Chapter 4

Optimal Linear Filtering



4.1 Discrete-Time Kalman Filter Formulation

The Kalman filter is a recursive, unbiased, minimum error variance estimator.
Given the system and measurement descriptions
z, = _z,  +w, k=1 (4.1-1)
z, = Huzy +u,k=1,- (4.1-2)
where w, = zero mean, white Gaussian noise with covariance @),
v, = zero mean, white Gaussian noise with covariance R,
E{w.v,"} = 0,E{zgyuw!'} = 0,E {z,0! } = 0,5, j
a recursive estimator would have the form
2, = Kj2,(-) + K, 2, (4.1-3)
Define the relations
B(+) = 2+ B(+) (4.1-4)
(=) =z, + ().



Discrete-Time Kalman Filter Formulation (continued)
From Eqgs. (4.1-2), (4.1-3), (4.1-4), we obtain

B () =z, + 2,(+) = —z, + K;2,(-) + K2,
= -z, + Ki|z, + £,(5)|+ K, [H,z, +v,] (4.1-5)
= |K| + K, H, — 1|z, + K[Z,(—) + K,v,.
For the filter to be an unviased estimator,

E{z,(-)}=E{g(H}=0

That is,
K =1—-K.H,. (4.1-6)
Insert Eq. (4.1-6) to Eq. (4.1-3) to obtain,
z.(+)=(I—-KH)z,(-)+ K,z (4.1-7)
or
2 (+) = 2,() + K |z, — Hy2,(-)) (4.1-8)

The corresponding estimation error is, from Eqs. (4.1-2), (4.1-4), (4.1-8)
I(+)=2z,(+) —z, = (] - Kka)ik(_) + K, [Hk% + Qk] — Ly
=i(bon Ky )@ 6-) + K, v,. (4.1-9)



Discrete-Time Kalman Filter Formulation (continued)

Error Covariance Update

From the definition of the error covariance

P,(+) = E[Z,(H)Z,(+)"] (4.1-10)
Eq. (5.1-9) gives

B(+) = B{(I - KH)8,() + Ky |[(T - K,H)5,() + Koo ]}

- E{(I - Kkﬂk)@k(_) [@k(_)T(I _ Kka)T + QkTKkT] + K, v, [ik(_)T (I N Kka>T + QkTKkT

|

(4.1-11)

By definition,

B|z,(-)Z()"| = B(-) (4.1-12)

E[QkaT] =R,
and, with an assumption of measurement errors being uncorrelated,

E@k(‘)%f] — E[Qkik(_)T] = 0. (4.1-13)
Thus,

T

P+ =(I-KH)P(-)(I-KH K.RK'. (4.1-14
() =( ) k(Est)irgwation Thkeorlf/)(09ig) LA ) 4



Discrete-Time Kalman Filter Formulation (continued)

Optimum Choice of K,
Set up the following objective function to find an estimator minimizing
a norm of the estimation error vector, viz.,

J, = Bl&()"£.(+)] = trace[B(+)]. (4.1-15)
oJ,

k

0

To find an optimum K, let

SIJ( ’; -~ 8% tr|(I = K.H,)B(-)(I - K,H,) + KRK,"
0
0K,
= -P(-)H,' —P(-)'H," +2K HP(—)H, +2K,R,
= —2(I - K,H,)P,(—)H,' +2K,R, =0.

Solving for K, gives

[tTPk (—)— trp, (_)HkTKkT - tTKkaPk(_) + trK, H, B, (_)HkTKkT + tTKkRkKkT]

K, = B(-)H,[HP(-)H +R] . (4.1-16)
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Discrete-Time Kalman Filter Formulation (continued)
8*J,

For sufficiency, examine

0°J,
v

Substitute Eq. (4.1-16) into Eq. (4.1-14) and rearrange

- =2H,B(-)"H," +2R, > 0.

