Fusion Reactor Technology I (459.760, 3 Credits)

Prof. Dr. Yong-Su Na (32-206, Tel. 880-7204)

Contents

- Week 1. Magnetic Confinement
- Week 2. Fusion Reactor Energetics (Harms 2, 7.1-7.5)
- Week 3. How to Build a Tokamak (Dendy 17 by T. N. Todd)
- Week 4. Tokamak Operation (I): Startup
- Week 5. Tokamak Operation (II):

Basic Tokamak Plasma Parameters (Wood 1.2, 1.3) Week 7-8. Tokamak Operation (III): Tokamak Operation Mode Week 9-10. Tokamak Operation Limits (I): Plasma Instabilities (Kadomtsev 6, 7, Wood 6) Week 11-12. Tokamak Operation Limits (II): Plasma Transport (Kadomtsev 8, 9, Wood 3, 4) Week 13. Heating and Current Drive (Kadomtsev 10) Week 14. Divertor and Plasma-Wall Interaction

Contents

Week 1. Magnetic Confinement

- Week 2. Fusion Reactor Energetics (Harms 2, 7.1-7.5)
- Week 3. How to Build a Tokamak (Dendy 17 by T. N. Todd)
- Week 4. Tokamak Operation (I): Startup
- Week 5. Tokamak Operation (II):

Basic Tokamak Plasma Parameters (Wood 1.2, 1.3) Week 7-8. Tokamak Operation (III): Tokamak Operation Mode Week 9-10. Tokamak Operation Limits (I): Plasma Instabilities (Kadomtsev 6, 7, Wood 6) Week 11-12. Tokamak Operation Limits (II):

Plasma Transport (Kadomtsev 8, 9, Wood 3, 4)

Week 13. Heating and Current Drive (Kadomtsev 10)

Week 14. Divertor and Plasma-Wall Interaction

 Intrinsic primary heating in tokamaks due to Joulian dissipation generated by currents through resistive plasma: thermalisation of kinetic energies of energetic electrons (accelerated by applied E) via Coulomb collision with plasma ions
Primary heating due to lower cost than other auxiliary heatings

Ohmic Heating

$$L_p \dot{I}_p + I_p R_p = V_p = -\dot{\phi}$$

• Total change in magnetic flux needed to induce a final current

$$\begin{split} \Delta\phi_{ind} &= \int_0^{t_f} \dot{\phi} dt = L_p I_p^f \approx \mu_0 R_0 \bigg[\ln \bigg(\frac{8R_0}{a\sqrt{k}} \bigg) + \frac{l_i}{2} - 2 \bigg] I_p^f \\ &\quad l_i \approx \ln \big[1.65 + 0.89(q_{95} - 1) \big] \quad \text{internal inductance} \end{split}$$

 Additional magnetic flux needed to overcome resistive losses during start up

 $\Delta \phi_{res} = C_E \mu_0 R_0 I_p^f$, $C_E \approx 0.4$ Ejima coefficient

• Further change in magnetic flux needed to maintain I_p after start up

$$\Delta\phi_{burn} = \int_0^t I_p^f R_p dt'$$

• Technological limit to the maximum value of B_{OH}

 $\Delta \phi \approx \pi r_v^2 \Delta B_{OH}$ Tokamak is inherently a pulsed device.

Ohmic Heating

Ohmic heating density

$$P_{\Omega} = \mathbf{j} \cdot \mathbf{E} = \eta \left\langle j^2 \right\rangle \ [W/m^2]$$

