Engineering Mathematics I - Chapter 1. First-Order ODEs (1계 상미분 방정식)

민기복

Ki-Bok Min, PhD

서울대학교 에너지자원공학과 조교수 Assistant Professor, Energy Resources Engineering

SEOUL NATIONAL UNIVERSITY

Introduction

- 1. Basic Concepts. Modeling
- 2. Geometric Meaning of y'=f(x,y). Directional Fields
- 3. Separable ODEs (변수분리형 상미분방정식). Modeling
- 4. Exact ODEs (완전 상미분방정식). Integrating Factors.
- 5. Linear ODEs (선형 상미분방정식). Bernoulli Equation. Population Dynamics
- 6. Orthogonal Trajectories (직교곡선족). *Optional*
- 7. Existence and Uniqueness of Solutions (해의 존재성과 유일성)

Introduction

Physical problem vs. mathematical modeling

- Many physical behavior can be expressed as differential equation (containing derivatives of unknown function)
- Three Steps
 - 1. Deriving them from physical or other problems (modeling)
 - 2. Solving them by standard methods
 - 3. Interpreting solutions and their graphs in terms of a given problem

Fig.1 Some applications of differential equations

1.1 Basic Concepts. Modeling ODE vs PDE

- Differential Equation: An equation containing derivatives of an unknown function
 - Ordinary Differential Equation (상미분방정식): contains one or several derivatives of an unknown function of one independent variables (독립변수 1개)

Ex. $y' = \cos x$, y'' + 9y = 0, $x^2y'''y' + 2e^xy'' = (x^2 + 2)y^2$

Partial Differential Equation (편미분방정식): contains partial derivatives of an unknown function of two or more variables
 (독립변수 2개이상)

$$\mathbf{EX.} \quad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

1.1 Basic Concepts. Modeling Order, Explicit vs. Implicit

Order: The highest derivatives of the unknown function

- Ex. (1)
$$y' = \cos x \Rightarrow$$
 1st Order (1月)

- (2)
$$y''+9y=0 \Rightarrow$$
 2nd order (2月)

- (3)
$$x^2y'''y'+2e^xy''=(x^2+2)y^2 \Rightarrow 3^{rd} \text{ order (3 月)}$$

 First-order ODE: Equations contain only the first derivatives y' and may contain y and any given functions of x

- Explicit form: y' = f(x, y)

- Implicit form: F(x, y, y') = 0

1.1 Basic Concepts. Modeling Types of Solution

- Solution: functions that make the equation hold true
 - General solution (일반해): a solution that contains an arbitrary constant
 - Particular solution (특수해): a solution in which we choose a specific constants
 - Singular solution (특이하): an additional solution that cannot be obtained from the general solution

 \approx Ex 16) ODE $y'^2 - xy' + y = 0$, general solution $y = cx - c^2$ singular solution $y = x^2/4$.

1.1 Basic Concepts. Modeling Initial Value Problem

- Initial Value Problem
 - An ordinary differential equation together with specified value of the unknown function at a given point in the domain of the solution

$$y' = f(x, y), y(x_0) = y_0$$

1.1 Basic Concepts. Modeling Example 4.

Solve the initial value problem

$$y' = \frac{dy}{dx} = 3y$$
, $y(0) = 5.7$

Step 1 Find the general solution.

$$y(x) = ce^{3x}$$

Step 2 Apply the initial condition.

$$y(0) = ce^0 = c = 5.7$$

Particular solution : $y(x) = 5.7e^{3x}$

1.1 Basic Concepts. Modeling Physical phenomena → Mathematical model

- Typical steps of Modeling
 - Step1 : The transition from the physical situation to its mathematical formulation
 - Step 2: The solution by a mathematical method
 - Step 3: The physical interpretation of differential equations and their applications

1.1 Basic Concepts. Modeling Example 5.

- Given an amount of a radioactive substance, say 0.5 g(gram), find the amount present at any later time.
 - Physical Information: Experiments show that at each instant a radioactive substance decomposes at a rate proportional to the amount present.
 - Step 1 Setting up a mathematical model(a differential equation) of the physical process.

By the physical law: $\frac{dy}{dt} \propto y \implies \frac{dy}{dt} = ky$

The initial condition : y(0) = 0.5

Step 2 Mathematical solution.

