
2011-03-07 1

Chapter 4Chapter 4

ASIP design flowASIP design flow

2011-03-07 2

ContentsContents
1. ASIP design flow in generalg g
2. Profiling and architecture selection
3. Instruction set design
4 T l h i d i4. Toolchain design
5. Microarchitecture design5. Microarchitecture design
6. Firmware design

2011-03-07 3

ASIPASIP

• for sufficient flexibility

• for multi-mode applications

• for volume productions

• For new and future applications

2011-03-07 4

er
s Spec if y func tio n co verage, perf ormance, and cost. Co nduct the

source code profi ling

ea
rc

hesource code profi ling

S if bl i i

r r
es

eSpecify an assem bly instruction se t

I mplem ent in struc tio n set simu la tor and assembler

w
 fo

rI mplem ent in struc tio n set simu la tor and assembler

Assembly in struc tion set ben chm ark ing and u sage profi lin g

n
flo

wsse b y st uc t o set be c a g a d u sage p o g

I nstruc tion set optim iza tion: trade off perform ance and costs

de
si

gn

sa tisfied No

SI
P

d

Beh avior Re lease the instruction set a rchitec ture

yes

A
S

M icro architec tur e design, RTL , an d VLSI imp lem enta tio n

2011-03-07 5

ASIP design flow for engineersg g

ca
tio

n
… …

Application source

d fili

Specify 90%-10% locality,
critical path, and coverage

t s
pe

ci
fic

Architecture specification HW requirement

code profiling p , g
Pr

od
uc

t Architecture specification HW requirement

Reference

m
en

t
n

Design of assembly instruction set
Reference
assembly
profiling ce

re
qu

ir
em

ifi
ca

tio
n

n
re

so
ur

Microarchitecture specification

Pr
oj

ec
t r

sp
ec

i

H
um

an

RTL coding and VLSI implementationP g p

2011-03-07 6

Understanding ApplicationsUnderstanding Applications
• It takes long time to understand a complete• It takes long time to understand a complete

knowledge system of an application
• ASIP designers are hardware engineers

rather than application engineerspp g
• It is not trivial that ASIP engineers really

understand all system design detailsunderstand all system design details
• ASIP designers only need to understand the

design cost, including execution behavior,
code structure, hardware cost, and runtimecode structure, hardware cost, and runtime
cost – through source code profiling

2011-03-07 7

Source code profilingSource code profiling

D i f bl l i b d• Design of assembly language is based on source
code profiling

• Profiling is a technique to estimate the execution
cost and memory cost of source codecost and memory cost of source code

• Profiling is to analyze the code, expose the codeProfiling is to analyze the code, expose the code
structure and execution behaviors,

• The purpose of profiling is to understand the
execution behavior and the code structure.

2011-03-07 8

Static and dynamic profilingStatic and dynamic profiling

• Static profiling is given by analyzing the
source code instead of running it
– Control flow graphControl flow graph

• Dynamic profiling is performed by executing
th d l ti ththe source program and accumulating the
execution time
– Through instrumentation

2011-03-07 9

The result from code profilingThe result from code profiling
• Expose memory accesses execution time required• Expose memory accesses, execution time, required

operations,
E i i f ll li i f f h• Expose opportunities of parallelization for further
performance enhancement.

• Coverage requirement: capability of running
different operations

• Performance requirement: computing capacity
required for certain algorithmsq g

• Profiling result will be the input for architecture
selection and instruction set designselection and instruction set design

2011-03-07 10

 Source code

C il f d

① A

Lexical analysis
Parsing

Compiler front-end
Executable

Dyn analysis Using
GCC

⑦

Parsing
Parse tree optimization

P t

Execute program Stimuli

y yGCC

②

⑧

Parse tree

CFG extraction CFG

Static analysis Branch taken %
②

③

⑨

Basic block (bb)
cost estimationAnnotation

Profile analysis

ASIP design

③

⑩

bb cost table Annotated
parse tree

ASIP design
document

⑤ ④

⑩

parse tree

Code generationProbe lib

Compiler back-end
Using
GCC

⑥
Code generation

Linking
Probe lib GCC

GEM
A Profiler example: Relief

2011-03-07 11

Architecture selectionArchitecture selection

• Selecting a suitable ASIP architecture for
the class of applications involves decisions
– selecting function modules,selecting function modules,
– interconnecting the modules, and

ti th ASIP t th b dd d t– connecting the ASIP to the embedded system
• DSE in the architecture level
• or ISA design

2011-03-07 12

Mapping functions to a HW moduleMapping functions to a HW module
A i i i d i b• A system is partitioned into subsystems or
functions

• Each functions allocated to a HW module.
• Modules could be either processors or functional p

circuits.
– The behaviors of programmable HW modules are p g

described by an assembly language simulator.
– The behaviors of nonprogrammable HW modules are

described by HW description languages.

