Garbage Collection

" A
Garbage

m Heap—allocated objects not reachable by any

chain of pointers from program variables
car c; c= new car(); ... c= new truck(Q;

m Garbage collection (GC) is reclaiming the
Memory space occupied by garbage

GC Is performed not by the compiler but by the
run—time system (the support program linked
with the compiled code or by virtual machine)

GC recently enjoys its renewed popularity due to

Java
s Reduced time—to—market, improved S/W reliability...

" A
Garbage Collection

m How can we identify garbage”?

When we need GC (i.e., run out of memory), we
can view program variables and heap-allocated,
live objects form a DAG where variables are roots

= Why? a live object nis reachable in the DAG since
there will be a path starting from some root rto n

m An object is garbage if it is not reachable in the DAG

Reachable
objects

& Garbage

S

T

T

L

-

R0o0t Sets

m How to identify roots when GC occurs?

In Java, local variables (including parameters) and
temporaries are located in stack

It JIT compiler is employed, some of them can reside in
registers as well

S0, we need an information on locations of variables in
order to identify roots precisely
s Who knows this information? Compiler does

m WO approaches: precise GC and conservative GC

Precise GC

m Compiler generates a map of (variables,
locations) for all places in the code where
GC can possibly occur

At object allocation point: new()

Some blocking operations in some VM
m Function calls, synchronizations, loop back edges...

When GC occurs, GC gets roots using the map

" A
Conservative GC

m Presume all locations that can potentially
have pointers as roots

f they are really pointers, then everything is fine

f not, then we might regard a dead object as a
lve one, so GC might not be able to collect it

m Simple but not—effective GC
m Not used in a real VM

" A
GC Techniques

m Mark—and—-Sweep
m Copying
m Generational

" A
Mark—and—Sweep Collection

m Simplest garbage collection algorithm

m Mark phase
Mark all reachable nodes by graph traversal
m £.9, depth—first traversal

m Sweep phase

Scan through the entire heap, looking for nodes
that are not marked; these nodes will be
reclaimed into a linked list (freelist)

A
¥

12

9
20

37

X =

(b) Swept

q (37

(a) Marked

function DFS(x)
1f x 1s a pointer into the heap
if record x is not marked
mark (x)
for each field f of record x
DFS(x.T)

Sweep phase:
p = first address in heap

while (p < last address in heap)
1f record p is marked

unmark p
else lTet f1l be the first field in p
p.fl = freelist

freelist = p
p =p + size_of_record(p)

" A
An Array of freelist

m For efficient allocation, an array of freelists
is used so that freelist[i] is a list of all
records of size |

Can allocate a node of size i by taking freelist]i]

If attempt to allocate from an empty freelistl[i], it
can try to grab a larger record from freelist[j]

(j > i) and split it, putting unused portion back
on freelist[j—=i] (if this fails, we need GC).

" A
Copying Collection

m Heap is divided into from—space and to—space
Memory Is allocated only from the from—space initially

The collector traverses the DAG in the from—space,
building an isomorphic copy in the fresh to—space

The to—space copy is compact, occupying contiguous
memory without fragmentation
m Incrementing the next pointer contiguously

The roots are made to point at the to—space copy
Then, the entire from—-space is collected
Change the role and continue

from- to- from- to-
space . Space space roots space
1K\\\E

N

next

next

Tk
/
|

/
/

limit limit

(a) Before collection (b) After collection

" A
Generational Collection

B |n many programs, newly created objects are likely to die
soon while objects that are still reachable after many
collections will survive more collections

m GC should focus its efforts more on “young” data

m Generational GC: divide the heap into generations

With the youngest objects in generation G0O; G1 objects are older
than GO, G2 objects are older than G1, and so on

Collection of GO just starts from its roots
m Can use either mark—and—-sweep or copying collection

After several collections of GO, G1 may have enough garbage, so
both GO and G1 are collected altogether.

If an object at G; survives two or three collections, it promots to Gi,;

Problem of Generational GC

m Roots for GO are not just program variables; It can
includes any pointer within G1/G2 that points into GO

If too many of these “old” roots. Searching time for roots
might be longer than traversal of GO

Fortunately, it is rare for an old record to point to a much
younger object; an object is initialized when created by
pointing other older objects

An old object b can point to a newer object if some field
of b is updated long after b is created

Remembered List and Set

m |n order to the search of all G1, G2, ... for roots of
G0, we make the program remember where there
are pointers from older objects to new objects

Remembered list: when there is an update b.f = a,
(generate code to) put b into a vector of updated
objects. At each GC, the collector scans the list looking
for old objects that point to GO

Remembered set: use a bit within b to record that b iIs
already in the vector; then the code can check this bit to
avoid duplicate references to b in the vector

1. GO

(~_/

* remembered
G2 \] set

(a) Before collection

j/] ‘II’.
HEREEANN

T
N

(b) After collection

GO

N
_

remembered

/ Go E set

" A
GC Summary

m Most modern programming languages are
equipped with GC for taster development

m Compiler tor GC language generally interact
with the collector by generating code that
describes locations of root

m Generational copying collection is most
popular, with some incremental collection

