Chapter 4

ASIP design flow

2011-03-07

Contents

. ASIP design flow in general
Profiling and architecture selection
. Instruction set design

. Toolchain design
Microarchitecture design
Firmware design

o Ul A WN R

2011-03-07

ASIP

fF N

 for sufficient flexibility
« for multi-mode applications
 for volume productions

« For new and future applications

2011-03-07

Specify function coverage, performance, and cost. Conduct the
source code profiling

1

Specify an assembly instruction set

l

Implement instruction set simulator and assembler

|

Assembly instruction set benchmarking and usage profiling

|

Instruction set optimization: trade off performance and costs

No satisfied

yes l

Behavior Release the instruction set architecture

¢

Micro architecture design, RTL, and VLSI implementation

ASIP design flow for researchers

2011-03-07

ASIP design flow for engineers

- . 0/ 0 .
Rl [Fovicsionsouce || | Sy ST oy
= code profiling — path, J
5 !
& . P . N
e Architecture specification — HW requirement
- .
©
S L S b
al I
| Reference
Design of assembly instruction set . assembly
1 profiling

l

<7
O
S
>
O
(7]
L
-
S
=
>
L

2011-03-07

It takes long time to understand a complete
knowledge system of an application

ASIP designers are hardware engineers
rather than application engineers

It 1s not trivial that ASIP engineers really

'aYel Fa s

ASIP designers only need to understand the
design cost, including execution behavior,
code structure, hardware cost, and runtime
cost — through source code profiling

2011-03-07

Source code profiling

Design of assembly language Is based on source
code profiling

Profiling Is a technigue to estimate the execution
cost and memory cost of source code

<'D
r~—
-
<‘D
D
Q.
D

Drnflllnn IS tO anal\/7p the code. ex

LI 4 vvv-v’

structure and executlon behawors

The purpose of profiling Is to understand the
execution behavior and the code structure.

2011-03-07

Static and dynamic profiling

o Static profiling Is given by analyzing the
source code instead of running It
— Control flow graph

« Dynamic profiling Is performed by executing
the source program and accumulating the
execution time
— Through Instrumentation

2011-03-07

-F

Ther e profiling

il from ~rnde
1 11T L Uu’CT

eSuit Trom
EXpose memory accesses, execution time, required
operations,

Expose opportunities of parallelization for further
performance enhancement.

Coverage requirement: capability of running
different operations

Performance requirement: computing capacity
required for certain algorithms

Profiling result will be the input for architecture
selection and instruction set design

2011-03-07

10

@/ Source code /

' Using Lexical analysis
' GCC Parsing
| Parse tree optimization

CFG extraction —7/ CFG /@ :

0

|
@/ Executable /

Dyn analysis

Y

Annotation

Basic block (bb) | !
cost estimation |

bb cost table /@

Code generation
Linking

Probe lib

Annotated /
parse tree

@/ Branch ‘éaken % /

A

Profile analysis

!

/ ACID An

i
M\UVIlI UCOI

documen

N /

/

— (€

Using :
GCC !
GEM

Profiler example: Relief

2011-03-07

hit ||r

N\ +
AlcniteCtu N

n enlactin
O OJUICUULULIVI I

o Selecting a suitable ASIP architecture for
the class of applications involves decisions

— selecting function modules,
— Interconnecting the modules, and
— connecting the ASIP to the embedded system

e DSE In the architecture level
e or ISA design

11

2011-03-07

\V/
IVV 111U

o A system is partitioned into subsystems or
functions

e Each functions allocated to a HW module.

» Modules could be either processors or functional
circuits.

— The behaviors of programmable HW modules are
described by an assembly language simulator.

— The behaviors of nonprogrammable HW modules are
described by HW description languages.

