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Introduction Gy
Physical problem vs. mathematical modeling
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» Many physical behavior can be L —
expressed as differential equation ﬁ i
(containing derivatives of unknown
function) T i3

+ Three Steps If\ m

1. Deriving them from physical or
other problems (modeling) s S0 i

2. Solving them by standard methods | ryffit K\ éﬁﬁ//{f—;@%

3. Interpreting solutions and their 1; _ | -
graphs in terms of a given problem = wragineno

Fig.1 Some applications of differential equations



1.1 Basic Concepts. Modeling fisd,
ODE vs PDE "
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+ Differential Equation: An equation containing derivatives of an
unknown function

— Ordinary Differential Equation (& 0| =2 2f & A1) : contains one or
several derivatives of an unknown function of one independent
variables (= & B == 1H)

X y'=cosx, y"+9y=0, X’y"y+2e*y"=(x*+2)y’

— Partial Differential Equation (& 0| = 2f & A1) : contains partial
derivatives of an unknown function of two or more variables
(S8 = 2)10] 4
Ex. o« s 02U _

. A
aXZ ayZ



1.1 Basic Concepts. Modeling iy
Order’ EXpiICIt VS' impiICIt SEOUL NATlo:iLUNIVERSITY

* Order: The highest derivatives of the unknown function

- Ex (1) y'=cosx = 1st Order(UEI)
_ (2) y9y-0 = 2" order (2Hl)
- (3) Xy"y+2ey =(x*+2)y? = 3 order (3AH)

* First-order ODE: Equations contain only the first derivatives y’
and may contain y and any given functions of x

— Explicit form: y'=f(xy)

— Implicit form:  F(xy.y)=0



1.1 Basic Concepts. Modeling i
Types of Solution
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Solution: functions that make the equation hold true

— General solution (& BFolf): a solution that contains an arbitrary
constant

— Particular solution (= ==0Hl): a solution in which we choose a
specific constants

— Singular solution (< Ol oHf): an additional solution that cannot be

1 M1 NWIMUIWVITLT Wl IUALG 1ini

obtained from the general solution

]Ex 16) ODE y? - xy' +y =0, general solution y = cx - ¢?
singular solution y = x4/4.
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1.1 Basic Concepts. Modeling G
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* |nitial Value Problem

— An ordinary differential equation together with specified value of
the unknown function at a given point in the domain of the solution

y'=f(xy), Y(X)=Y
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* Solve the initial value problem
y'=%=3y, y(0)=57
 Step 1 Find the general solution.
y(x)=ce™

o Step 2 Apply the initial condition.

y(0)=ce’=c=5.7

. ' _ 3X
Particular solution : Y(x)=57¢



1.1 Basic Concepts. Modeling o
Physical phenomena = Mathematical model
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» Typical steps of Modeling

— Step1 : The transition from the physical situation to its
mathematical formulation

— Step 2: The solution by a mathematical method

— Step 3: The physical interpretation of differential equations and
their applications



1.1 Basic Concepts. Modeling gg
Example 5. o oL e

« Given an amount of a radioactive substance, say 0.5 g(gram), find the amount present
at any later time.

— Physical Information: Experiments show that at each instant a radioactive substance
decomposes at a rate proportional to the amount present.

— Step 1 Setting up a mathgmatical mogel(a differential equation) of the physical process.
By the physical law : =y = =k
The initial condition:  y(0)=05

— Step 2 Mathematical solution.
General solution @ y(t)=ce"
Particular solution : y(0)=ce’=c=05 = y(t)=05e"
Always check your result :

— Step 3 Interpretation of result.
The limitof vy as t—« s zero.

T T T4
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Fig.4. Radioactivity (Exponential decay, y = 0.5eX, with k = -1.5 as an example
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1.2 Geometric meaning of y'=f(x,y). gg
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« Direction Field (&} &F &)
— The graph with line segments (tangent line to the solution).

 Reason of importance of the direction field
— You need not solve a ODE

— The method shows the whole family of solutions and their typical properties.

