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Heating and Current Drive

http://iter.rma.ac.be/en/img/Heating.jpg
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Ohmic Heating
Electric blanket

• Intrinsic primary heating in tokamaks due to Joulian dissipation
generated by currents through resistive plasma: 
thermalisation of kinetic energies of energetic electrons 

(accelerated  by applied E) via Coulomb collision with plasma ions
• Primary heating due to lower cost than other auxiliary heatings
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φ−==+ ppppp VRIIL

• Total change in magnetic flux needed to induce a final current 
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• Additional magnetic flux needed to overcome resistive losses 
during start up

• Further change in magnetic flux needed to maintain Ip after start up

internal inductance

Ejima coefficient

OHv Br Δ≈Δ 2πφ

• Technological limit to the maximum value of BOH

Tokamak is inherently a pulsed device.

Ohmic Heating
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: Neoclassical resistivity2
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• Ohmic heating density
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Ohmic Heating

Magnetic field limited by engineering 
→ compact high-field tokamak
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- Zeff limited by radiation losses
- High T required for enough fusion reactions
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Alcator scaling

Average temperatures above ~ 7 keV are necessary before alpha 
heating is large enough to achieve a significant fusion rate.

Ohmic Heating
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It seems unlikely that tokamaks that would lead to practical reactors 
can be heated to thermonuclear temperatures by Ohmic heating!
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259-Car Autobahn pile-up 
near Braunschweig, 
largest in German history: 
(20 July 2009)

Neutral Beam Injection

- More than 300 ambulances, fire engines and police cars 
rushed to the scene to tend to the 66 people injured in the crash. 

- The crash was blamed on cars aquaplaning on puddles and a low
sun hindering drivers.
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Neutral Beam Injection

259-Car Autobahn pile-up 
near Braunschweig, 
largest in German history: 
(20 July 2009)
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Andy Warhol

http://www.nasa.gov/mission_pages/galex/20070815/f.html

Plasma

NBI

Neutral beam

Neutral Beam Injection

• Supplemental heating by energy transfer of neutral beam 
to the plasma through collisions

• Requirements
- Enough energy for deep penetration
- Enough power for desired heating
- Enough repetition rate and pulse length > τE
- Allowable impurity contamination



⇓
Beam particles confined

⇓
Collisional slowing down

Injection of a beam of neutral
fuel atoms (H, D, T) 

at high energies (Eb > 50 keV)* 

⇓
Ionisation in the plasma

Neutral Beam Injection

14

* Eb = 120 keV and 1 MeV for KSTAR and ITER, respectively 

B

H,D,T



15

Neutraliser

D

D

D2

Low
temperature
D plasma,

5 eV

Ion source 

D+, e-

100 kV -3 kV
0 kV

Extraction
acceleration grids

D+

D+

D2
+

Beam dump

B

D+

Deflection
magnet

Vacuum valve

Beam
duct

Ex) W7-AS: V=50 kV, I=25 A, power deposited in plasma: 0.4 MW

• Generation of a Neutral Fuel Beam

Neutral Beam Injection
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• Ion Source

Neutral Beam Injection
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• Ion Acceleration

Neutral Beam Injection
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• Ion Neutralisation

Neutral Beam Injection
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• Ion Deflection

Neutral Beam Injection
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• Neutral Injection

Neutral Beam Injection
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• JET NBI System

Neutral Beam Injection
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• JET NBI System

Neutral Beam Injection
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• JET NBI System

JET with machine and Octant 4 Neutral Injector Box

Neutral Beam Injection
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• JET NBI System

Octant 4 Neutal Injector Box

Neutral Beam Injection
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• Ion source

Neutral Beam Injection

• Requirements
- Large-area uniform quiescent flux of high-current ions
- Large atomic ion fraction (D+, D-) > 75 % → adequate penetration
- Low ion temperature ( << 1 eV ) to minimize irreducible divergence 

of extracted ion beams due to random thermal motion of ions
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• Ion source

Neutral Beam Injection

• Ion generation
- Positive ion generation by electric discharge
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ν Radiative attachment in high density gas (Ebinding = 0.75 eV)

Dissociative electron attachment by electric discharge (~eV)

Surface production by electric discharge
(~100 eV range)

- Negative ion generation
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• 3-lens system

