
Computer Architecture

Multiprocessors

Computer Architecture & Network Lab 2

Shared Memory

 Shared memory multiprocessor
 Hardware provides single physical

address space for all processors

Computer Architecture & Network Lab 3

Example: Sum Reduction

 Sum 100,000 numbers on 100 processor UMA
 Each processor has ID: 0 ≤ Pn ≤ 99
 Partition 1000 numbers per processor
 Initial summation on each processor
sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

 Now need to add these partial sums
 Reduction: divide and conquer
 Half the processors add pairs, then quarter, …
 Need to synchronize between reduction steps

Computer Architecture & Network Lab 4

Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Computer Architecture & Network Lab 5

Synchronization in Shared Memory

 Shared data

 Producer process

type item = …;
var buffer. Array [0..n-1] of item;
in, out: 0..n-1;
counter. 0..n;
in, out, counter :=0;

repeat
···

produce an item in nextp
···

while counter = n do no-op;
buffer [in] := nextp;
in := in + 1 mod n;
counter := counter + 1;

until false;

Computer Architecture & Network Lab 6

Bounded-Buffer Example

 Consumer process

repeat
while counter = 0 do no-op;
nextc := buffer [out];
out := out + 1 mod n;
counter := counter - 1;

···
consume the item in nextc

···
until false;

Computer Architecture & Network Lab 7

More Detailed Picture

counter := counter + 1

register-a := counter;

register-a := register-a + 1;

counter := register-a;

counter := counter - 1

register-b := counter;

register-b := register-b -1;

counter := register-b;

Computer Architecture & Network Lab 8

Problem

 Assuming counter is initially 5, what will be the final value
of counter?

producer execute register-a := counter
producer execute register-a := register-a + 1
consumer execute register-b := counter
consumer execute register-b := register-b -1
producer execute counter := register-a
consumer execute counter := register-b

Computer Architecture & Network Lab 9

The Critical-Section Problem

 n processes all competing to use some shared data
 Each process has a code segment, called critical section, in

which the shared data is accessed.
 Problem – ensure that when one process is executing in its

critical section, no other process is allowed to execute in its
critical section.

 Structure of process Pi

repeat

critical section

remainder section
until false;

entry section

exit section

Computer Architecture & Network Lab 10

Correctness Criteria for a Solution to the Critical-Section Problem

 Mutual Exclusion. If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections.

 Progress. If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then
the selection of the processes that will enter the critical section
next cannot be postponed indefinitely.

 Bounded Waiting. A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section
and before that request is granted.

Computer Architecture & Network Lab 11

Mutual Exclusion with Test-and-Set

 Shared data: var lock: boolean (initially false)
 Process Pi

repeat

critical section

remainder section
until false;

while Test-and-Set (lock) do no-op;

lock := false;

Entry Section

Exit Section

Computer Architecture & Network Lab 12

Naive Synchronization

Entry Section

Exit Section

Computer Architecture & Network Lab 13

Optimized Synchronization

Entry Section

Exit Section

Computer Architecture & Network Lab 14

Message Passing

 Each processor has private physical address space
 Hardware sends/receives messages between processors

Computer Architecture & Network Lab 15

Loosely Coupled Clusters

 Network of independent computers
 Each has private memory and OS
 Connected using I/O system

− E.g., Ethernet/switch, Internet

 Suitable for applications with independent tasks
 Web servers, databases, simulations, …

 High availability, scalable, affordable
 Problems

 Administration cost (prefer virtual machines)
 Low interconnect bandwidth

− c.f. processor/memory bandwidth on an SMP

Computer Architecture & Network Lab 16

Sum Reduction (Again)

 Sum 100,000 on 100 processors
 First distribute 1000 numbers to each

 The do partial sums
sum = 0;
for (i = 0; i<1000; i = i + 1)
sum = sum + AN[i];

 Reduction
 Half the processors send, other half receive and add
 The quarter send, quarter receive and add, …

Computer Architecture & Network Lab 17

Sum Reduction (Again)

 Given send() and receive() operations

limit = 100; half = 100;/* 100 processors */
repeat

half = (half+1)/2; /* send vs. receive
dividing line */

if (Pn >= half && Pn < limit)
send(Pn - half, sum);

if (Pn < (limit/2))
sum = sum + receive();

limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

 Send/receive also provide synchronization
 Assumes send/receive take similar time to addition

Computer Architecture & Network Lab 18

Network Topology

2-D grid or mesh n-cube

Computer Architecture & Network Lab 19

Network Topology

Crossbar Omega network

Computer Architecture & Network Lab 20

The Evolution-Revolution Spectrum of Computer Architecture

	Computer Architecture
	Shared Memory
	Example: Sum Reduction
	Example: Sum Reduction
	Synchronization in Shared Memory
	Bounded-Buffer Example
	More Detailed Picture
	Problem
	The Critical-Section Problem
	Correctness Criteria for a Solution to the Critical-Section Problem
	Mutual Exclusion with Test-and-Set
	Naive Synchronization
	Optimized Synchronization
	Message Passing
	Loosely Coupled Clusters
	Sum Reduction (Again)
	Sum Reduction (Again)
	Network Topology
	Network Topology
	The Evolution-Revolution Spectrum of Computer Architecture