General solution : $y(t) = ce^{kt}$

Particular solution : $y(0) = ce^0 = c = 0.5 \implies y(t) = 0.5e^{kt}$

Always check your result:

- Step 3 Interpretation of result. The limit of y as $t \to \infty$ is zero.

Fig.4. Radioactivity (Exponential decay, $y = 0.5e^{kt}$, with k = -1.5 as an example

1.2 Geometric meaning of y'=f(x,y). Direction Fields

- Direction Field (방향장)
 - The graph with line segments (tangent line to the solution).
- Reason of importance of the direction field
 - You need not solve a ODE
 - The method shows the whole family of solutions and their typical properties.

1.3 Separable ODEs. Modeling Definition

Separable Equation

$$g(y)y'=f(x)$$

- 왼쪽은 y, 오른쪽은 x만으로 구성 가능한 형태

Method of separation of variables (변수분리법)

$$g(y)y' = f(x)$$
 \Rightarrow $\int g(y)dy = \int f(x)dx + c$ $\left(\because \frac{dy}{dx}dx = dy\right)$

1.3 Separable ODEs. Modeling Example.1

Solve
$$y' = 1 + y^2$$

$$\frac{y'}{1+y^2} = 1 \qquad \Rightarrow \qquad \frac{dy/dx}{1+y^2} = 1 \qquad \Rightarrow \qquad \frac{dy}{1+y^2} = dx \qquad (변수분리형)$$

$$\Rightarrow \int \frac{1}{1+y^2} dy = \int dx + c \Rightarrow \arctan y = x + c$$
 (적분)

$$\Rightarrow$$
 $y = \tan(x+c)$ (정리)

1.3 Separable ODEs. Modeling Example 3. Mixing Problem

- Initial Condition: 1000 gal of water, 100 lb salt, initially brine runs in 10 gal/min, 5 lb/gal, stirring all the time, brine runs out at 10 gal/min
- Amount of salt at t?
- Step1. Setting up a model
- Step2. Solution of the model

1.3 Separable ODEs. Modeling

Extended Method: Reduction to Separable Form

- When equation is not separable???
- Extended Method: Reduction to Separable Form
 - A certain 1st order equation can be made separable by a simple change of variables

$$y' = f\left(\frac{y}{x}\right) \qquad Ex. \cos\left(\frac{y}{x}\right)$$

$$\left(y = ux \implies u = \frac{y}{x} \& y' = (ux)' = u'x + u\right)$$

$$y' = f\left(\frac{y}{x}\right) \implies u'x + u = f\left(u\right) \implies \frac{du}{f\left(u\right) - u} = \frac{dx}{x}$$

1.3 Separable ODEs. Modeling Example 6. Reduction to Separable form

Example 6. Reduction to Separable Form. Solve

$$2xyy'=y^2-x^2$$

1.3 Separable ODEs. Modeling Example 6. Reduction to Separable form

Example 6. Reduction to Separable Form. Solve

$$2xyy' = y^2 - x^2$$

$$2xyy' = y^2 - x^2 \implies y' = \frac{1}{2} \left(\frac{y}{x} - \frac{x}{y} \right) \qquad (2xy로 나눔)$$

$$\implies y = ux, \quad u = \frac{y}{x}, \quad y' = u'x + u = \frac{1}{2} \left(u - \frac{1}{u} \right)$$

$$u'x = -\frac{1}{2} \left(u + \frac{1}{u} \right) = -\frac{u^2 + 1}{2u} \implies \frac{du}{dx} \frac{2u}{u^2 + 1} = -\frac{1}{x} \implies \frac{2u}{u^2 + 1} du = -\frac{1}{x} dx$$

$$\int \frac{2u}{u^2 + 1} du = -\int \frac{1}{x} dx + c^* \implies \ln|u^2 + 1| = -\ln|x| + c^* = \ln\frac{1}{|x|} + \ln|c| = \ln\left|\frac{c}{x}\right|, \quad c = e^{c^*}$$

$$u^2 + 1 = \frac{c}{x} \implies \left(\frac{y}{x}\right)^2 + 1 = \frac{c}{x} \implies x^2 + y^2 = cx$$

$$\left(x - \frac{c}{2}\right)^2 + y^2 = \frac{c^2}{4}$$

1. 4 Exact ODEs. Integrating Factors Basic Ideas

For u(x, y), its differential (미분) is

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$

if u(x, y) = c, then du = 0

For example, if
$$u = x + x^2y^3 = c$$

$$du = (1 + 2xy^3)dx + (3x^2y^2)dy = 0$$

or
$$y' = \frac{dy}{dx} = -\frac{1+2xy^3}{3x^2y^2}$$

1. 4 Exact ODEs. Integrating Factors Definition

• Exact Differential Equation (완전미분방정식):

$$M(x,y)dx + N(x,y)dy = 0$$

- If the differential form M(x,y)dx + N(x,y)dy is exact
- This means that this form is the differential of u(x,y)