Positive
electrode

V1

Negative
electrode

V2

Earth
electrode

potential lines

Grid system at ASDEX Upgrade

0.5m

0.2m

• Beam Forming System: Extraction and steering

Neutral Beam Injection

21 VV >>

Source
Plasma

- Ion extraction + acceleration + minimum beam divergence (≤ 1°)
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Neutral Beam Injection
• Ion sources

RF Source

0.4 - 0.8 m

Cathodes difficult to replace, finite life time

Duopigatron
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slowfastgasfast
DDDD ++ +→+ 22- Charge exchange:

- Re-ionisation:
−+ ++→+ eDDDD

gasfastgasfast
22

- Efficiency: (outgoing NB power)/(entering ion beam power)

• Neutraliser

Neutral Beam Injection
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- Negative ion beam development in JT-60U

Neutral Beam Injection
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• Ion Beam Dump and Vacuum Pumps

Neutral Beam Injection

• Beam dump
- Deflect by analyzing magnet
- Minimize reionisation losses
- Prevent local power dump at undesirable place (~kW/m2)
- Possible application to direct energy conversion

• Pumping
- Minimise reioninsaton losses
- Prevent cold neutral particles from flowing into reactor plasma
- Liquid He cryopumps ( ~106 l/s for ~MW system)
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• Energy Deposition in a Plasma

Neutral Beam Injection

Andy Warhol

http://www.nasa.gov/mission_pages/galex/20070815/f.html

n: density
σ: cross section

NBI

beam 
energy 

Attenuation of a beam of neutral particles in a plasma

Charge exchange: DDDD fastfast +→+ ++

Ion collision: eDDDD fastfast ++→+ +++

Electron collision: eeDeD fastfast ++→+ +



33

• Energy Deposition in a Plasma

Neutral Beam Injection

Ex. beam intensity: 
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Charge exchange: DDDD fastfast +→+ ++

Ion collision: eDDDD fastfast ++→+ +++

Electron collision: eeDeD fastfast ++→+ +

Attenuation of a beam of neutral particles in a plasma
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• Energy Deposition in a Plasma

Neutral Beam Injection
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Charge exchange: DDDD fastfast +→+ ++

Ion collision: eDDDD fastfast ++→+ +++

Electron collision: eeDeD fastfast ++→+ +

Attenuation of a beam of neutral particles in a plasma
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• Energy Deposition in a Plasma

Neutral Beam Injection

Charge exchange: DDDD fastfast +→+ ++

Ion collision: eDDDD fastfast ++→+ +++

Electron collision: eeDeD fastfast ++→+ +

Attenuation of a beam of neutral particles in a plasma
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Neutral Beam Injection
• Slowing down

- Critical energy: The electron and ion heating rates are equal

814/3   ,
6

ln2          2
1

2
3

22
1

2
1

2
3

2
0

2
3

2
1

422
1

≈=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

Λ
=

+==−

ieb

be

b

b

ebe

ie
b

mmAZCC

TA

meZn

PPP
dt

d

π
ξ

ξ

επ

ξ 2

2
1

bbb vm=ξ



37eb T̂/ξ

Io
n
 h

e
a
tin

g
 fra

c
tio

n

3/2)(

ˆ8.14

ii

eb
c AZ

TA
=ξ

Neutral Beam Injection
• Slowing down

Critical energy
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1. ξb > ξc: Slowing down on electrons
no scatter

v||

⊥v
vb

v||

⊥v
vb

2. ξb < ξc: Slowing down on ions
scattering of beams

1

0 ξb/ξc 10

Fraction of initial beam energy 
going to ions

Neutral Beam Injection
• Slowing down

after before
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B

Tangential injection

Radial (perpendicular, normal)
injection

• standard ports
• shine-through
• particle loss

B

B∇

.

Radial injection:

• Injection Angle

Neutral Beam Injection
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B

Tangential injection

Radial (perpendicular, normal)
injection

• Injection Angle

KSTAR NB shine-through armor

Neutral Beam Injection
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Better 
heating

efficiency

B
.

Ip

Worse 
heating

efficiency

Projected
particle 

drifts

- At low magnetic fields heating efficiency depends on NBI direction.
- Best injection angle for maximum penetration and minimum orbital 

excursion = 10-20° off perpendicular in co-injection direction

• Injection Angle

Neutral Beam Injection

rBvF ˆ−=×= θerBvF ˆ=×= θe

outward shift of orbit centerinward shift → bad drift orbits 
→ energetic ion loss to wall/limiters
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• JET

• ASDEX  Upgrade

Neutral Beam Injection
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