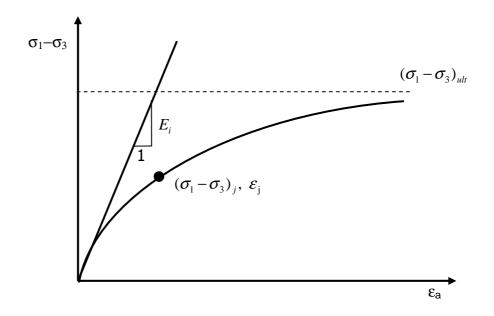
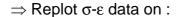
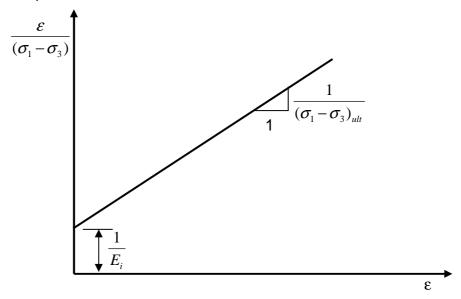
(5) Nonlinear Pseudo-Elastic Model

- Duncan-Chang (1970)
- Incremental Stress-Strain Relations
 - i) Nonlinearity
 - Kondner and Zelasko (1963)
 - σ - ϵ relations are approximated by a hyperbola.



$$(\sigma_1 - \sigma_3)_j = \frac{\varepsilon_j}{\frac{1}{E_i} + \frac{\varepsilon_j}{(\sigma_1 - \sigma_3)_{ult}}}$$
 (1)





Transformed σ - ϵ relations :

$$\frac{\varepsilon}{(\sigma_1 - \sigma_3)} = \frac{1}{E_i} + \frac{\varepsilon}{(\sigma_1 - \sigma_3)_{ult}}$$

Physical significance

- · Curve defined in terms of
 - $\rightarrow E_{i},$ Young's modulus.
 - \rightarrow Asymptotic value of principal stress difference ($\sigma_1\text{-}\sigma_3)$ at failure.

- ii) Stress-dependent nature of σ - ϵ behavior For most cases : an increase of σ_3 results in increases in E_i & $(\sigma_1$ - $\sigma_3)_{ult}$.
 - a) To account E_i dependence on stress (Janbu, 1964).

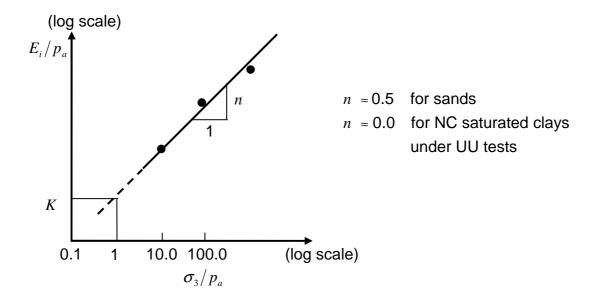
$$E_i = Kp_a \left(\frac{\sigma_3}{p_a}\right)^n \qquad ----- \qquad (2)$$

 $K \equiv \text{modulus number}$

 $n \equiv \text{modulus exponent}$

 $p_a \equiv$ atmospheric pressure

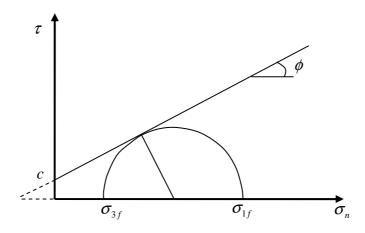
To evaluate K, n; perform 3 TX tests at different values of σ_3 .



- b) To account $(\sigma_1 \sigma_3)_{ult}$ dependence on σ_3 .
 - relate $(\sigma_1$ - $\sigma_3)_{ult}$ to $(\sigma_1$ - $\sigma_3)_f$.

$$R_f = \text{failure ratio} = \frac{(\sigma_1 - \sigma_3)_f}{(\sigma_1 - \sigma_3)_{ult}} \quad (0.5 \le R_f \le 0.95)$$

- define failure (i.e. $(\sigma_1$ - $\sigma_3)_f$). Based on Mohr-Coulomb failure criteria.



General expression (from geometry of circle)

iii) Relate tangential modulus, Et to stress level.

