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Introduction

Problem: Find the best estimate £ from the measurements of the form

z2=x+w

where w is a random process.

(1). The first measurement: z = z () + w
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FIG. 1.4 Conditional density of position based on measured value z,.
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Introduction (continued)

(2). The second measurement: z,, t, > t,

FIG. 1.5 Conditional density of position based on measurement z; alone.
2 2 2 2 2 2
U= [0'22 /(0'Zl +o, )]Z1 + [0'21 /(0'Zl +o, )]z2

1/c% = (1/0212)+ (1/0'222)

X(t,)=p= [0'222 /(0'212 + 0'222)121 + [0'212 /(0'212 + 0'222)122

=7, + [0212 /(6212 + 0222)](22 ~7,)

=z(t,)+ K (tQ)[ZQ — :E(tl)}:Predictor + Corrector

ze(tz): ze(tl)_ K(tz )ze(tl)
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Introduction (continued)
(3). The third measurement: z, = z(,) + w(t,); % =u + w
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x(t2) (1)
FIG. 1.7 Propagation of conditional probability density.

Bty ) =2(t) +ult, — 1)

O-xz(tS_): O-xz(t2)+ O-WZ(tS _tZ)

As 0, — 00,07 (t;)— o0 and K(f,)=1.
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Chapter 1

Linear Systems Theory



Matrix Algebra

(1). Matrix Multiplication
Suppose that A is an n X r matrix and B is an r X p matrix. Then the product of

A and B is written as C' = AB. Each element in the matrix product C is computed as

k=1

In general, AB = BA. (no commutability)

(2). Vector Products

-
Inner Product: 2"z = [xl xn] Cl=a) 4+
xn
T, ) T,
Outer Product: zz" = : [xl xnl =|: . (1.14)
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Matrix Algebra (continued)

(3). Rank and Nonsingularity of A = (n xn)
e A is nonsingular.
o A exists.
e The rank of A is equal to n.
e The rows of A are linearly independent.
e The columns of A are linearly independent.
o |4 =0.
e Ax = b has a unique solution z for all b.

e ( is not an eigenvalue of A.

(4). Trace of a square matrix: Tr(A) = ZA..

%
1

Note that Tr(AB) = Tr(BA),
(AB)' = B"A",
(AB) ' =B 'A%,
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Matrix Algebra (continued)

(5). Definiteness of a Symmetric n x n matrix A

A is:

e Positive definite if 2" Az > 0 for all nonzero n x1 vectors z. This is equivalent
to saying that all of the eigenvalues of A are oisutuve reak numbers. If A is
positive definite, then is also positive definite.

e Positive semidefinite if 2" Az > 0.

e Negative definite if " Az < 0.

e Negative semidefinite if 2" Az < 0.

e Indefinite if it does not fit into any of the above four caregories.

(6). Matrix Inversion Lemma
A B
C

Suppose we have the partitioned matrix where A and D are invertible

square matrices, and the B and C matrices may or may not be square. Then,

(A-BD7C) =A"'+A'B(D-CA'B) CA™" (1.38)
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Matrix Calculus

(1) of(z) _|of Of
- Oz ox, Oz, |
-(9f/(9A11---(9f/(9A1n |
(2)8](;—;14): : R ; Az(Aij),z:l, ,m, j=1-.n
0 | 0A,, -0 | 04,
o(z" o(z"
(3). %@Q :[8(@)/8:@---8(2@)/8%}Z[yl---yn]=f; %f) =z
T T
(4).MZJAT + 2 A 0(z"Az) — 2, Aif A= A",
ox ox
T
(5).%@)214;@:14.
x Ox
T T
6). OTr(ABA >:ABT+AB; OTr(ABA ):2AB, if B=B".



Continuous, Deterministic Linear Systems




Nonlinear Systems

Models
z = f(z,u,w)
Linearized Models Employing the Taylor Series Expansion
. Of| . 1Of| ., 10f] _,
— _J _ 4+ + ...
f(z) f(z)JragijZ!@ff 3!6@3f
. 0 .0
@)+ |5 g b ) +
oz, oz, _
1(. 0 o | _
— |7 __|__|_ r o — _|_
2![$1 oz, K &fzsz o)
1(. 0 o1 |
_~_+...+~— _|_
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Nonlinear Systems (continued)

1 1

f(@zf(i)+Dif+aD§f+§D§f+...
%f@ﬁ+%i=f@}+?i@:f@)
Llz

Applying Eq. (1.90) into Eq. (1.83)

= AZ+ Bi+ Lw. (Say, w = 0)

Similarly,

. Oh| .  Oh| .

Yy=—7| 2+t 2

- Oz, ov|-
= Cz + Dv

fo:[Z@%
+ AZ

ofl

+aw_(fc_v )

(1.93)

(1.94)




Simulation/Trapezoidal Integration

We want to numerically solve the state equation, & = f(z,u,t).

