ESTIMATION THEORY

September 2010

Instructor: Jang Gyu Lee

Introduction

Problem: Find the best estimate \hat{x} from the measurements of the form z = x + w

where w is a random process.

(1). The first measurement: $z_1 = x(t_1) + w$

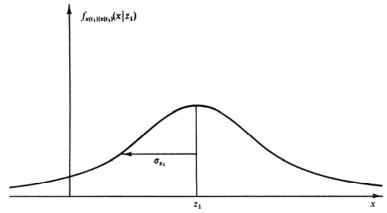


FIG. 1.4 Conditional density of position based on measured value z_1 .

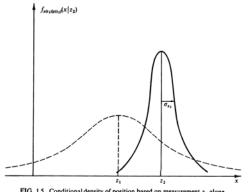
$$\hat{x}(t_1) = z_1$$

$$\hat{x}(t_1) = z_1$$

$$\sigma_x^2(t_1) = \sigma_{z_1}^2$$

<u>Introduction</u> (continued)

(2). The second measurement: $z_2, t_2 \cong t_1$



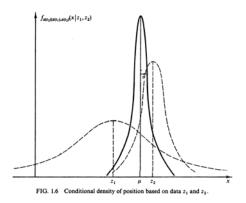


FIG. 1.5 Conditional density of position based on measurement z_2 alone.

$$\mu = \left[\sigma_{z_2}^2 / \left(\sigma_{z_1}^2 + \sigma_{z_2}^2\right)\right] z_1 + \left[\sigma_{z_1}^2 / \left(\sigma_{z_1}^2 + \sigma_{z_2}^2\right)\right] z_2$$

$$1/\sigma^2 = \left(1/\sigma_{z_1}^2\right) + \left(1/\sigma_{z_2}^2\right)$$

$$\widehat{x}(t_{2}) = \mu = \left[\sigma_{z_{2}}^{2} / (\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})\right] z_{1} + \left[\sigma_{z_{1}}^{2} / (\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})\right] z_{2}$$

$$= z_{1} + \left[\sigma_{z_{1}}^{2} / (\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})\right] (z_{2} - z_{1})$$

$$= \widehat{x}(t_{1}) + K(t_{2}) \left[z_{2} - \widehat{x}(t_{1})\right] = \text{Predictor} + \text{Corrector}$$

$$\sigma_{x}^{2}(t_{2}) = \sigma_{x}^{2}(t_{1}) - K(t_{2})\sigma_{x}^{2}(t_{1})$$

<u>Introduction</u> (continued)

(3). The third measurement: $z_3 = x(t_3) + w(t_3)$; $\frac{dx}{dt} = u + w$

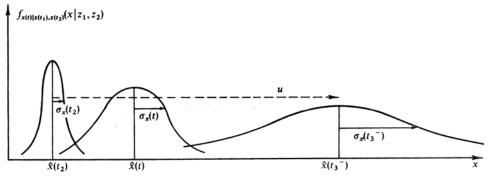


FIG. 1.7 Propagation of conditional probability density.

$$\hat{x}(t_3^-) = \hat{x}(t_2) + u(t_3 - t_2)$$

$$\sigma_x^2(t_3^-) = \sigma_x^2(t_2) + \sigma_w^2(t_3 - t_2)$$

$$\widehat{x}(t_3^+) = \widehat{x}(t_3^-) + K(t_3)[z_3 - \widehat{x}(t_3^-)]$$

$$\sigma_x^2(t_3^+) = \sigma_x^2(t_3^-) - K(t_3)\sigma_x^2(t_3^-)$$

$$K(t_3) = \sigma_x^2(t_3^-) / [\sigma_x^2(t_3^-) + \sigma_{z_3}^2]$$

As
$$\sigma_{z_3}^2 \to \infty$$
, $K(t_3) = 0$.
As $\sigma_w^2 \to \infty$, $\sigma_x^2(t_3) \to \infty$ and $K(t_3) = 1$.
Estimation Theory (10-2)