¥

Isoclines: curves of
equal inclination

*CAS (Computer Algebra System): *
ex) Maple, Mathematica, Matlab ia) ByaCAS ib} By isoclines Fig. 7 Direction field of y' = xy



1.3 Separable ODEs. Modeling

Definition
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 Separable Equation

- A2y, LLER

)



1.3 Separable ODEs. Modeling Wty
Exampie.l SEOUL NATlo:iL UNIVERSITY
Solve y'=1+y?
Y 1 W1 = Yo mrzay
1+y? 1+y° 1+y?

1
— dy=|dx+c = arctany=x+¢ (BE)
j1+y2 g '[ !

= y=tan(x+c) ("2
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1.3 Separable ODEs. Modeling “:,Lﬁ
Example 3. Mixing Problem il
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— Initial Condition: 1000 gal of water, 100 Ib salt, initially brine runs in

10 gal/min, 5 Ib/gal, stirring all the time, brine runs out at 10
gal/min

— Amount of salt at t?
— Step1. Setting up a model
— Step2. Solution of the model

¥
e | e e T e e
4000 .o
: >
a2 3000
2000F /
;{ ICICID—_.-'
. 2 100k

1 L 1 L 1
] 100 200 300 400 BOO ¢
Tank Salt content v(f)
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1.3 Separable ODEs. Modeling Fiid
Extended Method: Reduction to Separable .
Form

* When equation is not separable???

 Extended Method: Reduction to Separable Form

— A certain 18t order equation can be made separable by a simple
change of variables

y'=f (lj EX. cos (lj
X X

(y:ux = u:% &y'=(ux)'=u'x+uj




1.3 Separable ODEs. Modeling s
Example 6. Reduction to Separable form
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« Example 6. Reduction to Separable Form. Solve

2Xyy'= Y% — X°



1.3 Separable ODEs. Modeling G
Example 6. Reduction to Separable o0 Ao GRS
form

« Example 6. Reduction to Separable Form. Solve

2Xyy'= Y& — X°
: 1 X L
2xyy'=y*-x* = y =§G—§j 2xy2 LHs)

y L 1 1
= Y =UX, u=;, y=ux+u=E u—a
2

. 1 1) u“+1 du 2u 1 U 1
J 22u du=—_[ldx+c* = |”‘U2+q=—|n\x\+C*:|ni+ln\c\=InE, c=e
uc+1 X ‘X‘ y

w+1=% = (lj 11=2 = xPyyi-cx
X X



1. 4 Exact ODEs. Integrating Factors e,
Basic Ideas R

For u(x,y), its differential (7] &) is

du:a—udx+6—udy

OX oy
If u(x,y)=c, thendu=0

For example, if u=x+x°y’=c <

du = (1+ 2xy>)dx + (3x°y*)dy =
_dy 1+ 2xy
or y'=—>=-
Y~ ix 3x°y*
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1. 4 Exact ODES. Integrating Factors G
Definition "
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» Exact Differential Equation (2t &M 0| & & & 4A)) -
M (x,y)dx+N(x,y)dy=0

— If the differential form M (x,y)dx+N(x,y)dy is exact

— This means that this form is the differential of u(x,y)

:a—udx+a—udy
OX oy

— Condition for exactness

M _oN oMol o(a) N
oy  ox oy oy\ox) oaxoy oxloy) ox

du = du=0 = u(xy)=c




1. 4 Exact ODEs. Integrating Factors (L
SOiUtion methOd SEOUL NATIO:?LUNIVERSITY

» Solution method of exact differential equation
(MO0 =2LEHA off8)

—

ou ou
M(x,y)dx+N(x,y)dy=—dx+—dy=0
(%, y)dx+N(x,y)dy ox X+@y y
Case 1) ou
M(xy) =50 = u(xy)=[M(xy)derk(y
— %J:N(X,Y) = % & k(y)
Case 2) N(X’y)zg_; — u(x,y):jN(X,y)dy+I(x)
= a—UZM(X’Y) > & 1(x)

OX dx



1. 4 Exact ODEs. Integrating Factors N,
Example 1. "
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* Solve cos(X+y)dx+(3y* +2y+cos(x+y))dy =0
— Step 1 Test for exactness. -2

M(x,y)=cos(x+y) = %:—sin(x+ y)

N(x,y)=3y’+2y+cos(x+y) = &:—sin(xjty)
— Step 2 Implicit general solution.