2011-03-07 13

HW/SW co-design for an ASIPHW/SW co design for an ASIP
ASIP requirement specification ASIP requirement specification

Early manual partition according to application profiling

Instruction set
specification

Processor architecture
specificationImplement the function as a subroutine

Implement the function as an instruction

specification

Assembly instruction set simulator

specification

Microarchitecture design

p

Benchmarking of
instruction set Implement the function as a subroutine

Implement the function as an instruction
Design for HW

acceleration

Application SW implementation Processor HW implementation

ASIP Integration, final function verification and performance validation

2011-03-07 14

Architecture templates

• Characteristics to be considered
–computing performance

dd i f–addressing performance
–handling control complexitiesg p
–power efficiency
–scalability and how easy to be

integratedg

2011-03-07 15

Select architecture based on templatesSelect architecture based on templates

ComputingComputing
performance

Capable of Single MAC DMAC SIMD p
handling

complexity

Single MAC DMAC SIMD

PowerPower
efficiency

VLIW Superscalar Multi-coreVLIW Superscalar Multi-core

2011-03-07 16

C l & D iControl & Data processing

• When control complexity cannot be
separated from data processingseparated from data processing
– VLIW or superscalar architecture is preferred

• If control complexity can be separated from
data processing p g
– use a RISC and a SIMD machine

use a RISC with SIMD datapaths– use a RISC with SIMD datapaths

2011-03-07 17

T k fl hiTask flow architecture

• Direct implementation of control flow graph
S itable hen• Suitable when
– Programming cost is low and
– Complexity of hardware and system verification

is manageable g
• Useful when input data rate is too high to

employ the conventional architectureemploy the conventional architecture
• Not flexible

2011-03-07 18

Task flow architecture
Input buffer

s

Band pass filter
Band pass filter

d
m

em
or

ie

Function 1
Function 1

Transform

s,
FS

M
, a

nd

Transform Filter

Function 2

Filter

F nction 2on
 re

gi
ste

rs

Function 3

Function 2

Function 3

on
fig

ur
at

io
Co

(a) Behavior model (b) HW implementation

Output buffer

(a) Behavior model (b) HW implementation

2011-03-07 19

C fi bili d biliConfigurability and programmability

• Configurability: ability to change system
functionality by external control inputsfunctionality by external control inputs

• Programmability: ability to execute programs
• Configuration control is relatively stable:

definitely not changing every cyclesdefinitely not changing every cycles
• Program can change the hardware function at

levery cycle.

2011-03-07 20

G k fl hiGenerate a task flow architecture
l k i• Formulate a task stream using CFG

• Balance load of each task stepBalance load of each task step
• Identify dependencies and schedule the task

h i ith id ti f l d b lchain with considerations of load balance
• Specify function modules and FIFO buffers p y

between function modules in the streaming
chain expose and specify control signalschain, expose and specify control signals

• Design FSM to generate control signals

2011-03-07 21

D i i i iDesigning instruction sets
• After the ASIP architecture is selected
• Input: profiling results and architectureInput: profiling results and architecture
• Instruction set design includes

– Arithmetic instructions
– Memory accessesy
– Addressing

Program flow controls– Program flow controls
– I/O instructions
– Accelerator control intructions

2011-03-07 22

Inputs and requirementsInputs and requirements

Data memory efficient
I/O bandwidth and latency

y
Code size limit

Performance
Limits from

programmer’s tools
ASIP

Acceleration of

S
instruction

set

Power limit algorithm and
addressing

Efficient program flow control
Constraints on silicon costs Function coverage

2011-03-07 23

Simplified DSP ASIP design flowSimplified DSP ASIP design flow

Collection of application kernels

Profiling of applications, coverage, HW/SW co-design, ASIP architecture

Assembly instruction set design

i d li

Behavior modeling for applications

Design of Toolchain for
assembly level programming

Memory accurate modeling

Bit accurate modeling

Benchmarking, assembly code
profiling, and HW/SW co-design

Cycle accurate modeling

y g

Processor micro architecture design
and VLSI implementation Assembly translation

Firmware design

System integration: running and verify binary codes on designed processor

2011-03-07 24

T d ff i tTrade off among requirements
 PerformancePerformance

Acceleration Compiler friendly

Flexibilityy

2011-03-07 25

Select an instruction set templateSelect an instruction set template
 PerformanceSimple p

instruction set

Acceleration
Custom

architecture

 Compiler
f i dl

Programming
friendly

Control

friendly

Flexibility features

2011-03-07 26

Programming toolchain

• C compilerp
• Assembler
• Linker
• Instruction set simulator (ISS)• Instruction set simulator (ISS)
• Debuggerebugge
• Integrated design environment (IDE)