Chapter 1

Linear Systems Theory

Matrix Algebra

(1). Matrix Multiplication

Suppose that A is an $n \times r$ matrix and B is an $r \times p$ matrix. Then the product of A and B is written as C = AB. Each element in the matrix product C is computed as

$$C_{ij} = \sum_{k=1}^{r} A_{ik} B_{kj}; \quad i = 1, \dots, n; \quad j = 1, \dots, p.$$
 (1.13)

In general, $AB \neq BA$. (no commutability)

(2). Vector Products

Inner Product:
$$\underline{x}^T\underline{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1^2 + \cdots + x_n^2.$$

Outer Product:
$$\underline{x}\underline{x}^T = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} x_1 \cdots x_n \end{bmatrix} = \begin{bmatrix} x_1^2 & \cdots & x_1 x_n \\ \vdots & \ddots & \vdots \\ x_n x_1 \cdots & x_1^2 \end{bmatrix}$$
. (1.14)

Estimation Theory (10_2)

Matrix Algebra (continued)

(3). Rank and Nonsingularity of $A = (n \times n)$

- A is nonsingular.
- A^{-1} exists.
- The rank of A is equal to n.
- The rows of A are linearly independent.
- The columns of A are linearly independent.
- $\bullet \quad |A| \neq 0.$
- $A\underline{x} = \underline{b}$ has a unique solution \underline{x} for all \underline{b} .
- 0 is not an eigenvalue of A.

(4). Trace of a square matrix:
$$Tr(A) = \sum_{i} A_{ii}$$

Note that
$$Tr(AB) = Tr(BA)$$
,
 $(AB)^T = B^T A^T$,
 $(AB)^{-1} = B^{-1} A^{-1}$.

Matrix Algebra (continued)

(5). Definiteness of a Symmetric $n \times n$ matrix A

A is:

- Positive definite if $\underline{x}^T A \underline{x} > 0$ for all nonzero $n \times 1$ vectors \underline{x} . This is equivalent to saying that all of the eigenvalues of A are oisutuve reak numbers. If A is positive definite, then is also positive definite.
- Positive semidefinite if $\underline{x}^T A \underline{x} \geq 0$.
- Negative definite if $\underline{x}^T A \underline{x} < 0$.
- Negative semidefinite if $\underline{x}^T A \underline{x} \leq 0$.
- Indefinite if it does not fit into any of the above four caregories.

(6). Matrix Inversion Lemma

Suppose we have the partitioned matrix $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ where A and D are invertible

square matrices, and the B and C matrices may or may not be square. Then,

$$(A - BD^{-1}C)^{-1} = A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1}.$$
 (1.38)

Matrix Calculus

$$(1). \frac{\partial f(\underline{x})}{\partial \underline{x}} = \left[\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_n} \right].$$

(2).
$$\frac{\partial f(A)}{\partial A} = \begin{bmatrix}
\frac{\partial f}{\partial A_{11}} \cdots \frac{\partial f}{\partial A_{1n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f}{\partial A_{m1}} \cdots \frac{\partial f}{\partial A_{mn}}
\end{bmatrix}; \quad A = (A_{ij}), i = 1, \dots, m, j = 1, \dots, n.$$

$$(3). \frac{\partial \left(\underline{x}^{T} \underline{y}\right)}{\partial \underline{x}} = \left[\partial \left(\underline{x}^{T} \underline{y}\right) / \partial x_{1} \cdots \partial \left(\underline{x}^{T} \underline{y}\right) / \partial x_{n}\right] = \left[y_{1} \cdots y_{n}\right] = \underline{y}^{T}; \frac{\partial \left(\underline{x}^{T} \underline{y}\right)}{\partial \underline{y}} = \underline{x}^{T}.$$