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy \qquad \Rightarrow \quad du = 0 \quad \Rightarrow \quad u(x, y) = c$$

Condition for exactness

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \qquad \left(\because \frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial N}{\partial x} \right)$$

1. 4 Exact ODEs. Integrating Factors Solution method

• Solution method of exact differential equation (완전미분방정식 해법) :

$$M(x, y)dx + N(x, y)dy = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = 0$$

Case 1)

$$M(x,y) = \frac{\partial u}{\partial x} \implies u(x,y) = \int M(x,y) dx + k(y)$$

$$\Rightarrow \frac{\partial u}{\partial y} = N(x,y) \implies \frac{dk}{dy} & k(y)$$

Case 2)

$$N(x,y) = \frac{\partial u}{\partial y}$$
 \Rightarrow $u(x,y) = \int N(x,y) dy + l(x)$

$$\Rightarrow \frac{\partial u}{\partial x} = M(x, y) \Rightarrow \frac{dl}{dx} \& l(x)$$

1. 4 Exact ODEs. Integrating Factors Example 1.

Solve

$$\cos(x+y)dx + (3y^2 + 2y + \cos(x+y))dy = 0$$

- Step 1 Test for exactness. $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

$$M(x, y) = \cos(x + y)$$
 $\Rightarrow \frac{\partial M}{\partial y} = -\sin(x + y)$
 $N(x, y) = 3y^2 + 2y + \cos(x + y)$ $\Rightarrow \frac{\partial N}{\partial x} = -\sin(x + y)$

- Step 2 Implicit general solution.

$$u(x,y) = \int M(x,y) dx + k(y) = \int \cos(x+y) dx + k(y) = \sin(x+y) + k(y)$$

$$\Rightarrow \frac{\partial u}{\partial y} = \cos(x+y) + \frac{dk}{dy} = N(x,y) \Rightarrow \frac{dk}{dy} = 3y^2 + 2y \Rightarrow k = y^3 + y^2 + c^*$$

$$\therefore u(x,y) = \sin(x+y) + y^3 + y^2 = c$$

- Step 3 Checking an implicit solution.

- Reduction to Exact Form, Integrating Factors
 - Some equations can be made exact by multiplication by some function (called the Integrating Factor, 적분인자)
- Ex 3. -ydx + xdy = 0
 - This equation is not exact. Why?
 - multiplying it by $1/x^2$ Integrating factor

$$-\frac{y}{x^2}dx + \frac{1}{x}dy = 0 \left(\because \frac{\partial}{\partial y} \left(-\frac{y}{x^2} \right) = -\frac{1}{x^2} = \frac{\partial}{\partial x} \left(\frac{1}{x} \right) \right)$$

• Issue is then how to find this integrating factor (when it is not simple)?

Given a nonexact equation

$$Pdx + Qdy = 0$$

Finding Integrating Factors (F)

$$FPdx + FQdy = 0$$

The exactness condition

$$\frac{\partial}{\partial y}(FP) = \frac{\partial}{\partial x}(FQ) \quad \Rightarrow \quad \frac{\partial F}{\partial y}P + F\frac{\partial P}{\partial y} = \frac{\partial F}{\partial x}P + F\frac{\partial Q}{\partial x}$$

Golden Rule: Solve a simpler one. Hence we look for an integrating factor depending *only* on one variable.

$$F = F(x) \implies \frac{\partial F}{\partial x} = F', \quad \frac{\partial F}{\partial y} = 0$$

$$FP_{y} = F'Q + FQ_{x} \implies \frac{1}{F} \frac{dF}{dx} = R(x) \text{ where } R(x) = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$$

$$\Rightarrow \therefore F(x) = \exp\left(\int R(x) dx \right)$$

$$F^* = F^*(y) \implies \frac{1}{F^*} \frac{dF^*}{dx} = R^* \text{ where } R^* = \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \implies F^*(y) = \exp\left(\int R^*(y) dy \right)$$

