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ASIPASIP

• for sufficient flexibility

• for multi-mode applications

• for volume productions

• For new and future applications
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ASIP design flow for engineersg g
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Understanding ApplicationsUnderstanding Applications
• It takes long time to understand a complete• It takes long time to understand a complete 

knowledge system of an application
• ASIP designers are hardware engineers 

rather than application engineerspp g
• It is not trivial that ASIP engineers really 

understand all system design detailsunderstand all system design details 
• ASIP designers only need to understand the 

design cost, including execution behavior, 
code structure, hardware cost, and runtimecode structure, hardware cost, and runtime 
cost – through source code profiling
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Source code profilingSource code profiling

D i f bl l i b d• Design of assembly language is based on source 
code profiling

• Profiling is a technique to estimate the execution 
cost and memory cost of source codecost and memory cost of source code

• Profiling is to analyze the code, expose the codeProfiling is to analyze the code, expose the code 
structure and execution behaviors,

• The purpose of profiling is to understand the 
execution behavior and the code structure.
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Static and dynamic profilingStatic and dynamic profiling

• Static profiling is given by analyzing the 
source code instead of running it
– Control flow graphControl flow graph

• Dynamic profiling is performed by executing 
th d l ti ththe source program and accumulating the 
execution time 
– Through instrumentation
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The result from code profilingThe result from code profiling
• Expose memory accesses execution time required• Expose  memory accesses, execution time, required 

operations, 
E i i f ll li i f f h• Expose opportunities of parallelization for further 
performance enhancement.

• Coverage requirement: capability of running 
different operations

• Performance requirement: computing capacity 
required for certain algorithmsq g

• Profiling result will be the input for architecture 
selection and instruction set designselection and instruction set design
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Architecture selectionArchitecture selection

• Selecting a suitable ASIP architecture for 
the class of applications involves decisions
– selecting function modules,selecting function modules,
– interconnecting the modules, and 

ti th ASIP t th b dd d t– connecting the ASIP to the embedded system 
• DSE  in the architecture level
• or ISA design
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Mapping functions to a HW moduleMapping functions to a HW module
A i i i d i b• A system is partitioned into subsystems or 
functions

• Each functions allocated to a HW module. 
• Modules could be either processors or functional p

circuits. 
– The behaviors of programmable HW modules are p g

described by an assembly language simulator. 
– The behaviors of nonprogrammable HW modules are 

described by HW description languages. 
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HW/SW co-design for an ASIPHW/SW co design for an ASIP
ASIP requirement specification ASIP requirement specification

Early manual partition according to application profiling 

Instruction set 
specification

Processor architecture 
specificationImplement the function as a subroutine

Implement the function as an instruction 

specification 

Assembly instruction set simulator 

specification

Microarchitecture design 

p

Benchmarking of 
instruction set Implement the function as a subroutine 

Implement the function as an instruction 
Design for HW 

acceleration 

Application SW implementation Processor HW implementation 

ASIP Integration, final function verification and performance validation 
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Architecture templates

• Characteristics to be considered
–computing performance

dd i f–addressing performance
–handling control complexitiesg p
–power efficiency
–scalability and how easy to be 

integratedg
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Select architecture based on templatesSelect architecture based on templates
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C l & D iControl & Data processing

• When control complexity cannot be 
separated from data processingseparated from data processing
– VLIW or superscalar architecture  is preferred

• If control complexity can be separated from 
data processing p g
– use a RISC and a SIMD machine

use a RISC with SIMD datapaths– use a RISC with SIMD datapaths
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T k fl hiTask flow architecture

• Direct implementation of control flow graph
S itable hen• Suitable when
– Programming cost is low and 
– Complexity of hardware and system verification 

is manageable  g
• Useful when input data rate is too high to 

employ the conventional architectureemploy the conventional architecture
• Not flexible
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C fi bili d biliConfigurability and programmability 

• Configurability: ability to change system 
functionality by external control inputsfunctionality by external control inputs

• Programmability: ability to execute programs
• Configuration control is relatively stable: 

definitely not changing every cyclesdefinitely not changing every cycles
• Program can change the hardware function at 

levery cycle.
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G k fl hiGenerate a task flow architecture
l k i• Formulate a task stream using CFG

• Balance load of each task stepBalance load of each task step
• Identify dependencies and schedule the task 

h i ith id ti f l d b lchain with considerations of load balance
• Specify function modules and FIFO buffers p y

between function modules in the streaming 
chain expose and specify control signalschain, expose and specify control signals

• Design FSM to generate control signals
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D i i i iDesigning instruction sets
• After the ASIP architecture is selected
• Input: profiling results and architectureInput: profiling results and architecture
• Instruction set design includes

– Arithmetic instructions
– Memory accessesy
– Addressing

Program flow controls– Program flow controls
– I/O instructions
– Accelerator control intructions
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Inputs and requirementsInputs and requirements
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Simplified DSP ASIP design flowSimplified DSP ASIP design flow 
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y g
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T d ff i tTrade off among requirements
 PerformancePerformance  

Acceleration Compiler friendly 

Flexibilityy
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Programming toolchain

• C compilerp
• Assembler
• Linker
• Instruction set simulator (ISS)• Instruction set simulator (ISS)
• Debuggerebugge
• Integrated design environment (IDE)
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Benchmarking andBenchmarking and 
Assembly code profilingAssembly code profiling

• Benchmark: program designed to 
measure the ASIP performance
B h ki h k th t d• Benchmarking: check the cost and 
performance of the kernel codep