Differentiate eq. (1) with respect to ε .

$$\frac{d(\sigma_{1}-\sigma_{3})}{d\varepsilon} = \frac{d\left[\frac{\varepsilon}{\frac{1}{E_{i}} + \varepsilon/(\sigma_{1}-\sigma_{3})_{ult}}}\right]}{d\varepsilon}$$

Let
$$a = \frac{1}{E_i}$$
, $b = \frac{1}{(\sigma_1 - \sigma_3)_{ult}}$

$$\frac{d(\sigma_1 - \sigma_3)}{d\varepsilon} = \frac{d\left[\frac{\varepsilon}{a + b\varepsilon}\right]}{d\varepsilon}$$

$$= \frac{a + b\varepsilon - b\varepsilon}{(a + b\varepsilon)^2}$$

$$= \frac{a}{(a + b\varepsilon)^2} - \dots$$
 (i)

Rewrite eq. (1) in terms of strain.

$$\varepsilon = \frac{a(\sigma_1 - \sigma_3)}{1 - b(\sigma_1 - \sigma_3)} \tag{ii}$$

$$E_{t} = \frac{d(\sigma_{1} - \sigma_{3})}{d\varepsilon} = \frac{a}{\left[a + \frac{ab(\sigma_{1} - \sigma_{3})}{1 - b(\sigma_{1} - \sigma_{3})}\right]^{2}}$$

$$= \frac{\left[1 - b(\sigma_{1} - \sigma_{3})\right]^{2}}{a}$$

$$= \left[1 - \frac{\sigma_{1} - \sigma_{3}}{(\sigma_{1} - \sigma_{3})_{ut}}\right]^{2} E_{i} \qquad (iii)$$

Put eq. (2), (3) into (iii).

$$E_{t} = \left[1 - \frac{R_{f}(1 - \sin\phi)(\sigma_{1} - \sigma_{3})}{2c\cos\phi + 2\sigma_{3}\sin\phi}\right]^{2} Kp_{a} \left(\frac{\sigma_{3}}{p_{a}}\right)^{n}$$

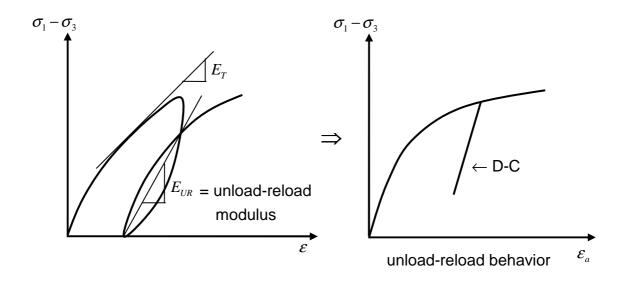
$$\Rightarrow E_{t} \text{ is a } f(\phi, c, K, n, R_{f})$$

$$(\sigma_{1} - \sigma_{3})_{ult}$$

iv) Cyclic loading behavior

- Use different E values for loading and unloading-reloading.

$$E_{UR} > E_T \quad (E_{UR} > E_i)$$



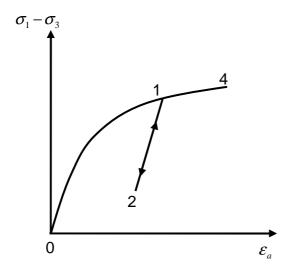
Empirically,
$$E_{UR} = K_{UR} p_a (\frac{\sigma_3}{p_a})^n$$

Assume that n is same for unloading-reloading as for primary loading.

 $K_{\it UR} \equiv {\it unload-reload modulus number}.$

$$K_{UR} > K$$
 for dense sand (20% greater)
for very loose sand (as much as 3 times greater)

How long does soil stay "elastic" during unloading-reloading?



Loading sequence 0-1-2-1-4 between 1-1, use $E_{\it UR}$

maximum shear stress level (SL_{max}) in loading history

- Notes

Define stress level (SL)

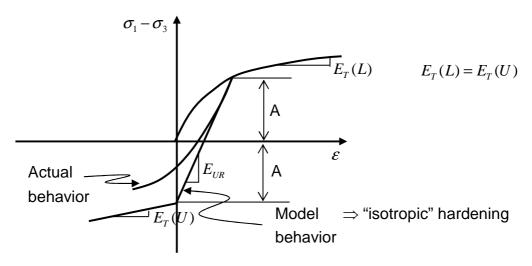
$$SL = \frac{(\sigma_1 - \sigma_3)}{(\sigma_1 - \sigma_3)_f}$$

$$0 \le SL \le 1.0$$

$$\uparrow \qquad \uparrow$$
Isotropic failure
Loading

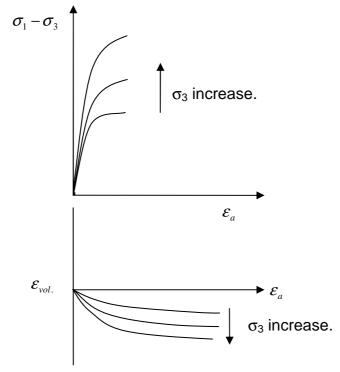
If $SL < SL_{\rm max}$, then use elastic ($E_{\it UR}$) for unloading-reloading.

