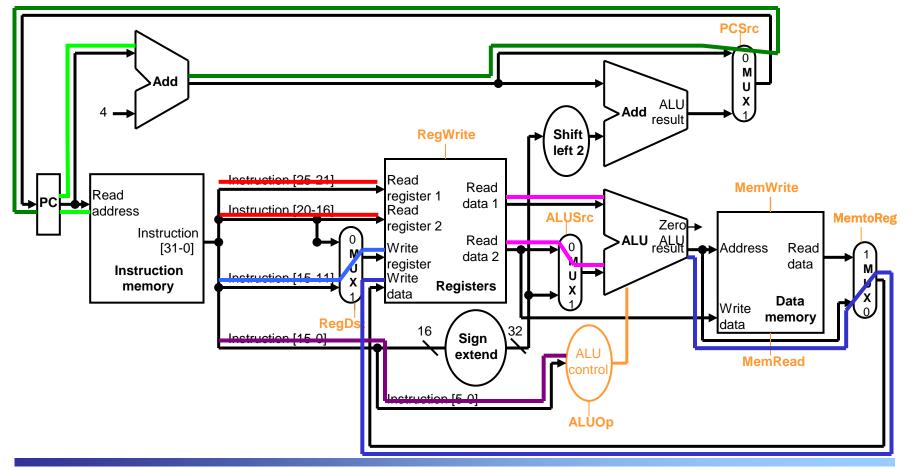

## **Computer Architecture**

**Single-Cycle Implementation** 

### Single-Cycle Datapath



□ This datapath supports the following instructions:


add, sub, and, or, slt, lw, sw, beq

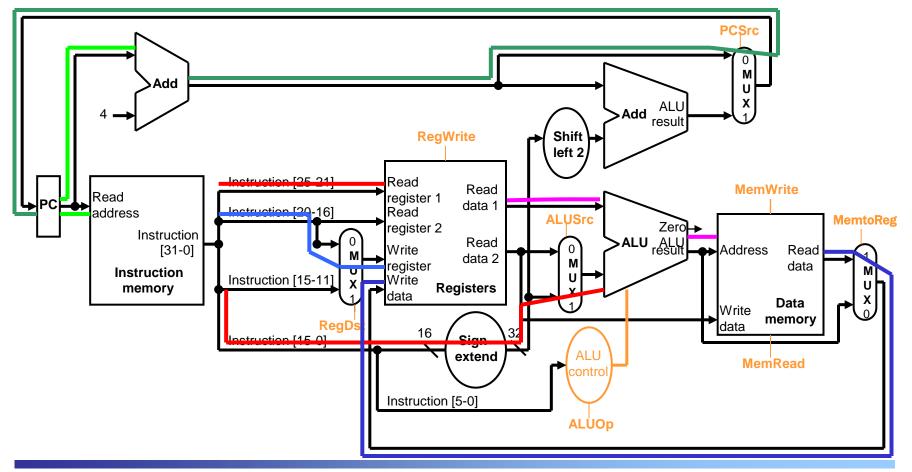
# Single-Cycle Control

RegDst RegWrite ALUSrc ALUOp MemWrite MemRead MemtoReg PCSrc Select destination register Specify if the destination register is written Select whether source is register or immediate Specify operation for ALU Specify whether memory is to be written Specify whether memory is to be read Select whether memory or ALU output is used Select whether next PC or computed address is used

