
Garbage Collection

Garbage

 Heap-allocated objects not reachable by any
chain of pointers from program variables
 Car c; c= new car(); …. c= new truck();

 Garbage collection (GC) is reclaiming the
memory space occupied by garbage
GC is performed not by the compiler but by the

run-time system (the support program linked
with the compiled code or by virtual machine)

GC recently enjoys its renewed popularity due to
Java
 Reduced time-to-market, improved S/W reliability…

Garbage Collection

 How can we identify garbage?
When we need GC (i.e., run out of memory), we

can view program variables and heap-allocated,
live objects form a DAG where variables are roots
 Why? a live object n is reachable in the DAG since

there will be a path starting from some root r to n
 An object is garbage if it is not reachable in the DAG

Reachable
objects

Garbage

Root Sets

 How to identify roots when GC occurs?

 In Java, local variables (including parameters) and
temporaries are located in stack

 If JIT compiler is employed, some of them can reside in
registers as well

 So, we need an information on locations of variables in
order to identify roots precisely
 Who knows this information? Compiler does

 Two approaches: precise GC and conservative GC

Precise GC

 Compiler generates a map of (variables,
locations) for all places in the code where
GC can possibly occur

At object allocation point: new()

Some blocking operations in some VM
 Function calls, synchronizations, loop back edges…

When GC occurs, GC gets roots using the map

Conservative GC

 Presume all locations that can potentially
have pointers as roots

 If they are really pointers, then everything is fine

 If not, then we might regard a dead object as a
live one, so GC might not be able to collect it

 Simple but not-effective GC

 Not used in a real VM

GC Techniques

 Mark-and-Sweep

 Copying

 Generational

Mark-and-Sweep Collection

 Simplest garbage collection algorithm

 Mark phase
Mark all reachable nodes by graph traversal

 E.g, depth-first traversal

 Sweep phase
Scan through the entire heap, looking for nodes

that are not marked; these nodes will be
reclaimed into a linked list (freelist)

(a) Marked (b) Swept

function DFS(x)
 if x is a pointer into the heap
 if record x is not marked
 mark(x)
 for each field f of record x
 DFS(x.f)

Sweep phase:
 p = first address in heap
 while (p < last address in heap)
 if record p is marked
 unmark p
 else let f1 be the first field in p
 p.f1 = freelist
 freelist = p
 p = p + size_of_record(p)

An Array of freelist

 For efficient allocation, an array of freelists
is used so that freelist[i] is a list of all
records of size i

Can allocate a node of size i by taking freelist[i]

 If attempt to allocate from an empty freelist[i], it
can try to grab a larger record from freelist[j]
(j > i) and split it, putting unused portion back
on freelist[j-i] (if this fails, we need GC).

Copying Collection

 Heap is divided into from-space and to-space
 Memory is allocated only from the from-space initially

 The collector traverses the DAG in the from-space,
building an isomorphic copy in the fresh to-space

 The to-space copy is compact, occupying contiguous
memory without fragmentation
 Incrementing the next pointer contiguously

 The roots are made to point at the to-space copy

 Then, the entire from-space is collected

 Change the role and continue

(a) Before collection (b) After collection

Generational Collection

 In many programs, newly created objects are likely to die
soon while objects that are still reachable after many
collections will survive more collections

 GC should focus its efforts more on “young” data

 Generational GC: divide the heap into generations
 With the youngest objects in generation G0; G1 objects are older

than G0, G2 objects are older than G1, and so on

 Collection of G0 just starts from its roots
 Can use either mark-and-sweep or copying collection

 After several collections of G0, G1 may have enough garbage, so
both G0 and G1 are collected altogether.

 If an object at Gi survives two or three collections, it promots to Gi+1

Problem of Generational GC

 Roots for G0 are not just program variables; it can
includes any pointer within G1/G2 that points into G0

 If too many of these “old” roots. Searching time for roots
might be longer than traversal of G0

 Fortunately, it is rare for an old record to point to a much
younger object; an object is initialized when created by
pointing other older objects

 An old object b can point to a newer object if some field
of b is updated long after b is created

Remembered List and Set

 In order to the search of all G1, G2, ... for roots of
G0, we make the program remember where there
are pointers from older objects to new objects
 Remembered list: when there is an update b.f = a,

(generate code to) put b into a vector of updated
objects. At each GC, the collector scans the list looking
for old objects that point to G0

 Remembered set: use a bit within b to record that b is
already in the vector; then the code can check this bit to
avoid duplicate references to b in the vector

(a) Before collection (b) After collection

GC Summary

 Most modern programming languages are
equipped with GC for faster development

 Compiler for GC language generally interact
with the collector by generating code that
describes locations of root

 Generational copying collection is most
popular, with some incremental collection