u(x, y):IM (x, y)dx+k(y)=Jcos(x+ y)dx+k(y)=sin(x+y)+k(y)

ou dk
= —=cos(x+y)+—=N(x,y) = —=3y’+2y = k=y +y*+c*
ay ( ) dy ( ) dy

Lou(xy)=sin(x+y)+y +y*=c

— Step 3 Checking an implicit solution.
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1. 4 Exact ODES. Integrating Factors G
integratlng FaCtorS SEOUL NATlO:':L UNIVERSITY

* Reduction to Exact Form, Integrating Factors

— Some equations can be made exact by multiplication by some
function (called the Integrating Factor, & = 91 Af)

* EX3. _ydx+xdy=0

— This equation is not exact. Why?
Int ting fact
— multiplying it by TEgrating Tacior
oo £330

* Issue is then how to find this integrating factor (when it is not
simple)?
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1. 4 Exact ODES. Integrating Factors G
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* Given a nonexact equation

Pdx+ Qdy =0
— Finding Integrating Factors (F)

FPdx + FQdy =0
— The exactness condition

(FQ) = %:PJrF%Dza—FPjLF@

0 (epy_ 2
X OX OX

Eg(FP):a
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1. 4 Exact ODESs. Integrating Factors G
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— Golden Rule: Solve a simpler one. Hence we look for an
integrating factor depending only on one variable.
F=F(x) = Z-r Loy
OX oy
, 1 dF 1({oP 0Q
FP,=F'Q+FQ, = E&:R(X) where R(x)=6(a—&j




1. 4 Exact ODESs. Integrating Factors i,
Integrating Factors
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Integrating Factor F(x)

If (12) is such that the right side R of (16), depends only on x, then (12) has an
integrating factor F = F(x), which is obtained by integrating (16) and taking
exponents on both sides,

(17) F(x) = exp j R(x) dx. R(x)= %(%—a@—gj

Integrating Factor F *(y)

If (12) is such that the right side R* of (18) depends only on vy, then (12) has an
integrating factor F* = F*(y), which is obtained from (18) in the form

19 _ 1(0Q 0P
(19) F¥(y) = exp f R*(y) dy. “Plax oy
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* Integrating factor for Exact Differential Equation???

_1joP_Q
F(x)zexp(IR(x)dx) R(X)_Q[ay 5)()

* =ex * *—1 @_a_P
F*(y)=exp([R*(y)dy) R _P(ax ayj
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1. 4 Exact ODES. Integrating Factors G
Example 5 - Integrating Factors o Ao bRV

» EX. 5 Find Integrating Factor and solve the following initial
value problem

(eX+y + yey)dx+(xey —1) dy=0, y(0)=-1

— Step 1. Nonexactness
— Step 2. Integrating factor. General Solution

— Step 3. Particular Solution
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1. 4 Exact ODEs. Integrating Factors “é_,i"
Example 5 - Integrating Factors "
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e’ +ye’ )dx+(xe’ -1)dy=0, y(0)=-1
(0)

— Step 1. Nonexactness

oP
Px,y)=e""7+ye’ = —=e""+e’+ye’

oP 2Q
+*
Q(x,y)=xey—1 = aa_Qzey oy OX
X

— Step 2.

1(oP 0 1 X+ 1 X+ .
e e -
re_1[0Q P 1

GCE G A

U
T
*
—_

<
~

Il

D

<

" (ex+y)dx+(x—e’y)dy:0

u=J'(eX+y)dx:eX+xy+k(y) = %u:x+k'(y):x—e‘y = k'(y)=-¢", k(y)=¢”

u(x,y)=e*+xy+e¥ =c

— Step 3. Particular Solution

y(0)=-1 = u(0,-1)=e"+0+e=372 .. u(xy)=e"+xy+e”’ =372



SLETR
Last Lecture

* Exact differential equation

] M _oN
M (X, y)dx+N(x,y)dy=0 “o "o
0 dk
M(x,y):a—i = u(x,y):_‘-M(x,y)dx+k(y) = 6—;=N(x,y) = — & k(y)

dy

— Non exact differential equation (finding integrating factors)
Pdx + Qdy =0 FPdx+ FQdy =0

ol o

F(x)=exp(jR(x)dx), where R(x)zi@; 86(3]
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1.5 Linear ODES )
Introduction
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HXH ME 0] 2ug Al
)k-|'c'>':| |:|| =] |:||-Jt-l