P(+)=B(-) - B(-)H, [HP(-)H, +R,| HP(-)
=[I - K,H,]P,(-). (4.1-17)
Applied are:
r(A+ B)=trA+trB
r(AB) = tr(BA)

ai r(ABA")|=2AB

Al
0 .
——[ir(BA) =

i (BAT)] B

~ -

0
PT

/'\
\_/
;U
~
-



Discrete-Time Kalman Filter Formulation (continued)

State and Error Covariance Propagation

Repeating the definitions
B, =i —x; P=E|L,E,]
Propagating the estimated state
z, =, 7, . (4.1-18)
Check if the estimation error is still unbiased
Ty =P T, —w,
Elz,|=®, E|Z, |- Elw,_,]=0 (4.1-19)

Now develop the error covariance propagation

E[Zk@kT] =F {(q)k—likl - wk71><q)k—lik71 - wk1>T}

=F {Cpk:—1ik—1@k—1T(pk—1T - q)k—lik—lwk—qu)k—lT - wk—lik—quDk—lT + wk—1wk—1T} (4.1-20)

E [@k—lwk—fr] =k {(I)k—Zik—ka—lT} - E{wk—ka—fp} =---=0.
Eq. (4.1-20) can be written
B, = (I)k—1Pk—1CI)k—1T + @ (4-1‘21)
Express Eqgs. (4.1-18) and (4.1-21) using the sign, (+) and (-)
ik(_> - (I)/Hik—l("") (4-1-22)
Pk(_) - q)k—lpk—1<+)q)k—1T + &y (4-1‘23)
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Discrete-Time Kalman Filter Timing Diagram

H k-11 Rk—l H R
Xk_l(_) Xk—1(+) Xk (_) Xk ("‘)
(Dk—l’Qk—l ch’Qk
—> —>
P ()| Pea(+) P.(5)|P.(+)
tk—l tk

time—



Summary of Discrete-Time Kalman Filter Equations

System Model
Measurement Model

Xy :(Dk_1Xk—1 T W, 4, W, ~ N(Q,Qk)
Z =H X +V,, vy ~ N(O,Ry)

Initial Conditions
Other Assumptions

E[x(0)] = o, E[(X(0) — %, )(x(0) — X,) " 1= P,

E[w,v;1=0 forallj, k

State Estimate Extrapolation
Error Covariance Extrapolation

X () =D, X, (+)

P(-)= q)k—lpk—1(+)q)k—1T + Q4

State Estimate Update
Error Covariance Update
Kalman Gain Matrix

X (#F)=X)+ Kk[Zk - Hka(_)]
PH)=(1-KH )P
Ky = Pk(_)HkT [HkPk(_)HkT + er




Example: Ship Navigational Fixes

Example 4.1-1 (Ship Navigational Fixes)
dyy = dy + 5,

Spp1 = S T Wy

where,
d, = easterly position of the ship at hour
s, = easterly velocity of the ship at hour

w, = noise from wind and waves.

d,
Define z, = , then,
Sk
1 1 0
xk-‘rl O 1 xk + 1 wk
where
B 0112 O
1, ~ N (Z,,P,) =N wlly sl @™ N(0,Q)= N(0,1).
Suppose

z, = [1 O}xk +uv, v, ~N(0,2)
2z, =9, 2, =19.5, z, = 29.
Find z, and B, for k£ =1,2,3.

Run Ex4 1 1.m
Estimation Theory (09_2)
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Example: Ship Navigational Fixes (continued)

Position estimates and error bounds

35
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Example: Ship Navigational Fixes (continued)

Velocity estimates and error bounds

12 . . . . .
e e -
do T :
10.5} -
10 \/ .
9.5 -
9 -
8.5r o ————
ol e |

7.5 : ; ' ' '




Example: Ship Navigational Fixes (continued)

Velocity error variances

3.5

1.5




Discrete-Time Kalman Filter Equivalent Form

Equivalent Form

This section presents an equivalent form of the Kalman filter. This form is useful
in the derivation of the Kalman smoother. It provides alternative expressions

for computing x, (+) in Eq. (4.1-8) and P,(+) in Eq. (4.1-17).

Lemma 4.1 (Matrix Inversion Lemma) Let A, be a nonsingular p X p matrix,

A, and A, be pxq and g X p matrices, respectively, and A,, be a nonsingular

g X ¢ matrix. Then,
(A7 + ApApAy) = Ay — AAL [AA A, + A AAL (41-24)
First we find a new expression for x, (+). In Eq. (4.1-7) we multiply by P,(—)
and P,"'(—) to obtain
x,(+) =1 - KH,]P.(-)F, ' (-)x,(-) + K,z
= KR ()% + Kz,
= B(H|R(x() + B (DK (4.1-25)



Discrete-Time Kalman Filter Equivalent Form (continued)