Integrating Factor F(x)

If (12) is such that the right side R of (16), depends only on x, then (12) has an integrating factor F = F(x), which is obtained by integrating (16) and taking exponents on both sides,

$$F(x) = \exp \int R(x) \, dx.$$

$$R(x) = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$$

Integrating Factor F*(y)

If (12) is such that the right side R^* of (18) depends only on y, then (12) has an integrating factor $F^* = F^*(y)$, which is obtained from (18) in the form

$$F^*(y) = \exp \int R^*(y) \, dy.$$

$$R^* = \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)$$

Integrating factor for Exact Differential Equation???

$$F(x) = \exp(\int R(x) dx)$$

$$R(x) = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$$

$$F*(y) = \exp(\int R*(y) dy)$$

$$R^* = \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)$$

EX. 5 Find Integrating Factor and solve the following initial value problem

$$(e^{x+y} + ye^y)dx + (xe^y - 1)dy = 0, \quad y(0) = -1$$

- Step 1. Nonexactness

Step 2. Integrating factor. General Solution

Step 3. Particular Solution

$$(e^{x+y} + ye^y)dx + (xe^y - 1)dy = 0, \quad y(0) = -1$$

Step 1. Nonexactness

$$P(x,y) = e^{x+y} + ye^{y} \implies \frac{\partial P}{\partial y} = e^{x+y} + e^{y} + ye^{y}$$

$$Q(x,y) = xe^{y} - 1 \implies \frac{\partial Q}{\partial x} = e^{y}$$

$$\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$$

Step 2.

$$R = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) = \frac{1}{xe^{y} - 1} \left(e^{x+y} + e^{y} + ye^{y} - e^{y} \right) = \frac{1}{xe^{y} - 1} \left(e^{x+y} + ye^{y} \right) \implies \text{fails}$$

$$R^* = \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) = \frac{1}{e^{x+y} + ye^{y}} \left(e^{y} - e^{x+y} - e^{y} - ye^{y} \right) = -1 \implies F^*(y) = e^{-y}$$

$$\therefore (e^{x} + y)dx + (x - e^{-y})dy = 0$$

$$u = \int (e^{x} + y)dx = e^{x} + xy + k(y) \implies \frac{\partial u}{\partial y} = x + k'(y) = x - e^{-y} \implies k'(y) = -e^{-y}, k(y) = e^{-y}$$

$$u(x, y) = e^{x} + xy + e^{-y} = c$$

Step 3. Particular Solution

$$y(0) = -1 \implies u(0,-1) = e^0 + 0 + e = 3.72 \therefore u(x,y) = e^x + xy + e^{-y} = 3.72$$

Last Lecture

Exact differential equation

$$M(x,y)dx + N(x,y)dy = 0 \qquad \leftarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$M(x,y) = \frac{\partial u}{\partial x} \implies u(x,y) = \int M(x,y)dx + k(y) \implies \frac{\partial u}{\partial y} = N(x,y) \implies \frac{dk}{dy} \& k(y)$$

Non exact differential equation (finding integrating factors)

$$Pdx + Qdy = 0 FPdx + FQdy = 0$$

$$F(x) = \exp(\int R(x) dx)$$
, where $R(x) = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$

1.5 Linear ODEs Introduction

Linear ODE (선형미분방정식): 종속변수와 그 도함수가 모두 1차인 미분방정식. 각 계수는 독립변수에만 의존

1.5 Linear ODEs Definition and Standard Form

- Linear ODEs are models of various phenomena
- Linear ODEs: linear in both the <u>unknown function</u> and <u>its</u> derivatives. p(x) and r(x) can be any given functions of x.

- ex)
$$y + p(x)y \neq r(x)$$
 - Standard Form $y + p(x)y \neq r(x)$ (start with y')

Na Homogeneous Linear ODEs (r(x) is zero for all x) $r(x) \equiv 0$ ex) y' + p(x)y = 0

Nonhomogeneous Linear ODEs ex) $y'+p(x)y=r(x)\neq 0$

Nonlinear ODEs = Not linear ODEs.