(Homogeneous
Linear ODEs)
0| SLEE A) (Linear ODEs) HAF ME 0] SLEF Al
(ODEs)

o O
(Nonhomogeneous
HME O] ukx] Al Linear ODEs)

(Nonlinear ODEs)

Linear ODE (M & 0| =& A]): S5 x2t 1] &8I}t
S 1 D22 EA 2 Hr== SEHE UL &
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1.5 Linear ODEs *v}_,i"
Definition and Standard Form BT

— Linear ODEs are models of various phenomena

— Linear ODEs: linear in both the unknown function and its.
derivatives. p(x) and r(x) can be any given functions of x.

@*&)@: ﬂ ——> Standard Form

- ex) | (start with y)
y'COS X+ ySin X = X

yHomogeneous Linear ODEs (r(x) is zero for all x)  r(x)=0
ex) y+p(x)y=0

‘sNonhomogeneous Linear ODEs
ex) Y+p(x)y=r(x)=0

— Nonlinear ODEs = Not linear ODEs.
EX)  y4p(x)y=r(x)y’



' R
1.5 Linear ODEs *v}_,i"
SO i Ution methOd SEOUL NATlO:iL UNIVERSITY

— Homogeneous Linear ODE.(Apply the method of separating
variables)

y'+p(x)y=0

— Nonhomogeneous Linear ODE.(Find integrating factor and solve )

y'+p(x)y=r(x)



1.5 Linear ODEs %@g
Solution method ;

SEOUL NATIONAL UNIVERSITY

— Homogeneous Linear ODE.(Apply the method of separating

variables)
y+p(x)y=0 = d;/:—p(x)dx = In\y\=—jp(x)dx+c*
ye ce_I p(x)dx When c=0 = trivial solution (XF2i dH)

— Nonhomogeneous Linear ODE.(Find integrating factor and solve )
y+p(x)y=r(x) = (py-r)dx+dy=0 Not exact! L i(Iﬁ)sl—r)zlfh«tozﬂ(l)J

oy OX
R:l E_@ =p — ld_F:p = F:e.“pdx
Qloy ox F dx

ejpdx(py—r)dx+ejpdxdy=0

u:yejpdx+l(x) =N Z—:::pyejpdx+I'(x):ejpdx(py—r) = I'(x):—rejpdx, I(x):—frejpdxdx+c

— u=—yel™ -[ e Pd=c = yel™ :J'rejpdxdx+c y = efjpdX D rejpdxdxq— c}
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1.5 Linear ODEs. iy
Example 1. Linear ODE
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« EX.1solvethelinear ODE  y_y—e¥

p=-1 r=e", h:jpdx:—x =

o y=¢™ Uehrdx+c] = ¢’ Ue‘xezxdx+c] =e*| e +c|=e"+ce’



1.5 Linear ODEs.
Example 2. Linear ODE
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» Example 2)

y

y tan X =sin 2X

y(0) =1



1.5 Linear ODEs.
Bernoulli Equation
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* Bernoulli Equation (nonlinear = linear)

—

—

y'+p(x)y=9(x)y°

u(x)=[y(x)]"

(a#0 & a=1)

u'=(1-a)y*y'=(1-a)y*(gy* - py)=(1-a)(g - py"*)=(1-a)(g - pu)

u+(l-a)pu=(1-a)g
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1.5 Linear ODEs. /_&@;

Bernoulli Equation (Logistic Equation) ... v oaesm

4

S
(E

* Ex. 4 Logistic Equation  y'= Ay — By?



1. 6 Orthogonal Trajectories

b Y |

(o)
(7—\. w A A)
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<

* Orthogonal (&! 1) 2|) ~ perpendicular

* Orthogonal Trajectory:

— A family of curves in the plane that intersect a given family of
curves at right angles.

* Find the orthogonal trajectories by using ODEs.

