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System Poles and Zeros

Consider a system with T.F. G(s) = N (s)

D(s)
Factor the numerator and G(s) =K (s-72)(5-7,).....(S— Zy,)
denominator polynomials (s—p)(s—P,)--(5—P,)
where P, Py,.-.P,: Roots of D(s), system poles

Z,,Z,,....2,, . Roots of N(s), system zeroes
Note that because the coefficient of N(s) and D(s) are real, (modeling parameters),
the system poles must be either

i) Purely real, or _ :
) Y P Or z; =0, + o,
ii) Appear as complex conjugates

System Poles and Zeros completely characterize the transfer function (therefore the
system itself) except for an overall gain of constant K-

6(s) =k LLi67%)
L “izl(s_ pi)
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Pole Zero Plot

The value of system poles and zeros are shown graphically on the complex s—plane .

Ex) 552 +10s ~ 5s(s+10) 5s(s +10)

S 1552 +11s+5  (s+3)(s+25+5)  (s+3)(s+(1+ j2)(s+ (- j2))

G(s) =

zeros at s=0, s=-2 polesats=-3, -1+j2, s=-1-j2

jol Im{s}
s— plane

T Re{s}

o

You can use Sys=zpk(zeros, poles, gain) in matlab.
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Pole Zero Plot

The characteristic equation of the system:

D(S) — (S_ p1)(s_ pz) ------ (S_ pn)

Poles are the system eigenvalues.
Form of the homogeneous solution:

y,(t) = Zciepit
i1

Ex) 12
G(s) =
(5) $2 +7s+12 jo] Im{s}

s— plane

Y1 (t) = Cle_gt Y, (t) = (:26_4t

T Re{s}

o

Note: The poles do not specify the amplitude. It just indicates the
natural response components.
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Complex Poles and Zeros
In general, S=c+ jw
y(t) =...+CeleHIat L C eIt |

i+1

Celiat L C eI = (a+ jb)e™e' +(a— jb)e” e

=ae” (e +e71") + jhe® (e)' —e74")

Yi 1 (t) = 22" cos(mt) — 2ae”" sin(w;t)

=2va’ +b’e ot(\/ﬁcos(a)it)—ﬁsm(a)it)]
= Ae“sin(wt + @) AN
Ai _9 /aZ 1 p? ¢| =tan1(3j /\ Ae’”silri( at)
b /\ AN AN

\/ \/ \/\/F\/_\/Lu >
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<— stable region unstable region —>

1) Poles in the left-half plane - decays with time
2) Poles in the right-half plane - grow with time
3) Pole on the imaginary axis - purely oscillatory
4) Pole at the origin = constant
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Ajo increasing
frequency

N

NS

NS

increasing

<—— increasing decay rate frequency

5) the oscillatory frequency and decay rate is determined by the distance of the
poles from the origin.

6)The rate of decay/growth is determined by the real part of the pole, and
poles deep in the |hp generate rapidly decaying components

7) For complex conjugate pole pairs, the oscillatory frequency is determined by
the imaginary part of the pole pair.
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System Stability

A system is defined to be unstable if its response from any finite initial
conditions increases without bound.

Y, (t) = Z Ce"
=)

1) System is unstable if any pole has a positive real part
2) For a system to be stabel, all poles must lie in the |hp.
3) System with poles on the imaginary axis is defined to be marginally stable.
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First Order Systems

X(s) _1(s) 1 1 1

R

T u(t)=e(t)=1,  i(0)=0

—— :e{s} i(t):%(l_eitj
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First Order Systems

Y(s) 1 21 _
U(s) Ts+1' U(S)_s’ ity =1

1.6 :_‘l"_,

T :time constant

1 1 1 1
Y(5)=——===-T. :
Ts+1ls s Ts+1 2
N T 1o .
y(t)=1-e ", Y(t)=?e ST
1) Settling Time: The time taken for the response to reach 98% of its final value
T, =4T
2) Rise Time: Commonly taken as time taken for the step response to rise from 10%
to 90% of the steady-state response to a step input.
T, =22T
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First Order Systems

CIGY R(t)=rt
1
R(s)=r-—
S
Y(s)= 1 r 12=r %—I !
Ts+1 s s° s s+(1/T)

yt)=rt-T +Te_;)

e(t) =R(t)-y(t)=rT (1—e_$)
y e(c0)=rT

|
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Second Order Systems

R(s) C(s)
> G(S) >
2
a
G(s) = L
) s° +2(w, S+
2
R(s)== (stepinput), C(s)=——2 .1
S S"+Z0w.S+aw, S

s’ +2lw s+w’ =0, s=—Cw + -1,
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Second Order Systems

Underdamped case S=—Cw, + 1—4’20)ni , (w, = wnvl—gz)

0<¢ <l o’ 1 1 S+2lw
C(s)= P, Y o o P,
o) +ai0-00) s 5 (5+iw) +a
1 S+, S,

s (s+<lw,) +w; - (s+lw)’ +w,°

—Ca,t
: e
- C(t)=1-e"" cosm,t —Le“fa’nt sinwt =1-—=sin(w,t +7)

1-¢° V1-¢°

1-¢7

n=tan™

Critically damped case

2
Q,

CO)= erzays

ct)=1-e ™ (L+awt)

"t RE-L
S
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Second Order Systems

Overdamped case ¢ >1
2

C(s) = n
©) (s+<dw, +a)n\/§2 -1)(s+¢w, —a)n\/gz -1)s
1 2 1 2
c(t) =1+ e—(§+m)wnt _ e—(é—ﬁ)wnt
2% -1(¢ ++¢7 1) 2% -1(¢ -¢* 1)
e—(§+\/ﬁ)wnt e—(§ —\/z)wnt

Q)
=1+ L -
25t 1| (¢ 1o, (V57 -1)a,
Approximation (After the faster term disappeared)

C(S) _ gwn — W, ng -1
R(S) s+cw, —wC?-1

no(t) =1—e €I D
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Damping ratio and Pole placement

;) ¢>1:poles are real and distinct
ii)  Z.=1: poles are real and coincident
i) 0 <Z<1:poleare complex conjugates

iv) £ = 0:The pole are purely imaginar
AJo

conjugate poles s-plane

S

coirciiaitpcles -

|
|
3 '
/\}! :
real pole |
ke —

imaginary poles
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