ANNINA || 'I' nnec tn a2 LI\A/ mndnilln
1VI IJIJ' |U 1IUVLIVIIO LU A UUIC

12

2011-03-07

HW/S

W co-des

an for a
vll | I W | WA

ASIP requirement specification

n ASIP

'

VW’ 11

Early manual partition according to application profiling

y

Instruction set
specification

Implement the function as an instruction

Implement the function as a subroutine

5

N

Assembly instruction set simulator] [

Processor architecture

specification

!

/

Benchmarking of
instruction set

N\

Microarchitecture design

Implement the function as an instruction

!

N

Implement the function as a subroutine

e

«

N

Application SW implementation J

\\

Design for HW
acceleration

v

[Processor HW implementation

y

[ASIP Integration, final function verification and performance validation J

13

2011-03-07

Architecture templates

e Characteristics to be considered
—computing performance
—addressing performance

—handling control complexities

—power efficiency

—scalability and how easy to be
Integrated

14

2011-03-07

Select architecture based on templates

| | Computing
performance
-l -l |
Single MAC DMAC SIMD Capable of
handling
4 R R complexity
)) - -

]]] Power
efficiency

VLIW Superscalar Multi-core

2011-03-07

Control & Data processing

* \WWhen control complexity cannot be
separated from data processing

— VLIW or superscalar architecture Is preferred
o |If control complexity can be separated from

data processing

— use a RISC and a SIMD machine

— use a RISC with SIMD datapaths

16

2011-03-07

Task flow architecture

Direct implementation of control flow graph

Suitable when
— Programming cost Is low and

— Complexity of hardware and system verification
IS manageable

Useful when input data rate Is too high to
employ the conventional architecture

Not flexible

17

2011-03-07

Task flow architecture

—

Band pass filter
|

Function 1

Transform Filter

Function 2

Function 3

(a) Behavior model

Input buffer

8 |
S :
= Band pass filter
(¢B]
£ |
-c% Function 1
L Transform
(,)- v
O :
O Filter
(@)
& |
IS Function 2
g |
g) A
= Function 3
c
(@
O A\ 4

Output buffer

(b) HW implementation

18

2011-03-07

Configurability and programmability

o Configurability: ability to change system
functionality by external control inputs

* Programmability: ability to execute programs

« Configuration control Is relatively stable:
definitely not changing every cycles

e Program can change the hardware function at
every cycle.

2011-03-07

Generate a task flow architecture

Formulate a task stream using CFG
Balance load of each task step

|dentify dependencies and schedule the task
chain with considerations of load balance

Specify function modules and FIFO buffers
between function modules In the streaming
chain, expose and specify control signals

Design FSM to generate control signals

20

2011-03-07

Designing Instruction sets

o Aftert
e |nput:

ne ASIP architecture is selected

orofiling results and architecture

e |nstruction set design includes
— Arithmetic instructions
— Memory accesses
— Addressing
— Program flow controls
— |/O Instructions
— Accelerator control intructions

21

2011-03-07 22

Inputs and requirements

Data memory efficient

Code size limit /0 bandwidth and latency
Limits from °
prOQrammer’S tools Performance
ASIP
Instruction
set

Acceleration of o

algorithm and Power limit
addressing
Function coverage Constraints on silicon costs

Efficient program flow control

2011-03-07

Sim
JI

__

Assembly instruction set design Behavior modeling for applications
Design of Toolchain for *— Bit accurate modeling

assembly level programming

B) * ¢$— Memory accurate modeling
Benchmarking, assembly code

profiling, and HW/SW co-design v
t Cycle accurate modeling

e T) i ! Firmware design *
Processor micro architecture design

and VLSI implementation

Assembly translation

2011-03-07

Trade off among requirements

Performance

Acceleration ~—e——f=— = Compiler friendly

N~ o
\‘

Y
Flexibility

24

2011-03-07 25

Select an Instruction set template

Simple Performance
Instruction set

Custom

Acceleration| [} S IP te b I:@I:I@ architecture

orogramming ATIC: .tmiat Compiler

friendly friendly

Control
Flexibility features

2011-03-07

Programming toolchain

C compiler

Assembler

Linker

Instruction set simulator (I1SS)
Debugger

Integrated design environment (IDE)

