isomorphic copy in the fresh to-space

 The to-space copy is compact, occupying contiguous
memory without fragmentation
 Incrementing the next pointer contiguously

 The roots are made to point at the to-space copy

 Then, the entire from-space is collected

 Change the role and continue

(a) Before collection (b) After collection

Generational Collection

 In many programs, newly created objects are likely to die
soon while objects that are still reachable after many
collections will survive more collections

 GC should focus its efforts more on “young” data

 Generational GC: divide the heap into generations
 With the youngest objects in generation G0; G1 objects are older

than G0, G2 objects are older than G1, and so on

 Collection of G0 just starts from its roots
 Can use either mark-and-sweep or copying collection

 After several collections of G0, G1 may have enough garbage, so
both G0 and G1 are collected altogether.

 If an object at Gi survives two or three collections, it promots to Gi+1

Problem of Generational GC

 Roots for G0 are not just program variables; it can
includes any pointer within G1/G2 that points into G0

 If too many of these “old” roots. Searching time for roots
might be longer than traversal of G0

 Fortunately, it is rare for an old record to point to a much
younger object; an object is initialized when created by
pointing other older objects

 An old object b can point to a newer object if some field
of b is updated long after b is created

Remembered List and Set

 In order to the search of all G1, G2, ... for roots of
G0, we make the program remember where there
are pointers from older objects to new objects
 Remembered list: when there is an update b.f = a,

(generate code to) put b into a vector of updated
objects. At each GC, the collector scans the list looking
for old objects that point to G0

 Remembered set: use a bit within b to record that b is
already in the vector; then the code can check this bit to
avoid duplicate references to b in the vector

(a) Before collection (b) After collection

GC Summary

 Most modern programming languages are
equipped with GC for faster development

 Compiler for GC language generally interact
with the collector by generating code that
describes locations of root

 Generational copying collection is most
popular, with some incremental collection