For P (+), apply the matrix inversion lemma to Eq. (4.1-17)
P () = BNE) + B (SB(H [-HE,(-)B, ()R ()H
L HP,()H” + R, "HB(-)P, ()
=P '(-)+H'R'H (4.1-26)
Next we multiply by K, and substitute for K, to obtain
P (0K, =[5 (-)+ H' RH|R(-)H [HP,(-)H" + R,
= H"[I + R 'HF(-)H"|[HF(-)H" +R,]
= H'R 'R, + HP,(—)H"||[HF,(-)H" +R]
=H'R .
Therefore, Eq. (4.1-25) can be written as
x,(+) = B,(+)| P ()x.() + H'R, 'z . (4.1-27)



Discrete-Time Kalman Filter Equivalent Form (continued)

Next we find an equivalent form for P, (+). Rewrite Eq. (4.1-17)
—1
Pk("") — Pk(_) - Pk:(_>Hk:T [Hkpk(_)HkT + Rk:] HkPk<_)
The right-hand side of this equation fits the form of the right-hand
side of Eq. (4.1-24). Then we conclude
B(+) =[P (-)+H R 'H] . (4.1-28)
Eqs. (4.1-22), (4.1-23), (4.1-27), and (4.1-28) represent an alternative

form of the Kalman filter.



4.2 Discretization of Continuous System

Consider the following continuous system
©(t) = Ax(t) + Bu(t) + Gw(t) (4.2-1)
2(t) = Hx(t) + v(t). (4.2-2)
Let 2(0) ~ (z,,B), w(t) ~ (0,Q), v(t) ~ (0,R), where {w(t)} and {v(t)} are
white and uncorrelated with each other and with x(0).

The solution to Eq. (4.2-1) is

t t
2(t) = e (e, ) + f "7 Bu(r)dr + f I Gu(T)dT (4.2-3)
to to
Let t, =kT,t = (k+1)T and define z, = z(kT). Then,
(k+1)T (k4+1)T
T, =e "z, + f eI By (T dr + f VTG (Y dr. (4.2-4)

kT kT



Discretization of Continuous System (continued)

Let
u, = u(kT)

(k)T
w, = f eAKkH)T*T]G’w(T)dT
kT
Eq. (4.2-4) becomes,
(h+1)T
T, =Tz, + f eAKkH)T*T]BdT-uk + w,
kT

Change variables twice, A =7 — kT and then 7 =T — \. For A\ =7 — kT,
ET <7<(k+1DT = 0<A<T and dr = d\ Therefore, the above equation may be written
T
2., ="z, + fo """ NBdru, + w,.

Fort=T—-X\0<A<T = T2>72>0and d\=—dr. The above equation can now be written

T
1., ="z, —l—feATBdT.uk +w, = A’x, + B'u, + w, (4.2-5)
0
with
22
A’ :eAT :I—{—AT_l_AQj; + ...
T T 2 9 2 2 o3
BS:feATBdT:f[I—i—AT—i—AT +o|Bar = pr+ ABT L ABT | (406)
g g 2! 2 3!
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Discretization of Continuous System (continued)

Find the covariance )’
Q= E{wkwkT} = ff M aE {w(7'>w(U)T}GTGAT[(k+1)T_J]deO'
kT

(kDT 0 . T T

_ eA[(k+1)T—T}GQGTBAT[(Hl)T  — f eATGQGTeA dr
kKT 0

T

2 2
:j;TlI—}—AT—I—(AQT') —|—---1GQGT [—FAT—F%—F'“ dr
AGQG" +GQG A" )T?
:GQGTT+< e < ) + (4.2-7)

2!
Discretizing the measurement equation is easy since it has no dynamics:

2, = Hr, + v,
From the following relations,
E{vkva} = R6(k); E {v(t)v(T)T} = Ré(t—7); 6(t)=1lim, ,(1/T)II(¢t/T)
1 1

17 __Stg_
T(t) = 2 2.