(4).
$$\frac{\partial \left(\underline{x}^T A \underline{x}\right)}{\partial \underline{x}} = \underline{x}^T A^T + \underline{x}^T A; \frac{\partial \left(\underline{x}^T A \underline{x}\right)}{\partial \underline{x}} = 2\underline{x}^T A \text{ if } A = A^T.$$

(5).
$$\frac{\partial (A\underline{x})}{\partial \underline{x}} = A; \frac{\partial (\underline{x}^T A)}{\partial \underline{x}} = A.$$

(6).
$$\frac{\partial Tr(ABA^T)}{\partial A} = AB^T + AB; \frac{\partial Tr(ABA^T)}{\partial A} = 2AB, \text{ if } B = B^T.$$

Continuous, Deterministic Linear Systems

Models

$$\underline{\dot{x}} = A\underline{x} + B\underline{u}$$

$$y = C\underline{x}$$

Solution

$$\underline{x}(t) = e^{A(t-t_0)}\underline{x}(t_0) + \int_{t_0}^t e^{A(t-\tau)}B\underline{u}(\tau)d\tau$$

$$e^{At} = \sum_{j=0}^{\infty} \frac{(At)^j}{j!}$$
$$= \mathfrak{L}^{-1} \left[(sI - A)^{-1} \right].$$

Nonlinear Systems

Models

$$\underline{\dot{x}} = f(\underline{x}, \underline{u}, \underline{w})
y = h(\underline{x}, \underline{v})$$
(1.83)

Linearized Models Employing the Taylor Series Expansion

$$f(\underline{x}) = f(\underline{\overline{x}}) + \frac{\partial f}{\partial \underline{x}}\Big|_{\underline{x}} + \frac{1}{2!} \frac{\partial^2 f}{\partial \underline{x}^2}\Big|_{\underline{x}} + \frac{1}{3!} \frac{\partial^3 f}{\partial \underline{x}^3}\Big|_{\underline{x}} + \cdots$$

$$= f(\underline{\overline{x}}) + \left(\tilde{x}_1 \frac{\partial}{\partial x_1} + \cdots + \tilde{x}_n \frac{\partial}{\partial x_n}\right) f(\underline{x})\Big|_{\underline{x}} +$$

$$\frac{1}{2!} \left(\tilde{x}_1 \frac{\partial}{\partial x_1} + \cdots + \tilde{x}_n \frac{\partial}{\partial x_n}\right)^2 f(\underline{x})\Big|_{\underline{x}} +$$

$$\frac{1}{3!} \left(\tilde{x}_1 \frac{\partial}{\partial x_1} + \cdots + \tilde{x}_n \frac{\partial}{\partial x_n}\right)^3 f(\underline{x})\Big|_{\underline{x}} + \cdots$$

Nonlinear Systems (continued)

$$f(\overline{\underline{x}}) = f(\overline{\underline{x}}) + D_{\underline{x}}f + \frac{1}{2!}D_{\underline{x}}^{2}f + \frac{1}{3!}D_{\underline{x}}^{3}f + \cdots \quad \left[D_{\underline{x}}^{k}f = \left(\sum_{i=1}^{k} \tilde{x}_{i} \frac{\partial}{\partial x_{i}}\right)^{k} f(\underline{x})\right|_{\underline{x}}\right]$$

$$\approx f(\overline{\underline{x}}) + D_{\underline{x}}f = f(\overline{\underline{x}}) + \frac{\partial f}{\partial \underline{x}}\Big|_{\overline{x}} = f(\overline{\underline{x}}) + A\underline{\tilde{x}}$$

$$(1.90)$$

Applying Eq. (1.90) into Eq. (1.83)

$$\underline{\dot{x}} = f(\underline{x}, \underline{u}, \underline{w})$$

$$\approx f(\overline{x}, \overline{u}, \overline{w}) + \frac{\partial f}{\partial \underline{x}} \Big|_{\underline{x}} (\underline{x} - \overline{x}) + \frac{\partial f}{\partial \underline{u}} \Big|_{\underline{u}} (\underline{u} - \overline{u}) + \frac{\partial f}{\partial \underline{w}} \Big|_{\underline{w}} (\underline{w} - \overline{w})$$

$$= \dot{\overline{x}} + A\tilde{x} + B\tilde{u} + L\tilde{w}.$$

$$\underline{\dot{x}} = A\underline{\tilde{x}} + B\underline{\tilde{u}} + L\underline{w}. \quad (Say, \ \underline{\overline{w}} = \underline{0})$$
 (1.93)