### **R-format Instruction Dataflow**

□ For add, sub, and, or, slt instructions




## **R-format Instruction Control**

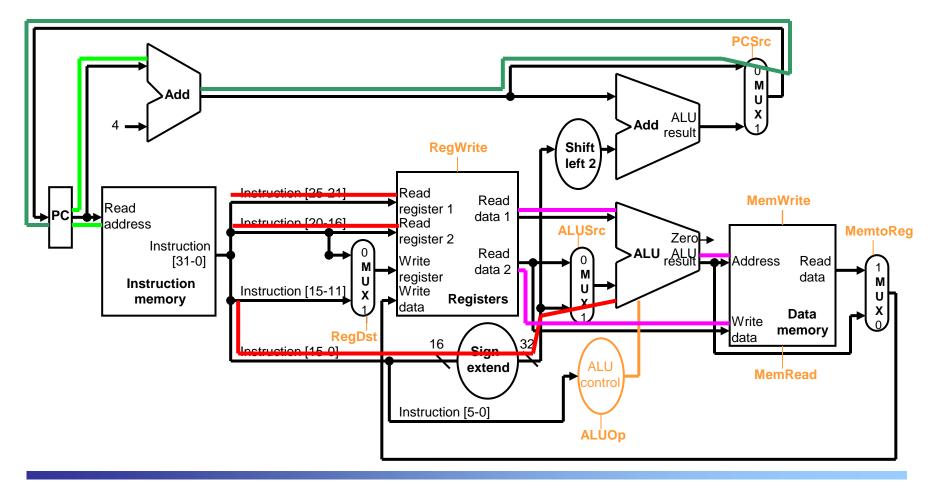
### Control signal summary

| RegDst   | 1 to select Rd                     |                                         |          |  |  |
|----------|------------------------------------|-----------------------------------------|----------|--|--|
| RegWrite | 1 to enable writing Rd             |                                         |          |  |  |
| ALUSrc   | 0 to select Rt valu                | 0 to select Rt value from register file |          |  |  |
| ALUOp    | Dependent on op                    | Dependent on operation (see below)      |          |  |  |
| MemWrite | 0 to disable writing               | 0 to disable writing memory             |          |  |  |
| MemRead  | 0 to disable readir                | 0 to disable reading memory             |          |  |  |
| MemtoReg | 0 to select ALU output to register |                                         |          |  |  |
| PCSrc    | 0 to select next PC                |                                         |          |  |  |
| ALUOp    |                                    |                                         |          |  |  |
| add      | OP (add)                           | and                                     | OP (and) |  |  |
| sub      | OP (sub)                           | or                                      | OP (or)  |  |  |
| slt      | OP (slt)                           |                                         |          |  |  |

## I-format Load Instruction Dataflow

#### For lw instruction




## I-format Load Instruction Control

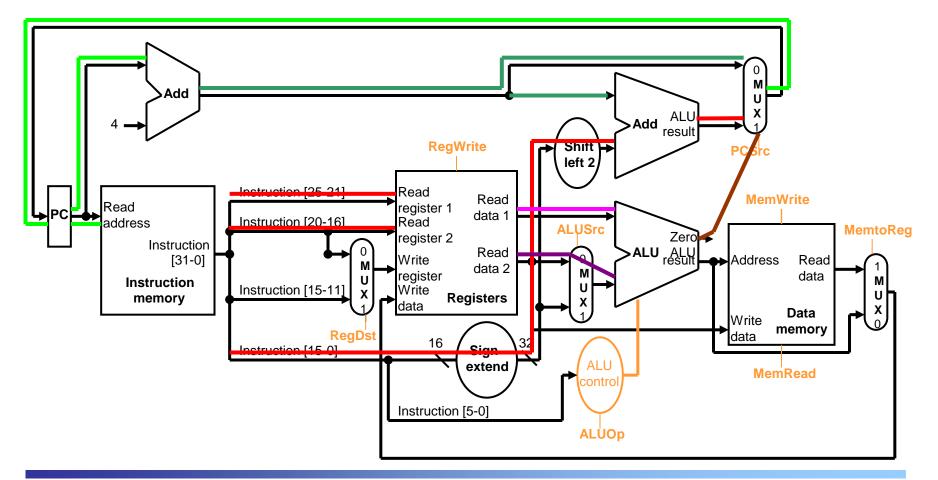
### Control signal summary

RegDst 0 to select Rt RegWrite 1 to enable writing Rt ALUSrc 1 to select immediate field value from instruction ALUOp add MemWrite 0 to disable writing memory MemRead 1 to enable reading memory MemtoReg 1 to select memory output to register PCSrc 0 to select next PC

### I-format Store Instruction Dataflow

#### For sw instruction




### **I-format Store Instruction Control**

### Control signal summary

RegDst x (don't care) RegWrite 0 to disable writing a register ALUSrc 1 to select Rt value from register file ALUOp add MemWrite 1 to enable writing memory MemRead 0 to disable reading memory MemtoReg x (don't care) **PCSrc** 0 to select next PC

## I-format Branch Instruction Dataflow

#### For beq instruction



## I-format Branch Instruction Control

### Control signal summary

RegDst x (don't care) RegWrite 0 to disable writing a register ALUSrc 0 to select Rt value from register file ALUOp sub MemWrite 0 to disable writing memory MemRead 0 to disable reading memory MemtoReg x (don't care) **PCSrc** zero

## Single-Cycle Control Signals Summary

| <u>Signal</u> | <u>R-fmt</u> | <u>l-fmt (lw)</u> | <u>l-fmt (sw)</u> | <u>l-fmt (beq)</u> |
|---------------|--------------|-------------------|-------------------|--------------------|
| RegDst        | 1            | 0                 | X                 | X                  |
| RegWrite      | 1            | 1                 | 0                 | 0                  |
| ALUSrc        | 0            | 1                 | 1                 | 0                  |
| ALUOp         | OP           | add               | add               | sub                |
| MemWrite      | 0            | 0                 | 1                 | 0                  |
| MemRead       | 0            | 1                 | 0                 | 0                  |
| MemtoReg      | 0            | 1                 | X                 | X                  |
| PCSrc         | 0            | 0                 | 0                 | zero               |

### More Details on Control Signal Generation

Inputs Op5 Op4 Op3 Op2 Op1 Op0 999 99 999 იიიიი 9191 Outputs R-format lw beq SW RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOpO

## **Review and Projection**

- Single-Cycle implementation is easy
  - Control is based solely on the operation (and results!)
    - dictates ALU operation
    - controls multiplexor selection
    - enables/disables storage elements
  - Processor signals (control and data) stabilize and then any state (register and/or memory) change takes place when the clock cycle ends
- Multi-Cycle implementation explained in the next class
  - Instruction processing takes multiple steps, one step per cycle
  - Within a given clock cycle, signals stabilize and their local state change takes place when the clock cycle ends