2011-03-07 27

Benchmarking andBenchmarking and
Assembly code profilingAssembly code profiling

• Benchmark: program designed to
measure the ASIP performance
B h ki h k th t d• Benchmarking: check the cost and
performance of the kernel codep

• Assembly code profiling: expose the
i i f h i i dstatistics of the instruction usages and

the SW cost of the applicationpp

2011-03-07 28

Relations between Toolchain and
FW design flow

Behavior (C code) modeling Source file editor

Behavior simulator

(1)

(2)

(1)(2)

Function allocation to HW

Behavior code adapt to HW Build assembly program library

Behavior simulator

C-HW-adapter

(2)

(3)

(1)(2)

(1) (2)

(3)

(3)

Compile C code to assembly

y p g y

Assembly programming

C-compiler

Assembler

(4)

(5)
(4) (5) (6) (7)

Link objective codes and allocate codes to program memory

Assembler

Objective linker

(5)

(6) (6)

Generate finally binary code and simulate it using the binary code

Verify codes benchmarking profiling and release the design

ASM simulator

Debugger

(7)

(8)

(7)(8)

(7)(8)(5)(6)Verify codes, benchmarking, profiling, and release the design Debugger

(a) The method translating source code to qualified assembly code (b) Toolchain

(8)(7)(8)(5)(6)

2011-03-07 29

Adaptation of the c code to HWAdaptation of the c code to HW

• Adapt to the ASIP hardware features to
avoid confusing the C compileravoid confusing the C compiler
– Finite-length data type
– Parallel or accelerated instructions

Memory size constraints– Memory size constraints
• A C-HW adapter as a special parserp p p

– Parsing results can be used to modify the
C source codeC source code.

2011-03-07 30

C-HW adapterC HW adapter
• Expose three cases to guide the designers

– the legacy hardware features of early design
the opportunities to use compiler features or– the opportunities to use compiler features or
acceleration features of the selected hardware

– The opportunities for parallel executions and
memory accessesy

• To reduce the gap between the C code and
bl dassembly code

– Library functions and special library adaptingLibrary functions and special library adapting
ASIP features

2011-03-07 31

FW designFW design
 Firmware: fixed software in the products

Requirements and constraints

Firmware: fixed software in the products

Algorithms design / high level model

Real time
requirements

Finite length
DSP hardware

Design finite data length FW

Design real-time FW

Integration

Hardware
Freedom meas re Freedom meas reFreedom measure Freedom measure

2011-03-07 32

FW design

• Behavior modeling
• HW dependent SW

Bit accurate source code– Bit accurate source code
– Memory accurate source code
– Cycle accurate code

• Assembly coding and optimizationy g p

2011-03-07 33

FW design flow (single application)FW design flow (single application)
Si lifi d fi d i

Behavior modeling
Bit accurate

modeling
Memory accurate

modeling
Timing
budget

Assembly
coding

Simplified firmware design
on

s

w
ar

e

el
in

g

s co
st

s

FW

od
in

g

e

ng
 a

pp
lic

at
io

m
 se

le
ct

io
ns

ng
th

 d
es

ig
n

le
ng

th
 fi

rm
w

gu
ag

e
m

od
e

em
or

y
co

st
s

ith
 m

em
or

y

m
e

bu
dg

et

e
ac

cu
ra

te
 F

as
se

m
bl

y
co

ac
hi

ne
 c

od
e

U
nd

er
st

an
di

n

A
lg

or
ith

m

Fi
ni

te
 le

n

od
in

g
fin

ite
 l

gh
 le

ve
l l

an

Ex
po

se
 m

di
ng

 F
W

 w
i

R
un

 ti
m

C
od

in
g

cy
cl

e

al
lo

ca
ta

bl
e

B
in

ar
y

m
a

U C
o

H
ig

C
od C

R
e-

Design Design Design
entry 1 entry 3 entry 2

2011-03-07 34

Bit accurate finite precision FW

• adapt the C-code to the finite precision
hardware and compare it to the original
code, for example, a floating-point vesion, p , g p

• Find poor precision or SNR on the results
h i i b• Improve the precision by:

– Inserting quality measurements subroutinesg q y
– Inserting data scaling subroutines

2011-03-07 35

Firmware in a fixed point processing
 Start

Program booting and parameter initialization

Loading inputs and pre-processing

Main task flow – Executing the kernel part algorithmsg p g

Data quality control flow

In case needed After measurementDefault
No

operation
Scaling

flow
Measurement

flowp flowflow

Post processing, result storing

2011-03-07 36

Added quality control codesAdded quality control codes
 Main task flow

 DSP
DSP

DSP

D
SP

D
EC

Fi
lte

r

Fi
lte

r A/D D/A

ScalingScaling Scaling Scaling

DSP

gScaling gg
coefficient scaling

Scaling flow – tasks are executed only after running the measurement flow

Scaling scaling

MAX AVG counters

Measurement flow – tasks are executed only when needed

2011-03-07 37

Memory access accurate FWMemory access accurate FW

• Much memory accesses and address computing for the
accesses are hidden in the C code

• A memory-accurate model is essential for parallel
processing: parallel memory accessesp g p y

• Early expose the memory cost is essential for
– Execution time estimation
– Memory cost estimation (ASIP design)

• Design for memory subsystem will be discussed in g y y
chapter 16, 18, and 20.