Ex)
$$y' + p(x)y = r(x)y^2$$

1.5 Linear ODEs Solution method

Homogeneous Linear ODE.(Apply the method of separating variables)

$$y' + p(x)y = 0$$

Nonhomogeneous Linear ODE.(Find integrating factor and solve)

$$y'+p(x)y=r(x)$$

1.5 Linear ODEs Solution method

Homogeneous Linear ODE.(Apply the method of separating variables)

$$y'+p(x)y=0$$
 \Rightarrow $\frac{dy}{y}=-p(x)dx$ \Rightarrow $\ln|y|=-\int p(x)dx+c*$ $y=ce^{-\int p(x)dx}$ When c=0 \Rightarrow trivial solution (자명해)

Nonhomogeneous Linear ODE.(Find integrating factor and solve)

$$y'+p(x)y=r(x) \implies (py-r)dx+dy=0 \quad \text{Not exact!} \quad \left(\because \frac{\partial}{\partial y}(py-r)=p\neq 0=\frac{\partial}{\partial x}(1)\right)$$

$$R = \frac{1}{Q}\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = p \quad \Rightarrow \quad \frac{1}{F}\frac{dF}{dx} = p \quad \Rightarrow \quad \therefore \quad F = e^{\int pdx}$$

$$e^{\int pdx}\left(py-r\right)dx+e^{\int pdx}dy=0$$

$$u = ye^{\int pdx}+l(x) \quad \Rightarrow \quad \frac{\partial u}{\partial x} = pye^{\int pdx}+l'(x)=e^{\int pdx}\left(py-r\right) \quad \Rightarrow \quad l'(x)=-re^{\int pdx}, \quad l(x)=-\int re^{\int pdx}dx+c$$

$$\Rightarrow \quad u = ye^{\int pdx}-\int re^{\int pdx}dx=c \quad \Rightarrow \quad ye^{\int pdx}=\int re^{\int pdx}dx+c \quad y=e^{\int pdx}\left[\int re^{\int pdx}dx+c\right]$$

1.5 Linear ODEs. Example 1. Linear ODE

• EX.1 solve the linear ODE $y'-y=e^{2x}$

$$p = -1, \quad r = e^{2x}, \quad h = \int p dx = -x \quad \Rightarrow$$

$$\therefore \quad y = e^{-h} \left[\int e^h r dx + c \right] = e^x \left[\int e^{-x} e^{2x} dx + c \right] = e^x \left[e^x + c \right] = e^{2x} + ce^x$$

1.5 Linear ODEs. Example 2. Linear ODE

• Example 2)

$$y'+y\tan x = \sin 2x \qquad y(0) = 1$$

1.5 Linear ODEs. Bernoulli Equation

Bernoulli Equation (nonlinear → linear)

$$y' + p(x)y = g(x)y^a$$
 $(a \neq 0 \& a \neq 1)$

$$u(x) = [y(x)]^{1-a}$$

$$\Rightarrow u' = (1-a)y^{-a}y' = (1-a)y^{-a}(gy^{a} - py) = (1-a)(g-py^{1-a}) = (1-a)(g-pu)$$

$$\Rightarrow$$
 $u'+(1-a)pu=(1-a)g$

1.5 Linear ODEs. Bernoulli Equation (Logistic Equation)

• Ex. 4 Logistic Equation $y' = Ay - By^2$

$$y' = Ay - By^2$$

1. 6 Orthogonal Trajectories (직교궤적)

- Orthogonal (직교의) ~ perpendicular
- Orthogonal Trajectory:
 - A family of curves in the plane that intersect a given family of curves at right angles.
- Find the orthogonal trajectories by using ODEs.
 - Step 1 Find an ODE y' = f(x, y) for which the give family is a general solution.
 - Step 2 Write down the ODE $\tilde{y}' = -\frac{1}{f(x, \tilde{y})}$ of the orthogonal trajectories.
 - Step 3 Solve it.

1. 6 Orthogonal Trajectories. Example

- Example. A one-parameter family of quadratic parabolas is given by $y = cx^2$
 - Step 1 find an ODE $\frac{y}{x^2} = c \implies \frac{y'x^2 2xy}{x^4} = 0 \implies y' = \frac{2y}{x}$
 - Step 2 Write down the ODE of the orthogonal trajectories

$$\tilde{y}' = -\frac{x}{2\tilde{y}}$$

Step 3 solve above ODE

$$2\tilde{y}\tilde{y}' + x = 0 \quad \Rightarrow \quad \tilde{y}^2 + \frac{1}{2}x^2 = c *$$

6 Orthogonal Trajectories. Example – Problem set 1.6 – 16.

Streamlines and equipotential lines

Flow in a channel

1. 7 Existence and Uniqueness of Solutions

 An initial value problem may have no solution, precisely one solution, or more than one solution

```
|y'|+|y|=0, y(0)=1 \Rightarrow No solution

y'=2x, y(0)=1 \Rightarrow Precisely one solution \Rightarrow y=x^2+1

xy'=y-1, y(0)=1 \Rightarrow Infinitely many solutions \Rightarrow y=1+cx
```

- Problem of Existence
 - Under what conditions does an initial value problem have at least one solution (hence one or several solutions)?
- Problem of Uniqueness
 - Under what conditions does that problem have at most one solution (hence excluding the case that is has more than one solution)?