Similarly,

$$\underline{\tilde{y}} = \frac{\partial h}{\partial \underline{x}} \Big|_{\underline{\tilde{x}}} + \frac{\partial h}{\partial \underline{v}} \Big|_{\underline{\tilde{v}}} \underline{\tilde{v}}$$

$$= C\underline{\tilde{x}} + D\underline{v}. \tag{1.94}$$

Simulation/Trapezoidal Integration

We want to numerically solve the state equation, $\dot{x} = f(x, u, t)$.

$$\begin{split} x\big(t_f\big) &= x\big(t_0\big) + \int_{t_0}^{t_f} f\big[x(t), u(t), t\big] \, dt \\ &= x\big(t_0\big) + \sum_{k=0}^{L} \int_{t_k}^{t_{k+1}} f\big[x(t), u(t), t\big] \, dt \text{ where } t_k = \mathbf{k} T \text{ for } k = 0, \dots, L \text{ and } T = t_f/L. \end{split}$$

For some $n \in [0, L-1]$, we can write $x(t_n)$ and $x(t_{n+1})$ as

$$x(t_n) = x(t_0) + \sum_{k=0}^{n} \int_{t_k}^{t_{k+1}} f[x(t), u(t), t] dt$$

$$x(t_{n+1}) = x(t_0) + \sum_{k=0}^{n+1} \int_{t_k}^{t_{k+1}} f[x(t), u(t), t] dt$$

$$= x(t_n) + \int_{t}^{t_{n+1}} f[x(t), u(t), t] dt.$$
(1.110)

Simulation/Trapezoidal Integration (continued)

Approximate the integral in Eq. (1.110) as a trapezoid

$$f(x,u,t) \approx f(x(t_n),u(t_n),t_n) + \left(\frac{f(x(t_{n+1}),u(t_{n+1}),t_{n+1}) - f(x(t_n),u(t_n),t_n)}{T}\right)(t-t_n) \text{ for } t \in [t_n,t_{n+1}]$$

$$x(t_{n+1}) \approx x(t_n) + \int_{t_n}^{t_{n+1}} \left\{ f(x(t_n),u(t_n),t_n) + \left(\frac{f(x(t_{n+1}),u(t_{n+1}),t_{n+1}) - f(x(t_n),u(t_n),t_n)}{T}\right)(t-t_n) \right\} dt$$

$$= x(t_n) + \left(\frac{f(x(t_n),u(t_n),t_n) + f(x(t_{n+1}),u(t_{n+1}),t_{n+1})}{2}\right) T$$

$$= x(t_n) + \frac{1}{2} \left(f(x(t_n),u(t_n),t_n) + f(x(t_{n+1}),u(t_{n+1}),t_{n+1}) + f(x(t_{n+1}),u(t_{n+1}),t_$$

Defining

$$\Delta x_1 = f(x(t_n), u(t_n), t_n) T$$

$$\Delta x_2 = f(x(t_{n+1}), u(t_{n+1}), t_{n+1}) T$$

$$\approx f(x(t_n) + \Delta x_1 + u(t_{n+1}), t_{n+1}) T,$$

Eq. (1.114) may be expressed by

$$x(t_{n+1}) \approx x(t_n) + \frac{1}{2}(\Delta x_1 + \Delta x_2). \tag{1.115}$$

Simulation/Trapezoidal Integration (continued)