$$\begin{split} \eta_{n} &= \frac{\eta_{s}}{\left(1 - \left(\frac{r}{R}\right)^{\frac{1}{2}}\right)^{2}} \quad \text{: Neoclassical resistivity} \\ \eta_{s} \text{: Spitzer resistivity} \\ Z_{eff} &= \frac{\sum_{s} n_{s} Z_{s}^{2}}{n_{e}}, \quad n_{e} = \sum_{s} n_{s} Z_{s} \\ \eta &\approx 8 \times 10^{-8} Z_{eff} / T_{e}^{\frac{3}{2}} \quad (r = a/2, \ R/a = 3) \\ j(r) &= j_{0} (1 - (r/a)^{2})^{v} \\ \left\langle j^{2} \right\rangle &= j_{0}^{2} / (2v + 1) \\ R_{\theta}(r) &= \frac{\mu_{0} a^{2} j_{0}}{2(v + 1)r} \left[1 - \left(1 - \frac{r^{2}}{a^{2}}\right)^{v+1} \right] \text{ Ampère's law} \\ q_{a} &= a B_{\phi} / R B_{\theta}, \quad q_{a} / q_{0} = v + 1, \quad j_{0} = 2 B_{\phi} / R q_{0} \mu_{0} \\ \left\langle j^{2} \right\rangle &= 2 \left(\frac{B_{\phi}}{\mu_{0} R} \right)^{2} \frac{1}{q_{0} \left(q_{a} - \frac{1}{2} q_{0}\right)} \end{split}$$

Ohmic Heating $P_{\Omega} = \eta \left\langle j^{2} \right\rangle = 1.0 \times 10^{5} \left(\frac{Z_{eff}}{T^{3/2}} \right) \left[\frac{1}{q_{o}(q_{a} - q_{o}/2)} \right] \left(\frac{B_{\phi}}{R} \right)^{2}$ $= 3nT / \tau_{E} = P_{L}$

It seems unlikely that tokamaks that would lead to practical reactors can be heated to thermonuclear temperatures by Ohmic heating!

259-Car Autobahn pile-up near Braunschweig, largest in German history: (20 July 2009)

- More than 300 ambulances, fire engines and police cars rushed to the scene to tend to the 66 people injured in the crash.
- The crash was blamed on cars aquaplaning on puddles and a low sun hindering drivers.

259-Car Autobahn pile-up near Braunschweig, largest in German history: (20 July 2009)

Plasma

Neutral beam

Andy Warhol

http://www.nasa.gov/mission_pages/galex/20070815/f.html

- Supplemental heating by energy transfer of neutral beam to the plasma through collisions
- Requirements
- Enough energy for deep penetration
- Enough power for desired heating
- Enough repetition rate and pulse length > τ_E
- Allowable impurity contamination

Injection of a beam of neutral fuel atoms (H, D, T) at high energies $(E_b > 50 \text{ keV})^*$

Ionisation in the plasma

 \prod

↓ Beam particles confined

↓ Collisional slowing down

R

* $E_b = 120$ keV and 1 MeV for KSTAR and ITER, respectively

H,D,T

Generation of a Neutral Fuel Beam

Ion Acceleration

17

• JET NBI System

• JET NBI System

• JET NBI System

JET with machine and Octant 4 Neutral Injector Box

• JET NBI System

Octant 4 Neutal Injector Box

Ion source

- Requirements
- Large-area uniform quiescent flux of high-current ions
- Large atomic ion fraction (D⁺, D⁻) > 75 % \rightarrow adequate penetration
- Low ion temperature (<< 1 eV) to minimize irreducible divergence of extracted ion beams due to random thermal motion of ions

Ion source

- Ion generation
- Positive ion generation by electric discharge

$$\begin{split} D_2 + e &\rightarrow D^+ + D + e + e \\ D_2 + e &\rightarrow D_2^+ + e + e \\ D_2 + D_2^+ &\rightarrow D_3^+ + D \end{split}$$