~ Step 1 Findan ODEY'= f(x.¥) for which the give family is a general solution

— Step 2 Write down the ODE §/'=—ﬁ of the orthogonal trajectories.
— Step 3 Solve it.
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1. 6 Orthogonal Trajectories. Wil
Exam p i e SEOUL NATlo:iL UNIVERSITY

« Example. A one-parameter family of quadratic parabolas is

given by y = cxX?

— Step 1 find an ODE N 2
Yoo XX, L Y
X X ’

— Step 2 Write down the ODE of the orthogonal trajectories

yu__i
2y

— Step 3 solve above ODE

~~ ~2 1 5
2yy'+x=0 = vy +§X =Cc*



1. 6 Orthogonal Trajectories. Wﬂi
Exampie - PrObiem Set 1-6 - 16' SEOQOUL NATIONAL UNIVERSITY

o Streamlines and equipotential lines

-1.

Flow In a channel
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1. 7 Existence and Uniqueness of *«g_ﬁg
Solutions "
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* An initial value problem may have no solution, precisely one solution, or
more than one solution
y|+|y=0, y(0)=1 =  Nosolution

y'=2x, y(0)=1 = Precisely one solution =  y=x+1

xy'=y-1 y(0)=1 = Infinitely many solutions = y-1+cx

 Problem of Existence

— Under what conditions does an initial value problem have at least one solution
(hence one or several solutions)?

* Problem of Uniqueness

— Under what conditions does that problem have at most one solution (hence
excluding the case that is has more than one solution)?



1. 7 Existence and Uniqueness of G
Solutions 0L ATERALECTY

® Theorem 1 Existence Theorem

¥

Let the right side f (x,y) of the ODE in the initial value problem

I e

R
W y=1(xy), ¥(%)=Y . :

|

. . . |

be continuous at all points (x,y) in some rectangle P e !
|

|

(2) | f (x, y) <K for all (x,y) inR.
Then the initial value problem (1) has at least one solution y(x). This solution exists at least for
all x in the submtervall X—X, |< @ of the interval X=X, |< a0 here, ais the smaller of the two

numbers a and b/K.




1. 7 Existence and Uniqueness of G
Solutions 0L ATERALECTY

® Theorem 2 Uniqueness Theorem

Let f and its partial derivative f, =0of /0y be continuous for all (x,y) in the rectangle R and
bounded, say,

(3) (@ [f(xy)<K (b) |, (xy)|<M forall (xy)in R.

Then the initial value problem (1) has at most one solution y(x). Thus, by the Existence Theorem,
the problem has precisely one solution. This solution exists at least for all x in that subinterval

|X=X| < x
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S u m m ary (1) SEOUL NATlo:iL UNIVERSITY

+ Differential Equation?
— ODE vs. PDE,
— 1storder, 2" order, ...

— linear vs. nonlinear
» Physical behavior > mathematical model and solution

* Solution method
— Separation of variables & Reduction to separable form
— Exact differential Equation & Integrating Factors

— Linear ODEs & Bernoulli Eq (nonlinear)
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S u m m ary (2) SEOUL NATlO:iL UNIVERSITY

» Separation of variables & Reduction to separable form

— Separation of variables
g(y)y'=f(x)

g(y)y'=f(x) = [o(y)dy=[f(x)dx+c

— Extended Method: Reduction to separable form

(2
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* Exact differential equation
oM  ON
M(xy)dx+N(xy)dy=0 <« Py =
ou ou dk
M(x,y)_& = u(x,y)_J-M(x,y)dx+k(y) = 5_N(x,y) = dy & k(y)

— Non exact differential equation (finding integrating factors)
PdX_|_Qdy =0 FPdx+ FQdy =0

1

F(x)=exp([R(x)dx), where R(x):a(___j



1. First-Order ODEs
Summary (4)
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o Linear ODEs Y+ p(x)y=r(x)
— Homogeneous ODEs
y+p(x)y=0 = y = ce 70
— Nonhomgeneous ODEs

y+p(x)y=r(x) = (py-r)dx+dy=0
y:e‘“Ue“rdx+c] where:h:fpdx

— Bernoulli Equation (reduction to linear ODEs)

y+p(x)y=9g(x)y* (a=0 & a;tl)

u+(1-a)pu=(1-a)g « u(x)=| y(x)
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