Trapezoidal Integration Algorithm

Assume that $x(t_0)$ is given for $t=t_0:T:t_f-T$ $\Delta x_1=f\big(x(t),u(t),t\big)T$ $\Delta x_2=f\big(x(t)+\Delta x_1+,u(t+T),t+T\big)T,$ $x(t+T)=x(t)+\frac{1}{2}\big(\Delta x_1+\Delta x_2\big)$ end

Observability and Controllability

Consider the following time-invariant system and the deterministic asymptotic estimation

$$\underline{\mathbf{x}}_{k+1} = A\underline{\mathbf{x}}_k + B\underline{\mathbf{u}}_k$$

$$\underline{\mathbf{z}}_k = H\underline{\mathbf{x}}_k \tag{1.157}$$

where state $\underline{\mathbf{x}}_k \in \mathbb{R}^n$, control input $\underline{\mathbf{u}}_k \in \mathbb{R}^m$, output $\underline{\mathbf{z}}_k \in \mathbb{R}^p$;

and A, B, and H are known constant matrices of appropriate dimension.

All variables are deterministic, so that if initial state $\underline{\mathbf{x}}_0$ is known then Eq. (1.157) can be solved exactly for $\underline{\mathbf{x}}_k$, $\underline{\mathbf{z}}_k$ for $k \geq 0$.

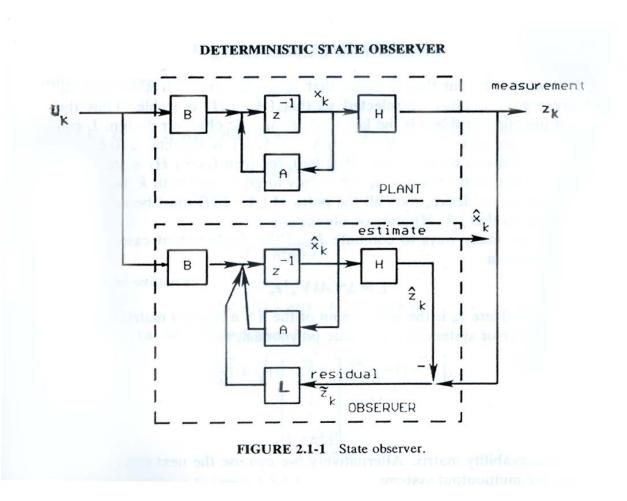
Deterministic asymptotic estimation problem: Design an estimator whose output $\underline{\hat{\mathbf{x}}}_k$ converges with k to the actual state $\underline{\mathbf{x}}_k$ of Eq. (1.157) when the initial state $\underline{\mathbf{x}}_0$ is unknown, but $\underline{\mathbf{u}}_k$ and $\underline{\mathbf{z}}_k$ are given exactly.

An estimator of observer which solves this problem has the form

$$\underline{\hat{\mathbf{x}}}_{k+1} = A\underline{\hat{\mathbf{x}}}_k + L(\underline{\mathbf{z}}_k - H\underline{\hat{\mathbf{x}}}_k) + B\underline{\mathbf{u}}_k$$

as shown in Fig. 2.1-1.

Observability and Controllability (continued)



Observability and Controllability (continued)

To Choose L in Eq. (1.157) so that the estimation error $\underline{\tilde{\mathbf{x}}}_k = \underline{\mathbf{x}}_k - \underline{\hat{\mathbf{x}}}_k$ goes to zero with k for all $\underline{\mathbf{x}}_0$, it is necessary to examine the dynamics of $\underline{\tilde{\mathbf{x}}}_k$. Write

$$\begin{split} \underline{\tilde{\mathbf{x}}}_{k+1} &= \underline{\mathbf{x}}_{k+1} - \underline{\hat{\mathbf{x}}}_{k+1} \\ &= A\underline{\mathbf{x}}_k + B\underline{\mathbf{u}}_k - \left[A\underline{\hat{\mathbf{x}}}_k + L\left(\underline{\mathbf{z}}_k - H\underline{\hat{\mathbf{x}}}_k\right) + B\underline{\mathbf{u}}_k \right] \\ &= A\left(\underline{\mathbf{x}}_k - \underline{\hat{\mathbf{x}}}_k\right) - L\left(H\underline{\mathbf{x}}_k - H\underline{\hat{\mathbf{x}}}_k\right) \\ &= (A - LH)\tilde{\mathbf{x}}_k \end{split}$$