- What does SL criteria imply about complete cycles of loading?



v) Nonlinear volume change

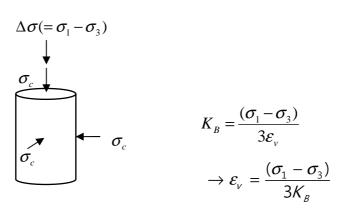
- No expansion, only compression
- Typical triaxial compression test results



$$K_{\scriptscriptstyle B} = \text{Bulk modulus} = \frac{\Delta\sigma_1 + \Delta\sigma_2 + \Delta\sigma_3}{3\varepsilon_{\scriptscriptstyle \mathcal{VO}}} \quad \rightarrow \quad \varepsilon_{\scriptscriptstyle \mathcal{VO}} = \frac{\Delta\sigma_1 + \Delta\sigma_2 + \Delta\sigma_3}{3K_{\scriptscriptstyle B}}$$

 $K_{\scriptscriptstyle B}$ is a function of $\sigma_{\scriptscriptstyle 3}$ and it is independent of stress level $(\sigma_{\scriptscriptstyle 1}-\sigma_{\scriptscriptstyle 3}).\,K_{\scriptscriptstyle B}$ is not changed by increase of loading.

Vol. strains are a function of changes in mean normal stress.

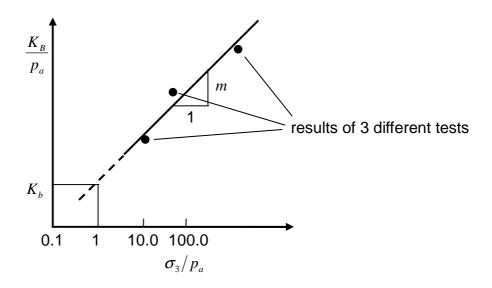


Use Janbu relation.

$$K_B = K_b p_a (\frac{\sigma_3}{p_a})^m$$

 $K_b \equiv$ bulk modulus number

 $m \equiv$ bulk modulus exponent



Typical soils : 0 < m < 1 $m < 0 \Rightarrow K_B \text{ decreases as } \sigma_3 \text{ increase.}$ i.e. : quick clay

Restrictions on K_B

$$0 < v < 0.5$$

$$v = \frac{1}{2} - \frac{E_{t}}{6K_{B}} \quad (\Leftarrow K_{B} = \frac{E_{t}}{3(1 - 2v)})$$
for $v = 0$, $K_{B} = \frac{E_{t}}{3}$

$$v = 0.49, K_{B} = 16.7E_{t}$$

$$\frac{E_{t}}{3} < K_{B} < 16.7E_{t}$$

Summary

From i) ~ v) & 8 parameters,

Symbol	Name	Purpose
K	modulus #	
$K_{\it UR}$	unload-reload modulus #	relate E_i , E_{UR} to σ_3 .
n	modulus exponent	
c , ϕ	Mohr-Coulomb parameters	relate $(\sigma_1 - \sigma_3)_f$ to σ_3 .
R_f	failure ratio	relate $(\sigma_1 - \sigma_3)_f$ to $(\sigma_1 - \sigma_3)_{ult}$.
K_{b}	bulk modulus number	relate K_R to σ_3 .
m	bulk modulus exponent	relate R _B to 03.

Comments

i) Limitations

- a) Useful for predicting movements in stable earth masses (no plastic considerations).
- b) Does not include volume changes caused by shear-induced dilatancy (only volumetric compression is allowed for monotonically-increasing loads).
- c) Parameters are not fundamentally soil properties, but represent empirical parameters for a limited set of loading conditions.
- d) Full stress reversal must occur before nonlinear (inelastic) strains develop for cyclic loads or load reversals.

ii) Advantages

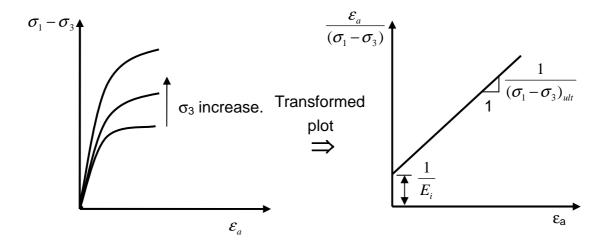
- a) Parameters come from simple TX tests.
- b) Effective stress and total stress relationships are the same, but parameters different.
- c) General model; both sands (+) clays can be handled.
- d) Values of parameters have been calculated for more than 150 soils.
- e) Can handle anisotropic soils with plane strain or true TX test results.

Parameter Identification

Drained conditions: 3-CID TXC tests with volume change measurements.

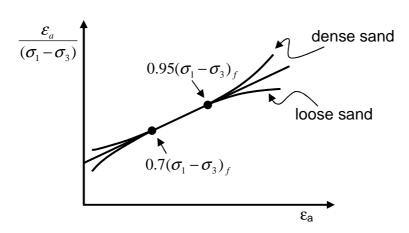
Undrained conditions : 3-CIU TXC tests.