2011-03-07 38

Real time firmware parametersReal time firmware parameters

1. Arrive time
2. Start time
3. Computing time
4. Finisihing time In-data packet 3: Computing time 4. Finisihing time
5. Deadline time

1 2 4 5
(a) Real-time task without overlapping

In-data packet In-data packet In-data packet

time
3: Computing time

1&2 4

3: Computing time

1&2&5 4 5

...

(b) Real-time task with overlapping

Data streaming: (Input; Computation; Output)

2011-03-07 39

How can we find a best instruction set?How can we find a best instruction set?
• Evaluation of an instruction setEvaluation of an instruction set

– Cycle cost and memory usage
– Suitability for specific applications

• How to evaluate a processorHow to evaluate a processor
– Good assembly instruction set
– Good (open and scalable) architecture
– (Max clock frequency, low power, less area)(Max clock frequency, low power, less area)

• Use benchmarking techniques!

2011-03-07 40

General benchmarksGeneral benchmarks
Al ith b h k /k l b h k• Algorithm benchmarks/kernel benchmarks

• Normal precision and native word length p g
• What to check:

C l t f k l l d il– Cycle costs of kernels, prologs, and epilogs
– Program/data memory costs

• Algorithms including
– FIR IIR LMS FFT DCT FSMFIR, IIR, LMS, FFT, DCT, FSM

2011-03-07 41

Third Party BenchmarksThird Party Benchmarks
• BDTI: Berkeley Design Tech Incorporation• BDTI: Berkeley Design Tech Incorporation

– Professional hand written assembly
– http://www.bdti.com

• EEMBC (the EDN Embedded MicroprocessorEEMBC (the EDN Embedded Microprocessor
Benchmark Consortium), fall into five classes:

i /i d i l ki ffi– automotive/industrial, consumer, networking, office
automation, and telecommunication

– http://www.eembc.org

2011-03-07 42

Microarchitecture designMicroarchitecture design

• The microarchitecture design of an ASIP is to
specify the hardware implementation of the
assembly instruction set into core functional
modules.

• The input of the microarchitecture design
– ASIP architecture specification and
– Assembly instruction set manual.

• The output of the microarchitecture designThe output of the microarchitecture design
– Microarchitecture specification for RTL coding.

2011-03-07 43

Mi hit t d iMicroarchitecture design

• Step 1: Partition each assembly instruction into
microoperations, allocate each microoperation into p , p
corresponding hardware modules

• Step 2: Collect all microoperations allocated in aStep 2: Collect all microoperations allocated in a
module and specify hardware multiplexing for
RTL coding of the moduleRTL coding of the module

• Step 3: Fine-tune intermodule specifications of
the ASIP architecture specification and finalize thethe ASIP architecture specification and finalize the
top-level connections and pipeline

2011-03-07 44

w

 Spec if y func tio n co verage, perf ormance, and cost. Co nduct the
source code profi ling

flo
wp g

S if bl i t t i t

es
ig

n Specify an assem bly instruction se t

I mplem ent in struc tio n set simu la tor and assembler

IP
 d

eI mplem ent in struc tio n set simu la tor and assembler

Assembly in struc tion set ben chm ark ing and u sage profi lin g

f A
SI

y g g p g

I nstruc tion set optim iza tion: trade off pe rform ance and costs

ew
 o

sa tisfied No

R
ev

ie

Beh avior Re lease the instruction set a rchitec ture

yes

R

M icro architec tur e design, RTL , an d VLSI imp lem enta tio n

2011-03-07 45

ReviewReview

• ASIP design flow in general
• Profiling and architecture selection• Profiling and architecture selection
• Instruction set designg
• Toolchain design
• Microarchitecture design
• Firmware design and benchmark• Firmware design and benchmark

2011-03-07 46

Understand ApplicationsUnderstand Applications
Product Portable audio player DTV and video player …Product Portable audio player DTV and video player …

Application
components

RTOS Audio
decoder

Voice
encoder

DVB
modem

Video
decoder

…

Functions Huffman Waveform

… …

Functions
(Algorithm) Filter (I)DCT Huffman

decoder
Waveform
generator

… (I)FFT…

Arithmetic
operations

MAC

ALU … …

FSMAnd other
tioperations operations