It is now apparent that in order that $\underline{\tilde{\mathbf{x}}}_k$ go to zero with k for any $\underline{\tilde{\mathbf{x}}}_0$, observer gain L must be selected so that (A-LH) is stable. L can be chosen so that $\underline{\tilde{\mathbf{x}}}_k \to 0$ if and only if (A,H) is detectable which is defined in the sequel.

- (1). (A, H) is observable if the poles of (A LH) can be arbitrarily assigned by appropriate choice of the output injection matrix L.
- (2). (A, H) is detectable if (A LH) can be made asymptotically stable by some matrix L. (If (A, H) is observable, then the pair is detectable; but the reverse is not necessarily true.)
- (3). (A, B) is controllable (reachable) if the poles of (A-BK) can be arbitrarily assigned by appropriate choice of the feedback matrix K.
- (4). (A, B) is stabilizable if (A-BK) can be made asymptotically stable by some matrix K.

 (If (A, B) is controllable, then (A, B) is stabilizable; but the reverse is not necessarily true.)

 Estimation Theory (10_2)

Observability and Controllability (continued)

Theorem (Observability): The *n*-state discrete linear time-invariant system

$$\underline{x}_k = A\underline{x}_{k-1} + B\underline{u}_{k-1}$$
$$y_k = H\underline{x}_k$$

has the observability matrix Q defined by

$$Q = \begin{bmatrix} H \\ HA \\ \vdots \\ HA^{n-1} \end{bmatrix}.$$

The system is observable if and only if $\rho(Q) = n$.

Theorem (Controllability): The n-state discrete linear time-invariant system $\underline{x}_k = A\underline{x}_{k-1} + B\underline{u}_{k-1}$ has the controllability matrix P defined by

$$P = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}.$$

The system is controllable if and only if $\rho(P) = n$.

Chapter 2

Probability Theory

Probability

Probability Space

$$\mathfrak{P} = \{S, A, P\}$$

 $S = \text{sample space, e.g., } S = \{f_1, f_2, f_3, f_4, f_5, f_6\}$

 $A = \text{event space}, \ A \subset S, \ A = \{\phi, \{odd\}, \{even\}, S\}$

 $P = \text{probability assigned to events, e.g., } P\big[\phi\big] = 0, P\big[\{odd\}\big] = P\left[\{even\}\right] = 1/2, P\big[S\big] = 1/2$

Probability Axioms

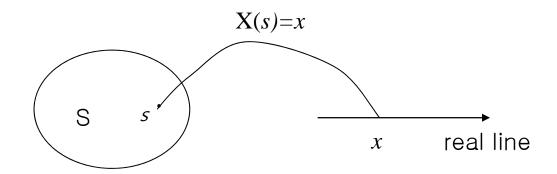
Axiom 1 For any event $A, P[A] \ge 0$.

Axiom 2 P[S] = 1.

Axiom 3 For any countable collection A_1, A_2, \cdots of mutually exclusive events

$$P[A_1 \cup A_2 \cup \cdots] = P[A_1] + P[A_2] + \cdots$$

Random Variables



Probability Distribution Function (PDF)

$$F_X(x) = P(X \le x)$$

$$F_{X}(x) \in [0,1]$$

$$F_X(-\infty) = 0$$

$$F_X(\infty) = 1$$

$$F_X(a) \le F_X(b)$$
 if $a \le b$

$$P(a < X \le b) = F_X(b) - F_X(a)$$

$$F_X(x \mid A) = P((X \le x) \mid A) = \frac{P(X \le x, A)}{P(A)}$$

Random Variables (continued)