—x —i—ftff ), u(t),t

Z t),u(t),t] dt where t,=kT for k =0,---,

For some n € [0,L — 1], we can write z(f,) and x(th) as

=a(t)+ 3 [ e, d

Land T =t,/L.

(1.110)



Simulation/Trapezoidal Integration (continued)

Approximate the integral in Eq. (1.110) as a trapezoid

Fle(ton)sultn)stn) = flz(t,)u(t).t)
T

f(xauvt) ~ f(x(tn),U<tn>,tn)—|— ](t_tn> for ¢ € [tn’tnﬂ}

f<x<tn+1)’u(tn+1>’tn+1) B f<$<tn>’u<tn>,tn)](t - tn)} dt

T

x(tn+1>%x(tn)+j:"“{f(x(tn),u(tn),tn)+

::U(t )+ f(x(tn)7u<tn)vtn)+f(37(tn+1)7u(tn+1>vtn+1) T
" 2
— x(tn)+%(f(a:(tn),u(tn),tn)T +f(x(tn+1),u(th),th)T) (1.114)
Defining
= flz(t)ult,).t)T
= fla(tia)ultin) )T
R~ (x ¢ )—i—Axl—l— u( nH),th)T
q. (1.114) may be expressed by
w(t,) ~ x(tn)—l—%(Awl Lag,). (1.115)

Estimation Theory (10_2) 14



Simulation/Trapezoidal Integration (continued)

Trapezoidal Integration Algorithm

Assume that z(¢,) is given
fort=t,:T:t, —T
sz, = f(z(t),u(t),t)T
Az, = f(z(t) +oz,+u(t+T),t+T)T,
1
w(t+T)=z(t) + §(A$1 +Az,)

end

Estimation Theory (10_2)
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Observability and Controllability

Consider the following time-invariant system and the deterministic asymptotic
estimation
X1 — Ax, + Bu,
z, = Hx, (1.157)
where state x, € R", control input u, € R, output z, € R”;
and A, B, and H are known constant matrices of appropriate dimension.
All variables are deterministic, so that if initial state x, is known then Eq. (1.157)
can be solved exactly for x,, z, for £ > 0.
Deterministic asymptotic estimation problem: Design an estimator
whose output X, converges with k to the actual state x, of Eq. (1.157)
when the initial state x, is unknown, but u, and z, are given exactly.
An estimator of observer which solves this problem has the form
X, = Ax, + L(Zk — HXZ«:) + By,
as shown in Fig. 2.1-1.



Observability and Controllability (continued)

DETERMINISTIC STATE OBSERVER

— — — — — — — — o— — —

| " | measur emen |
-1 k
Uk —— B 5 - Y | By
| |
| |
I 3 e I
I PLANT !
~
———————— x
A 3 estimate ! ._E
I Xy |
- B g > H |
| 2 |
| k |
| A |
| |
I ‘residual i A
l x 5 OBSERUER '
b = s aes B ma bl ase T

FIGURE 2.1-1 State observer.
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Observability and Controllability (continued)

To Choose L in Eq. (1.157) so that the estimation error X, = x, — X, goes to zero with k

for all x,, it is necessary to examine the dynamics of X,. Write
X = X — Xy
= Ax, + Bu, — [Agk + L(z, — HX, )+ ng]
= A(x, — %) — L(Hx, — H};)
— (A— LH)g,
It is now apparent that in order that X, go to zero with k for any x,,
observer gain L must be selected so that (A — LH) is stable. L can be chosen
so that X, — 0 if and only if (A4, H) is detectable which is defined in the sequel.
(1). (A, H) is observable if the poles of (A — LH) can be arbitrarily assigned
by appropriate choice of the output injection matrix L.
(2). (A, H) is detectable if (A — LH) can be made asymptotically stable by some matrix L.
(If (A, H) is observable, then the pair is detectable; but the reverse is not necessarily true.)
(3). (A, B) is controllable (reachable) if the poles of (A-BK) can be arbitrarily assigned by
appropriate choice of the feedback matrix K.
(4). (A, B) is stabilizable if (A-BK) can be made asymptotically stable by some matrix K.

(If (A, B) is controllable, then (A, B) is stabilizable; but the reverse is not necessarily true.)
Estimation Theory (10_2) 18



Observability and Controllability (continued)

Theorem (Observability): The n-state discrete linear time-invariant system

z, = Az, + Bu,_,

Y = Hz,
has the observability matrix () defined by
H
HA
Q=
HA™!

The system is observable if and only if p(Q) = n.

Theorem (Controllability): The n-state discrete linear time-invariant system

z, = Az, | + Bu, , has the controllability matrix P defined by

P:[B AB ... A"—lB].

The system is controllable if and only if p(P) = n.
Estimation Theory (10_2) 19



Chapter 2

Probability Theory



Probability

Probability Space

B ={S,A4P}

S = sample space, e.g., S = {]‘1,]”2,]%,]2,]%,]“6}

A = event space, A C S, A= {¢,{odd},{even},S}

P = probability assigned to events, e.g., P[¢] =0, P[{odd}] = P[{even}]=1/2, P[S]|=1
Probability Axioms

Axiom 1 For any event A, P[A] > 0.