① Plot σ -ε data.



3 curves are plotted.

Ref.) D-C

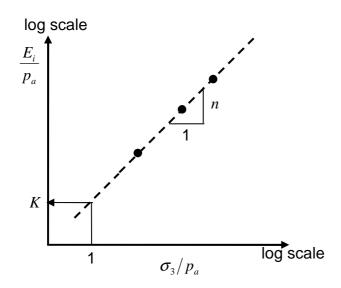


⇒ U.C. Berkeley's experience indicated using these pts to define straight line gives best fit of all responses.

$$\Rightarrow$$
 We find $\frac{1}{E_i}$, $\frac{1}{(\sigma_1 - \sigma_3)_{ult}}$.

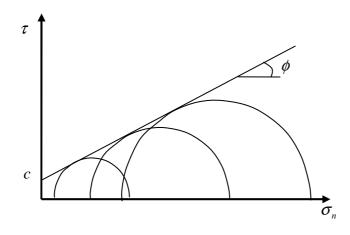
Each test gives 1 set of values \Rightarrow For R_f , use average value

② E_i .



We find, K, n.

3 Plot Mohr circles at failure.

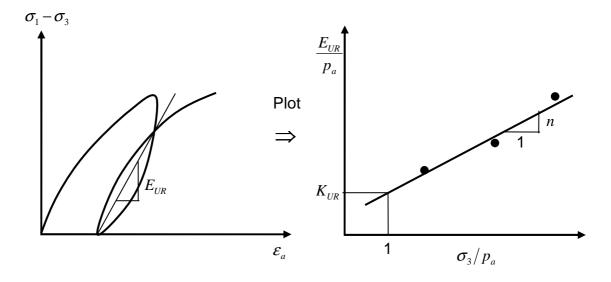


$$c, \phi \rightarrow (\sigma_1 - \sigma_3)_f$$

Then, we can compute $R_f = \frac{(\sigma_1 - \sigma_3)_f}{(\sigma_1 - \sigma_3)_{ult}} = \frac{2c\cos\phi + 2\sigma_3\sin\phi}{(\sigma_1 - \sigma_3)_{ult}(1 - \sin\phi)}$

Use average value among values with 3 sets of $\sigma_{\rm 3}$ and $(\sigma_{\rm 1}-\sigma_{\rm 1})_{\rm ult}$

4 To find unload-reload parameters (ideally need 1 unload-reload cycle at each of 3 confining stresses).



Assume slope of line is same as for primary loading.

5 For volume change parameters (only for drained tests).

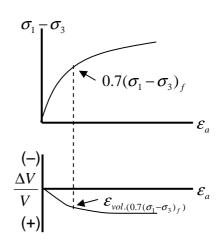
- Recall :
$$K_{\scriptscriptstyle B} = \frac{\Delta \sigma_{\scriptscriptstyle 0}}{\Delta \varepsilon_{\scriptscriptstyle vol.}}$$

for triaxial shearing,
$$K_B = \frac{\sigma_1 - \sigma_3}{3\varepsilon_{vol.}}$$

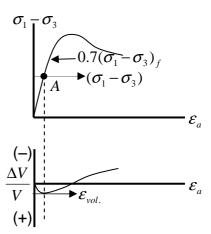
- To select K_B:

Two possibilities; (based on $0.7(\sigma_1 - \sigma_3)_f$)

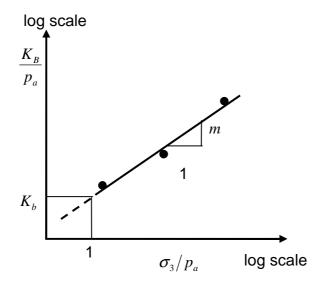
1) If the slope of volume change curve does not reach 0 before the pt. that corresponds to $0.7(\sigma_1-\sigma_3)_f$, then use $0.7(\sigma_1-\sigma_3)_f$ and corresponding $\varepsilon_{vol.}$ to K_B.



2) If the slope of the volume change curve = 0 before $0.7(\sigma_1-\sigma_3)_f$ stress level is reached, then use the $(\sigma_1-\sigma_3)$ and $\varepsilon_{vol.}$ at that point to compute K_B.



$$\Rightarrow K_B = \frac{(\sigma_1 - \sigma_3)}{3\varepsilon_{vol.}}$$



• Eliminating inconsistencies from data

- 1) Select data appropriate for problem under consideration.
 - Natural soils : Need to run tests on high quality undisturbed samples.
 - Fills: Use specimens compacted to water content and dry density (with same compaction energy) as the fill was in field.
 - Use drained conditions that are expected in field loading.
- 2) Smooth the data.
 - Stress controlled loading.

