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Steady-state operation
by external current drive

d/dt ~ 0
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Tokamak Operation Modes
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Only “weak” RS   
plasmas are stable
but they require a  
delicate active  control 8
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Reversed Shear Mode

• Hollow current profile

• Higher pressure gradient region in 
the core with steep edge pedestal

• Reversed q-profile

• With negative magnetic shear

High bootstrap 
current!
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Reversed Shear Mode

Reversed shear modeH-mode
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Reversed Shear Mode
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Reversed Shear Mode



Turbulence Stabilisation

• Formation of  internal transport barriers to improve confinement
- Reversed magnetic shear
- Differential rotation (input power) Stabilises turbulence

xB

• One reason: 
Losses of fast ions at the plasma edge

sheared radial electric field
sheared ExB rotation
eddies get tilted and ripped apart
cause turbulence suppression!

⊗ B
E



Turbulence Stabilisation

Z

R

Z

R
Contour lines of electric potential. Contour lines of electric potential.

ITB

Temperature profile

• Formation of  internal transport barriers to improve confinement
- Reversed magnetic shear
- Differential rotation (input power) Stabilises turbulence



Turbulence Stabilisation
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Reversed Shear Mode

Reversed shear modeH-mode



Non-monotonic current profile

Turbulence suppression

High pressure gradients

Large bootstrap current

• Operation at lower plasma current: fBS ~ βp ~ Ip-2

→ Confinement degradation: τE ~ H98(y,2) Ip0.93

→ To get enough fusion power: H98(y,2) > 1 (advanced)

Reversed Shear Mode



• Plasma current diffusion into the core from the edge

Current and pressure profile control !

Sustainment of Non-monotonic Current Profile
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Non-monotonic current profile

Turbulence suppression

High pressure gradients

Large bootstrap current

Non-inductive current drive

Current drive and current profile control
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Current drive and current profile control

Toroidal direction

Ion gyro-motion

Fast ion trajectory

Poloidal
direction

Projection of poloidally
trapped ion trajectory

R

B

• Bootstrap current

http://tfy.tkk.fi/fusion/research/

ASCOT
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Current drive and current profile control

But more & faster particles on orbits nearer the core
(green cf blue) lead to a net “banana current”
this is transferred to a helical bootstrap current via collisions

Currents due to 
neighbouring 
bananas 
largely 
cancel

orbits tighter 
where field 

stronger

dr
dPJboot ~

• Bootstrap current
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Current drive and current profile control
• Bootstrap current
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Non-monotonic current profile

Turbulence suppression

High pressure gradients

Large bootstrap current

Non-inductive current drive

Current drive and current profile control

Cf. NTM control

HW: Which heating & CD sources for fusion reactors?



time

Ip

III: Performance
at stable q(r)

I: Reverse q(r)

II: Create ITB

q95~ 5

I: Heat during current rise, external current drive (reverse q).

II: Increase heating power to stabilise turbulence (ITB).
Improve plasma confinement, try to increase pressure (βN)

III: Keep going: ITER non-inductive regime: HH≈1.6; βN≈3.0
(ITER: 9MA, 50% external current drive (73MW), 50% bootstrap fraction)

Technique used since mid 1990´s

Reversed Shear Scenario



Reversed Shear Scenario

I: Form q(r), II: create ITB, III: But discharge terminates (unstable)
Fukuda T and the JT-60U team 2002 Plasma Phys. Control. Fusion 44 B39–B52
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• Formation of an ITB at low ne,
with 15 MW NBI power
Ti > Te, high rotation shear

• ITBs are relatively short lived,
only few τE

• Good, transient performance:
H89~3, βN ~ 3

• ITB not compatible with 
H-mode edge barrier and 
large ELMs

Reversed Shear Scenario



Wade, Nucl. Fusion 43 (2003) 634–646

(R0=1.7m. ,a=0.6m. )

• Less RS
• HH98(y,2) = 1.37
• βN = 2.62
• q95 = 5
• „Weak“ ITBs

Reversed Shear Scenario



MSE, Magnetic Probe Measurements

Controller

j (r) from Analysis Methods

NBI

• Current density profile control at ASDEX Upgrade

28

Reversed Shear Scenario
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• Modulation combinations of actuators (NBI, LH, ICRH) to infer 
the coefficients of the state space model of the slow loop.

• Two control loops, 4 actuators (NBI, LH, ICRH, PF)

RT Current and Pressure Profile Control
• Simultaneous control of distributed magnetic and kinetic paramters
• Dedicated experiments to identify controller coefficients
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RT Current and Pressure Profile Control

• Real time pressure profile and
q-profile control to keep ITB steady 

Mazon et al, PPCF 2002
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• JT60-U: Real time qmin control with MSE diagnostics and LHCD

JT-60U31

RT Current and Pressure Profile Control
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