1. 7 Existence and Uniqueness of Solutions

Theorem 1 Existence Theorem

Let the right side f(x,y) of the ODE in the initial value problem

(1)
$$y' = f(x, y), \quad y(x_0) = y_0$$

be continuous at all points (x, y) in some rectangle

$$R: |x-x_0| < a, |y-y_0| < b$$

and bounded in R; that is, there is a number K such that

(2)
$$|f(x,y)| \le K$$
 for all (x,y) in R .

Then the initial value problem (1) has at least one solution y(x). This solution exists at least for all x in the subinterval $|x-x_0|<\alpha$ of the interval $|x-x_0|<\alpha$; here, α is the smaller of the two numbers a and b/K.

1. 7 Existence and Uniqueness of Solutions

• Theorem 2 Uniqueness Theorem

Let f and its partial derivative $f_y = \partial f / \partial y$ be continuous for all (x,y) in the rectangle R and bounded, say,

(3) (a)
$$|f(x,y)| \le K$$
 (b) $|f_y(x,y)| \le M$ for all (x,y) in R .

Then the initial value problem (1) has at most one solution y(x). Thus, by the Existence Theorem, the problem has precisely one solution. This solution exists at least for all x in that subinterval

$$|x-x_0|<\alpha$$

1. First-Order ODEs Summary (1)

- Differential Equation?
 - ODE vs. PDE,
 - 1st order, 2nd order, ...
 - linear vs. nonlinear
- Physical behavior
 — mathematical model and solution
- Solution method
 - Separation of variables & Reduction to separable form
 - Exact differential Equation & Integrating Factors
 - Linear ODEs & Bernoulli Eq (nonlinear)

1. First-Order ODEs Summary (2)

- Separation of variables & Reduction to separable form
 - Separation of variables

$$g(y)y' = f(x)$$

 $g(y)y' = f(x) \Rightarrow \int g(y) dy = \int f(x) dx + c$

Extended Method: Reduction to separable form

$$y' = f\left(\frac{y}{x}\right)$$
$$y' = f\left(\frac{y}{x}\right) \implies u'x + u = f\left(u\right) \implies \frac{du}{f\left(u\right) - u} = \frac{dx}{x}$$

1. First-Order ODEs Summary (3)

Exact differential equation

$$M(x,y)dx + N(x,y)dy = 0 \qquad \leftarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$M(x,y) = \frac{\partial u}{\partial x} \implies u(x,y) = \int M(x,y)dx + k(y) \implies \frac{\partial u}{\partial y} = N(x,y) \implies \frac{dk}{dy} \& k(y)$$

Non exact differential equation (finding integrating factors)

$$Pdx + Qdy = 0 FPdx + FQdy = 0$$

$$F(x) = \exp(\int R(x) dx)$$
, where $R(x) = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$

1. First-Order ODEs Summary (4)

- Linear ODEs y'+p(x)y=r(x)
 - Homogeneous ODEs

$$y'+p(x)y=0$$
 \Rightarrow $y=ce^{-\int p(x)dx}$

Nonhomgeneous ODEs

$$y'+p(x)y=r(x)$$
 \Rightarrow $(py-r)dx+dy=0$
 $y=e^{-h}\Big[\int e^h r dx+c\Big]$, where $=h=\int p dx$

Bernoulli Equation (reduction to linear ODEs)

$$y'+p(x)y = g(x)y^a \quad (a \neq 0 \& a \neq 1)$$

 $u'+(1-a)pu = (1-a)g \leftarrow u(x) = [y(x)]^{1-a}$

Acknowledgement and References

- All the figures and problems sets are from the following book unless otherwise stated.
 - Erwin Kreyszig, 2006, Advanced Engineering Mathematics, 9th Ed., Wiley