- Negative ion generation

 $D + e \rightarrow D^{-} + hv$ Radiative attachment in high density gas ($E_{binding} = 0.75 \text{ eV}$) $D_{2}^{*} + e \rightarrow D^{-} + D$ Dissociative electron attachment by electric discharge (~eV) $D^{+} + cathode \ surface \ (+Cs) \rightarrow D^{-}$ Surface production by electric discharge $D^{0} + cathode \ surface \ (+Cs) \rightarrow D^{-}$ (~100 eV range) $D^{+} + M^{0} \rightarrow D^{0} + M^{+}$ Electron attachment (Double electron capture) $D^{0} + M^{0} \rightarrow D^{-} + M^{+}$ M: alkali or alkali-earth metal vapor (Cs, Rb, Na, Sr, Mg)

Beam Forming System: Extraction and steering

• 3-lens system

Grid system at ASDEX Upgrade

- Ion extraction + acceleration + minimum beam divergence ($\leq 1^{\circ}$)

Cathodes difficult to replace, finite life time

Neutraliser

- Charge exchange: $\underbrace{D^+}_{fast} + \underbrace{D_2}_{gas} \rightarrow \underbrace{D}_{fast} + \underbrace{D_2^+}_{slow}$
- Re-ionisation:

$$\underbrace{D}_{fast} + \underbrace{D}_{gas} \longrightarrow \underbrace{D}_{fast}^{+} + \underbrace{D}_{2}_{gas}^{+} + e^{-\frac{1}{2}}$$

- Efficiency: (outgoing NB power)/(entering ion beam power)

- Negative ion beam development in JT-60U

- Ion Beam Dump and Vacuum Pumps
 - Beam dump
 - Deflect by analyzing magnet
 - Minimize reionisation losses
 - Prevent local power dump at undesirable place (~kW/m²)
 - Possible application to direct energy conversion
 - Pumping
 - Minimise reioninsaton losses
 - Prevent cold neutral particles from flowing into reactor plasma
 - Liquid He cryopumps ($\sim 10^6$ l/s for \sim MW system)

Energy Deposition in a Plasma

Charge exchange: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D$ Ion collision: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D^+ + e$ Electron collision: $D_{fast} + e \rightarrow D_{fast}^+ + e + e$

Attenuation of a beam of neutral particles in a plasma

http://www.nasa.gov/mission_pages/galex/20070815/f.html

Energy Deposition in a Plasma

Charge exchange: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D$ Ion collision: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D^+ + e$ Electron collision: $D_{fast} + e \rightarrow D_{fast}^+ + e + e$ Attenuation of a beam of neutral particles in a plasma $\frac{dN_b(x)}{dN_b(x)} = -N_b(x)n(x)\sigma_{tot}$ Ex. beam intensity: $I(x) = N_h(x)v_h$ Cross section (cm²) O₁ O₂ Charge exchange(σ_x) Electron $= I_0 \cdot \exp(-x/\lambda)$ $E_{b0} = 70 keV$ $\sigma_{tot} = 5 \cdot 10^{-20} m^2$ Proton ionisation (o_i) Oker $n = 5 \cdot 10^{20} m^{-3} \qquad \lambda = \frac{1}{---} \approx 0.4m$ $n\sigma_{tot}$ Penetration (attenuation) length T. /~ SeV 10 In large reactor plasmas, beam cannot reach core! H⁰ energy (keV)

100

Energy Deposition in a Plasma

Energy Deposition in a Plasma

 $\begin{array}{lll} \text{Charge exchange:} & D_{fast} + D^+ \rightarrow D_{fast}^+ + D \\ \text{Ion collision:} & D_{fast} + D^+ \rightarrow D_{fast}^+ + D^+ + e \\ \text{Electron collision:} & D_{fast} + e \rightarrow D_{fast}^+ + e + e \end{array}$

Attenuation of a beam of neutral particles in a plasma

Slowing down

- Critical energy: The electron and ion heating rates are equal

$$\xi_{c} = \frac{14.8A_{b}\hat{T}_{e}}{(Z_{i}A_{i})^{2/3}}$$

Slowing down

excursion = $10-20^{\circ}$ off perpendicular in co-injection direction

• ASDEX Upgrade