26

2011-03-07

Benchmarking and
Assembly code profiling

e Benchmark: program designed to
measure the ASIP performance

* Benchmarking: check the cost and
performance of the kernel code

o Assembly code profiling: expose the
statistics of the instruction usages and
the SW cost of the application

27

2011-03-07 28

Relations between Toolchain and
FW design flow

Behavior (C code) modeling |(1)(2) (1)| Source file editor
Function allocation to HW [(1)(2)(3) (2)| Behavior simulator
N I_ _____________
i | T T T T 3 C-HW-adapter
Behavior code adapt to HW [(1)(2)(3) | Build assembly program library | 0| @) _SViedapter |
,] [(4) C-compiler

Compile C code to assembly |4) | Assembly programming |(5)(6)(7)

(5) Assembler

A

(6) Link objective codes and allocate codes to program memory (6)

Objective linker

Generate finally binary code and simulate it using the binary code |(7)(8) | |(7)| ASM simulator

Verify codes, benchmarking, profiling, and release the design | (5)(6)(7)(8) | |(8) Debugger

(@) The method translating source code to qualified assembly code (b) Toolchain

2011-03-07

Adaptation of the ¢ code to HW

« Adapt to the ASIP hardware features to
avold confusing the C compiler

— Finite-length data type
— Parallel or accelerated instructions
— Memory size constraints

o A C-HW adapter as a special parser

— Parsing results can be used to modify the
C source code.

29

2011-03-07 30

C-HW adapter
* Expose three cases to guide the designers

—the legacy hardware features of early design

— the opportunities to use compiler features or
acceleration features of the selected hardware

— The opportunities for parallel executions and
memory accesses

* To reduce the gap between the C code and
assembly code

— Library functions and special library adapting
ASIP features

2011-03-07

FW design

Firmware: fixed software in the products

Requirements and constraints

\ Algorithms design / high level model /

Real time
requirements

\ Design finite data length FW / Finite length

DSP hardware

\ Design real-time FW /

\ Integration /

Freedom measure

Hardware
Freedom measure

' >

31

2011-03-07

FW design

Behavior modeling

HW dependent SW

— Bit accurate source code
— Memory accurate source code
— Cycle accurate code

Assembly coding and optimization

32

33

2011-03-07

Simplified firmware design

n

Design

entry 3

>

Design

entry 2

suoneol|dde 6

= o 5p09d aulydew Aseulg
m] y'y
v O
m o
\ Buipod Ajquiasse ajgeleao|je-ay
— M4 81e4ndde 31942 Buipo)
£S5
m w A
[
196png awin uny
a3} A
< 1509 Alowsw Yim AnS Bulpo)
=
o .E 4
ST
DO
S 2 $1509 Alowaw asodx3
c €
(<5} A
=
D ———
‘ alemuwily yibua| anuiy buipo)d

g f
S =
Q o
© o
NS ubisap yibua| anui4
=2 g
B A

I Buijspow abenbue| |ans] ybiH

w A

£

- SU01199]9s Wylob|v

.Awa A

g

uipuelsIapun

Design

entry 1

2011-03-07 34

Bit accurate finite precision FW

 adapt the C-code to the finite precision
hardware and compare It to the original
code, for example, a floating-point vesion

 FInd poor precision or SNR on the results

« Improve the precision by:

— Inserting quality measurements subroutines
— Inserting data scaling subroutines

2011-03-07

Firmware In a fixed point processing

[Start

|

Program booting and parameter initialization

1

Loading inputs and pre-processing

v

Main task flow — Executing the kernel part algorithms

v
/ _ Data quality control flow \
Default 1 In case neededl After measure mentl
No Measurement Scaling
operation flow flow
v v v

AN

S

'