• Assembly code profiling: expose the 
i i f h i i dstatistics of the instruction usages and 

the SW cost of the applicationpp
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Relations between Toolchain and 
FW design flow
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Adaptation of the c code to HWAdaptation of the c code to HW

• Adapt to the ASIP hardware features to 
avoid confusing the C compileravoid confusing the C compiler
– Finite-length data type
– Parallel or accelerated instructions

Memory size constraints– Memory size constraints
• A C-HW adapter as a special parserp p p

– Parsing results can be  used to modify the 
C source codeC source code.
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C-HW adapterC HW adapter
• Expose three cases to guide the designers 

– the legacy hardware features of early design 
the opportunities to use compiler features or– the opportunities to use compiler features or 
acceleration features of the selected hardware

– The opportunities for parallel executions and 
memory accessesy

• To reduce the gap between the C code and 
bl dassembly code

– Library functions and special library adaptingLibrary functions and special library adapting 
ASIP features
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FW designFW design
 Firmware: fixed software in the products

Requirements and constraints 

Firmware: fixed software in  the products

Algorithms design / high level model 

Real time 
requirements 

Finite length 
DSP hardware 

Design finite data length FW

Design real-time FW 

Integration 

Hardware 
Freedom meas re Freedom meas reFreedom measure Freedom measure
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FW design

• Behavior modeling
• HW dependent SW

Bit accurate source code– Bit accurate source code
– Memory accurate source code
– Cycle accurate code

• Assembly coding and optimizationy g p
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FW design flow (single application)FW design flow (single application)
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Bit accurate finite precision FW

• adapt the C-code to the finite precision 
hardware  and compare it to the original 
code, for example, a floating-point vesion, p , g p

• Find poor precision or SNR on the results
h i i b• Improve the precision by:

– Inserting quality measurements subroutinesg q y
– Inserting data scaling subroutines
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Firmware in a fixed point processing
 Start

Program booting and parameter initialization

Loading inputs and pre-processing

Main task flow – Executing the kernel part algorithmsg p g

Data quality control flow 

In case needed After measurementDefault 
No 

operation 
Scaling 

flow
Measurement 

flowp flowflow

Post processing, result storing
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Added quality control codesAdded quality control codes
 Main task flow 
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Memory access accurate FWMemory access accurate FW

• Much memory accesses and address computing for the 
accesses are hidden in the C code

• A memory-accurate model is essential for parallel 
processing: parallel memory accessesp g p y

• Early expose the memory cost is essential for
– Execution time estimation
– Memory cost estimation (ASIP design)

• Design for memory subsystem will be discussed in g y y
chapter 16, 18, and 20.
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Real time firmware parametersReal time firmware parameters
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4. Finisihing time In-data packet 3: Computing time 4. Finisihing time 
5. Deadline time 

1 2 4 5
(a) Real-time task without overlapping 

In-data packet In-data packet In-data packet 

time 
3: Computing time 

1&2 4

3: Computing time 

1&2&5 4 5

... ... ... ...

(b) Real-time task with overlapping 

Data streaming: (Input; Computation; Output)



2011-03-07 39

How can we find a best instruction set?How can we find a best instruction set?
• Evaluation of an instruction setEvaluation of an instruction set

– Cycle cost and memory usage
– Suitability for specific applications

• How to evaluate a processorHow to evaluate a processor
– Good assembly instruction set
– Good (open and scalable) architecture
– (Max clock frequency, low power, less area)(Max clock frequency, low power, less area)

• Use benchmarking techniques!
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General benchmarksGeneral benchmarks
Al ith b h k /k l b h k• Algorithm benchmarks/kernel benchmarks

• Normal precision and native word length p g
• What to check:

C l t f k l l d il– Cycle costs of kernels, prologs, and epilogs
– Program/data memory costs

• Algorithms including
– FIR IIR LMS FFT DCT FSMFIR, IIR, LMS, FFT, DCT, FSM
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Third Party BenchmarksThird Party Benchmarks
• BDTI: Berkeley Design Tech Incorporation• BDTI: Berkeley Design Tech Incorporation

– Professional hand written assembly
– http://www.bdti.com

• EEMBC (the EDN Embedded MicroprocessorEEMBC (the EDN Embedded Microprocessor 
Benchmark Consortium), fall into five classes:

i /i d i l ki ffi– automotive/industrial, consumer, networking, office 
automation, and telecommunication

– http://www.eembc.org 
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Microarchitecture designMicroarchitecture design

• The microarchitecture design of an ASIP is to 
specify the hardware implementation of the 
assembly instruction set into core functional 
modules. 

• The input of the microarchitecture design 
– ASIP architecture specification and 
– Assembly instruction set manual. 

• The output of the microarchitecture designThe output of the microarchitecture design
– Microarchitecture specification for RTL coding.
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Mi hit t d iMicroarchitecture design

• Step 1: Partition each assembly instruction into 
microoperations, allocate each microoperation into p , p
corresponding hardware modules 

• Step 2: Collect all microoperations allocated in aStep 2: Collect all microoperations allocated in a 
module and specify hardware multiplexing for 
RTL coding of the moduleRTL coding of the module 

• Step 3: Fine-tune intermodule specifications of 
the ASIP architecture specification and finalize thethe ASIP architecture specification and finalize the 
top-level connections and pipeline 
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ReviewReview

• ASIP design flow in general
• Profiling and architecture selection• Profiling and architecture selection
• Instruction set designg
• Toolchain design
• Microarchitecture design
• Firmware design and benchmark• Firmware design and benchmark
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Understand ApplicationsUnderstand Applications
Product Portable audio player DTV and video player …Product Portable audio player DTV and video player …
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