0, otherwise
In the limit, R(t) = lim, ,(R°T)(1/T)II(¢t/T) or
R
R =—. 4.2-8
= (129
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Example: a — 3 tracker

Consider the following range tracker,

P(t) = w,

Z2=1r4v (4.2-9)
where v is the tracking error and v ~ (0,0,°). And w, is the disturbance accelerations
of target. Suppose the disturbance accelerations are independent and uniformly

distributed between = a. Then their variances are,

2

2w} = [w?f,dw, = ["w} dv, =

2a 3
Let z, = r(t), z, = 7(t). Eq. (4.2-9) can be rewritten,
0 1
T = 0 ol® + w
2 = [1 o]x +u (4.2-10)
0 0

where z(0) ~ (z,, P,), w ~ (0,Q), Q =

0 a’/3
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Example: o — 3 tracker (continued)

Suppose measurements are made at intervals of T" units. Then the discretized system

becomes,
1 T
A =e'"=T+AT = . (42 =0)
0 1
AQ+ QAT  A0A" 2| T° /3 T2
Qs — QT _|_ ( ) _I_ Q T3 — a’_ )
3 3|7°/2 T
RR=R/T=0"/T (4.2-11)
The discretized model of the oo — (3 tracker is,
1 T
Lpp1 = 0 1 T, + w,
2, = [1 O} T, + v, (4.2-12)

where w, ~ (0,Q°) and v, = (0,0,> /T).



4.3 Continuous-Time Kalman Filter Formulation

Given the system and Measurement description
T = Fr+ Guw (4.3-1)
z=Hzx +v (4.3-2)

the following equivalences are valid in the limit as ¢, —¢,_, = At — 0

d —I+FAt; Q — GQG'At; R, — % : (4.3-3)

Apply these relations to Eq. (4.1-21)
B.(-)=®,P(+)®," +Q, =1 + FAt|P(+)[I + FAt]" + GQGAt
= P,(+) +[FP,(+) + B(+H)F' + GQG"|At + O(At*)  (4.3-4)
Also apply P,(+)=[I — K,H,|]P,(—) (Eq. (5.1-17)) to the above equation then,

Bo(0)—B) _ ppo T r_ 1 ) _
= = FR() 4 B()F +0QC" — K HF,(-) ~ FK,H.F(-)

— K .H P(—)F" +0(At). (4.3-5)



Continuous-Time Kalman Filter Formulation (continued)

1
Rearrange Eq. (4.1-16) to investigate EKk
1 1

A—th — A—tﬂ(—)ﬂkT[Hkﬂ(—)HkT + Rk]_l

— Pk(_)HkT[Hk‘Pk(_)HkTAt + RkAt]_l
— Pk(_)HkT[Hk‘Pk(_)HkTAt + R]_l'
At the limit, the above equation becomes

1

lim,,, A—th = PH'R™. (4.3-6)
Furthermore,
lim,, , K, =lim,, ,(PH"R'At)=0. (4.3-7)

We obtain the Riccati equation by applying Eqgs. (4.3-6) and (4.3-7) to Eq. (4.3-5)
P=FP+ PF" + GQG" — PH'R'HP. (4.3-8)



Continuous-Time Kalman Filter Formulation (continued)

Now we rewrite Eq. (4.1-8) applying the relation, z,(—) = ®,_,z,_,(+),
7(+) = 2,(=) + K, [z — H,3,(-)]
=&, .z, (+)+ K[z, —HP, 2, (+)]
Applying Eq. (4.3-3) to the above equation gives
T,(+) = (I + FAt)z, (+)+ K, [z, — H(I + FAD)Z, (+)]
=z, ,(+)+ Fz,_ (+H)At+ K |2, — Hz, (+)]— K HFz, (+)At. (4.3-9)
Rearrange Eq. (4.3-9) and take the limit

LD (H) =2 () .. R K R )
lim (H) — 8 )th Fz, (+)+—L|z, — Haz, (+)]— K HFz, (+)|.
At—0 At At—0 At

Applying Egs. (4.3-6) and (4.3-7) to the above equation gives
t = Fz + PH'"R [z — Hi]
— F7 + K[z — Hi). (4.3-10)
Egs. (4.3-8) and (4.3-10) form the continuous-time Kalman filter.




Continuous-Time Kalman Filter Summary

System Model

Measurement Model

X(t) = F(O)x(t) + GOw(t), w(t) ~ N(0,Q(t))
z(t) = H@®)x(t) +v(t), v(t) ~ N(O,R(1))

Initial Conditions

Other Assumptions

E{x(0)} = %,, E{[X(0) - %,1[x(0) = %,]' } = P,

R7Y(t) exists, E{w(t)v' (r)}=0

State Estimate

Error Covariance
Propagation

Kalman Gain Matrix

K(t) = F(OR() + K (t)[z(t) — H (t)R()]
(0) = %,
Pt)=F{)P{t)+PWH)F' (t)+GH)Q1)G' (t) - K{H)RMKT (1)

K@) =P@®)H" t)R(t)
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