Probability Density Function (pdf):

$$f_X(x) = \frac{dF_X(x)}{dx}$$

$$F_X(x) = \int_{-\infty}^x f_X(z) dz$$

$$f_X(x) \ge 0$$

$$\int_{-\infty}^\infty f_X(x) dx = 1$$

$$P(a < X \le b) = \int_a^b f_X(x) dx$$

$$f_X(x \mid A) = \frac{dF_X(x \mid A)}{dx}$$

Expected Value:

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

Variance:

$$\sigma_X^2 = E\left[\left(X - \bar{X}\right)^2\right] = \int_{-\infty}^{\infty} \left(x - \bar{X}\right)^2 f_X(x) dx$$

Random Variables (continued)

Uniform Random Variable:

$$f_X(x) = \frac{1}{b-a} \quad a \le x \le b$$

$$E[X] = \frac{a+b}{2}; \quad VAR[X] = \frac{(b-a)^2}{12}$$

Gaussian (Normal) Random Variable:

$$f_X(x) = \frac{e^{-(x-\bar{X})^2/2\sigma_X^2}}{\sqrt{2\pi}\sigma_X} - \infty < x < \infty, \, \sigma_X > 0$$

$$E[X] = \bar{X}; \quad VAR[X] = \sigma_X^2$$

Multiple Random Variables

Joint Probability Distribution Function:

$$F_{XY}(x,y) = P(X \le x, Y \le y); \quad F(x,y) \in [0,1]$$

$$F(x,-\infty) = F(-\infty,y) = 0; \quad F(\infty,\infty) = 1$$

$$F(a,c) \le F(b,d) \text{ if } a \le b \text{ and } c \le d$$

$$P(a < x \le b, c < y \le d) = F(b,d) + F(a,c) - F(a,d) - F(b,c)$$

$$F(x,\infty) = F(x); F(\infty,y) = F(y)$$

Joint Probability Density Function:

$$f_{XY}(x,y) = \frac{\partial^2 F_{XY}(x,y)}{\partial x \partial y}$$

$$F(x,y) = \int_{-\infty}^x \int_{-\infty}^y f(z_1, z_2) dz_1 dz_2$$

$$f(x,y) \ge 0; \quad \int_{-\infty}^\infty \int_{-\infty}^\infty f(x,y) dx dy = 1$$

$$P(a < x \le b, c < y \le d) = \int_c^d \int_a^b f(x,y) dx dy$$

$$f(x) = \int_{-\infty}^\infty f(x,y) dy; \quad f(y) = \int_{-\infty}^\infty f(x,y) dx$$

Multiple Random Variables (continued)

Correlation Matrix:

$$R_{\underline{X}\underline{Y}}(\underline{x},\underline{y}) = E(\underline{X}\underline{Y}^T) = egin{bmatrix} E(X_1Y_1) & \cdots & E(X_1Y_m) \ dots & dots \ E(X_1Y_1) & \cdots & E(X_nY_m) \end{bmatrix}$$

Covariance Matrix:

$$C_{\underline{X}\underline{Y}}(\underline{x},\underline{y}) = E\Big[\Big(\underline{X} - \overline{\underline{X}}\Big) \Big(\underline{Y} - \overline{\underline{Y}}\Big)^{\! {\mathrm{\scriptscriptstyle T}}} \Big] = E\Big(\underline{X}\underline{Y}^{\! {\mathrm{\scriptscriptstyle T}}}\Big) - \underline{\overline{X}}\, \underline{\overline{Y}}^{\! {\mathrm{\scriptscriptstyle T}}}$$

Gaussian Random Vector:

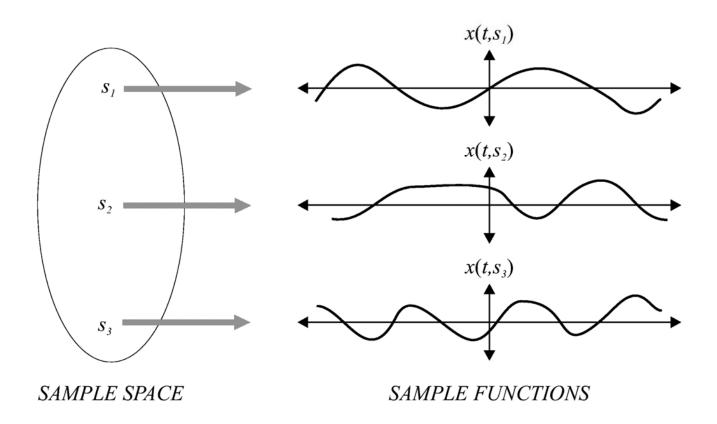
$$f_{\underline{X}}(\underline{x}) = \frac{1}{(2\pi)^{n/2} \left|C_X\right|^{1/2}} \exp\left[-\frac{1}{2} \left(\underline{X} - \overline{\underline{X}}\right)^T C_{\underline{X}}^{-1} \left(\underline{X} - \overline{\underline{X}}\right)\right]$$

Statistical Independence:

$$\begin{split} &P(X \leq x, Y \leq y) = P(X \leq x) P(Y \leq y) \\ &F_{XY}(x,y) = F_X(x) F_Y(y) \\ &f_{XY}(x,y) = f_X(x) f_Y(y) \\ &R_{XY} = E(XY) = E(X) E(Y) \quad \text{(uncorrelatedness)} \end{split}$$

Stochastic Processes

Conceptual Representation of Stochastic Process



- (1) Ensemble Average
- (2) Time Average

Stochastic Processes (continued)

$$X(t,s), t \in \mathbb{R}^1, s \in S$$

- (1) t, s =fixed X =a single number (an outcome of an experiment)
- (2) t = variable X = a time function
- (3) t =fixed X =a random variable
 - s = variable

s = fixed

- (4) t = variable X = a random process (a family of time functions)
 - s = variable

Stochastic Processes (continued)

Stationary Process:

A stochastic process X(t) is stationary if and only if for all sets of time instants t_1, \ldots, t_m , and any time difference τ ,

$$f_{X(t_1),...,X(t_m)}(x_1,...,x_m) = f_{X(t_1+\tau),...,X(t_m+\tau)}(x_1,...,x_m).$$

A random sequence X_n is stationary if and only if for any set of integer time instants n_1, \ldots, n_m , and integer time difference k,

$$f_{X_{n_1},...,X_{n_m}}(x_1,...,x_m)=f_{X_{n_1+k},...,X_{n_m+k}}(x_1,...,x_m).$$

Stochastic Processes (continued)

Wide-Sense Stationary (WSS):

X(t) is a wide sense stationary stochastic process if and only if for all t,

$$E[X(t)] = \mu_X$$
, and $R_X(t, \tau) = R_X(0, \tau) = R_X(\tau)$.

 X_n is a wide sense stationary random sequence if and only if for all n,

$$E[X_n] = \mu_X$$
, and $R_X[n, k] = R_X[0, k] = R_X[k]$.

Properties of WSS:

$$R_X(0) = E[X^2(t)]$$

$$R_{X}(-\tau) = R_{X}(\tau)$$

$$|R_{X}(\tau)| \le R_{X}(0)$$

White Noise and Colored Noise

Power Spectrum:

$$egin{aligned} S_{X}(\omega) &= \int_{-\infty}^{\infty} R_{X}(au) e^{-j\omega au} \ d au \ R_{X}(au) &= rac{1}{2\pi} \int_{-\infty}^{\infty} S_{X}(\omega) e^{j\omega au} \ d\omega \end{aligned}$$

White Noise:

$$S_X(\omega) = R_X(0)$$
 for all ω
 $R_X(\tau) = R_X(0)\delta(\tau)$