Axiom 2 P[S]=1.

Axiom 3 For any countable collection A, A,,--- of

mutually exclusive events

P[AUAU---|=P[A]+ P[A]+

Estimation Theory (10_2) 21



Random Variables

X(s)=x

»

X real line

Probability Distribution Function (PDF)
Fy(@) = P(X <2)
Fy(z) €[0.1]

(—00) =0

P(X <uz,A)
P(A)

Estimation Theory (10_2)
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Random Variables (continued)

Probability Density Function (pdf):

() = Pxl2)

dx
= [ K@)

fe(z) >0

fOOfXa;dx:

Pla< X <b)= f&

dx
Expected Value:

BX)= [ Z of, (1) dz

Variance:

ol = E[(X—)_(f] = [ (s

— )_()2 fi(z)dx

Estimation Theory (10_2)
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Random Variables (continued)

Uniform Random Variable:

@)= —— a<z<h
b—a

E[X] = a;b; VAR[X] =

(b—a)
12
Gaussian (Normal) Random Variable:

6—($—)?>2 /20%

fi(z) = o —00 < x <000, >0
X

E[X]=X; VAR[X]=o}

Estimation Theory (10_2)
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Multiple Random Variables

Joint Probability Distribution Function:

Fo(y) = P(X <Y <y); Flay) €01

F(x,—0) = F(—o00,y) = 0; F(oco,00) =1

F(a,c) < F(b,d) if a <b and ¢ <d
Pla<z<bec<y<d)= F(bd)+ F(a,c)— F(a,d)— F(b,c)
F(z,00) = F(z); F(oo,y) = F(y)

Joint Probability Density Function:

82FXY (z,y)
0x0y

F(x,y) = j:;j:yoof(zl,ZQ)dzleQ
fay) 20 [ [ fley)dedy =1
P(a<x§b,c<yéd):j;dj;bf(x,y)dxdy

f@) = [ fepdy fo)= [ fayde

Estimation Theory (10_2)
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Multiple Random Variables (continued)

Correlation Matrix:

B(XY) - E(XY,)
Ryy(a,y) = E(XY")=| .

Covariance Matrix:

Cyylzy) = B|(X - X)(v -¥) | = B(xY")- X7
Gaussian Random Vector:

1 1 T _
fe(z) = (27r)”/2‘0)_(‘1/2 exp —5(_ _ _) Y ()_(—)_Q]

Statistical Independence:

P(X <aY <y)=PX <z)P(Y <y
Fyy(x,y) = Fy(2)F, (y)

oy (@,y) = fy(2) £ (y)

R,y = E(XY)= E(X)E(Y) (uncorrelatedness)
Estimation Theory (10_2)
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Stochastic Processes

Conceptual Representation of Stochastic Process

S ) — mﬂmﬂmﬁ&\\%\\?&%

S

b \%.m%\% R

s, S S
3 g

SAMPLE SPACE

A.?
— DN LN
v

SAMPLE FUNCTIONS

(1) Ensemble Average
(2) Time Average

Estimation Theory (10_2)

27



Stochastic Processes (continued)

X(t,s),teR', seS

(1) t,s = fixed X = a single number (an outcome of an experiment)
(2) t = variable X = atime function
s =fixed
(3) t =fixed X = arandom variable
s =variable
(4) t = variable X = arandom process (a family of time functions)

s =variable



Stochastic Processes (continued)

Stationary Process:

A stochastic process X (t) is stationary if and only if for all sets of time
instants t1, . . ., tym, and any time difference t,

IX(t), o X (ty) X1s o+ o5 Xm) = [X(t147),... X (tyy+7) X1s - > Xm) -

A random sequence X, is stationary if and only if for any set of integer time
instantsny, ..., ny, and integer time difference k,

FXn oo Xy K1s o Xm) = FXop st Xkt K1+ o5 Xm) -

Estimation Theory (10_2) 29



Stochastic Processes (continued)

Wide-Sense Stationary (WSS):
X (1) 1s a wide sense stationary stochastic process if and only if for all t,

E[X(@)]=unx, and Rx(t,t)=Rx(0,7)= Rx(7).

X, IS a wide sense stationary random sequence if and only if for all n,
E[Xp]l=nx, and Rxl[n,k]=Rx]|0,k]= Ry [k].

Properties of WSS:
R, (0) = E|X*(¢t)
Ry(—7) = Ry(7)

IRy ()| < Ry (0)

Estimation Theory (10_2) 30



White Noise and Colored Noise

Power Spectrum:

Sy (w) = f:} R, (T)e " dr

1 > jWT
R, (1) :EI_OOSX(M)QJ dw
White Noise:
Sy(w) = R;(0) forall w
Ry (1) = Ry (0)8(7)

Estimation Theory (10_2)
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