Post processing, result storing

35

2011-03-07

Added quality control codes

36

Main task flow

- DSP]
< L (O] % - <
s G e o By I P ol P
4 A _DAS'B A A
Scaling : Scaling Scaling Scaling
Scaling coefficient scaling scaling

Scaling flow — tasks are executed only after running the measurement flow

counters

» MAX MAVG

Measurement flow — tasks are executed only when needed

2011-03-07

Memory access accurate FW

 Much memory accesses and address computing for the
accesses are hidden in the C code

* A memory-accurate model is essential for parallel
processing: parallel memory accesses

« Early expose the memory cost is essential for
— Execution time estimation
— Memory cost estimation (ASIP design)

* Design for memory subsystem will be discussed in
chapter 16, 18, and 20.

37

2011-03-07

Real time firmware parameters

38

1. Arrive time
2. Start time

3. Computing time i _ N
4. Finisihing time In-data packet 3: Computing time I -
5. Deadline 1 2 ; 3 >
(a) Real-time task without overlapping
In-data packet In-data packet In-data packet
...... 3. Computing time 3. Computing time
time,

1&2

4 1&2&5

(b) Real-time task with overlapping

Data streaming: (Input; Computation; Output)

2011-03-07

How can we find a best instruction set?

e Evaluation of an instruction set

— Cycle cost and memory usage

— Suitability for specific applications
e How to evaluate a processor

— Good assembly instruction set

— Good (open and scalable) architecture
— (Max clock frequency, low power, less area)

e Use benchmarking techniques!

39

2011-03-07 40

ﬂﬂﬂﬂﬂ lf\lf\m

iIchmarks
 Algorithm benchmarks/kernel benchmarks

* Normal precision and native word length

e \What to check:
— Cycle costs of kernels, prologs, and epilogs
— Program/data memory costs
 Algorithms including
- FIR, IR, LMS, FFT, DCT, FSM

2011-03-07

Third Party Benchmarks

« BDTI: Berkeley Design Tech Incorporation
— Professional hand written assembly
— http://www.bdti.com

« EEMBC (the EDN Embedded Microprocessor
Benchmark Consortium), fall into five classes:

— automotive/industrial, consumer, networking, office
automation, and telecommunication

— http://www.eembc.org

41

2011-03-07

Microarchitecture design

The microarchitecture design of an ASIP Is to
specify the hardware implementation of the
assembly instruction set into core functional
modules.

The Input of the microarchitecture design
— ASIP architecture specification and
— Assembly instruction set manual.

The output of the microarchitecture design
— Microarchitecture specification for RTL coding.

42

2011-03-07

Microarchitecture design

Step 1: Partition each assembly instruction into
microoperations, allocate each microoperation into
corresponding hardware modules

Step 2: Collect all microoperations allocated in a

module and specify hardware multiplexing for
RTL coding of the module

Step 3: Fine-tune intermodule specifications of
the ASIP architecture specification and finalize the
top-level connections and pipeline

43

2011-03-07

Specify function coverage, performance, and cost. Conduct the
source code profiling

1

Specify an assembly instruction set

l

Implement instruction set simulator and assembler

]

Assembly instruction set benchmarking and usage profiling

!

Instruction set optimization: trade off performance and costs

No satisfied

yes l

Behavior Release the instruction set architecture

¢

Micro architecture design, RTL, and VLSI implementation

Review of ASIP design flow

44

2011-03-07

Review

o ASIP design flow In general

* Profiling and architecture selection
e Instruction set design

* Toolchain design

e Microarchitecture design

* Firmware design and benchmark

2011-03-07

Understand Applications
Product Portable audio player DTV and video player
\ 4
Application RTOS Audio Voice DVB Video
components decoder encoder modem decoder
e v ~
Functions : Huffman || Waveform
(Algorithm) Filter (HbeT decoder generator (DFFT
Arithmetic MAC ALU And other ESM
operations operations

