
# **Chapter 1 Fluid Characteristics**

### 1.1 Introduction



# 1.1.2 Fluidity

| Fluid                                                                                                                                                                                                                         | <ul> <li>Solid</li> <li>deform by an amount proportional to the stress applied</li> <li>stress</li></ul> |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| <ul> <li>deform continuously         under shearing (tangential)         stresses no matter how         small the stress</li> <li>stress ∝ time rate of         angular deformation         (strain, displacement)</li> </ul> |                                                                                                          |  |  |  |
| Newtonian fluid                                                                                                                                                                                                               | Non-Newtonian fluid                                                                                      |  |  |  |
| • shear stress is <u>linearly proportional</u> to rate of angular deformation starting with zero stress and zero deformation                                                                                                  | • variable ( <u>nonlinear</u> ) proportionality<br>between stress and deformation rate                   |  |  |  |
| <ul> <li>constant of proportionality</li> <li>≡ µ, dynamic viscosity → Fig. 1.1</li> <li>water, air</li> </ul>                                                                                                                | • proportionality =  f (length of time of exposure to stress, magnitude of stress)                       |  |  |  |
| [Cf] Analogy between Newtonian fluid<br>and solids obeying Hooke's law of<br>constant modulus of elasticity                                                                                                                   | <ul><li>plastics: paint, jelly, polymer solutions</li><li>→ Rheology</li></ul>                           |  |  |  |



Elastic Solid – perfect memory



Fluid – zero memory

#### 1.1.3 Compressibility

- 1) compressible fluid: gases, vapors → thermodynamics
- 2) incompressible fluid: liquid (small compressibility), water

#### 1.1.4 Continuum approach

- dimensions in fluid space are large compared to the molecular spacing to ignore discrete molecular structure
- neglect void
- Consider a small volume of fluid  $\Delta V$  containing a large number of molecules, and let  $\Delta m$  and v be the mass and velocity of any individual molecule

$$\rho = \lim_{\Delta V \to \varepsilon} \frac{\sum \Delta m}{\Delta V}$$

$$\vec{u} = \lim_{\Delta V \to \varepsilon} \frac{\sum v \Delta m}{\sum \Delta m}$$

 $\mathcal{E}$  = volume which is sufficiently small compared with the smallest significant length scale in the flow field but is sufficiently large that it contains a large number of molecules

[Cf] Molecular approach

- molecular point of view
- well developed for light gases

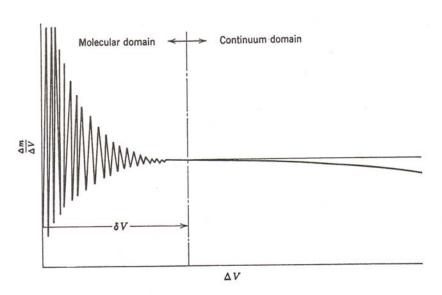
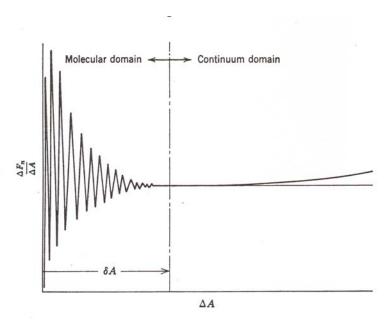
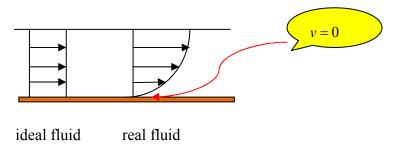
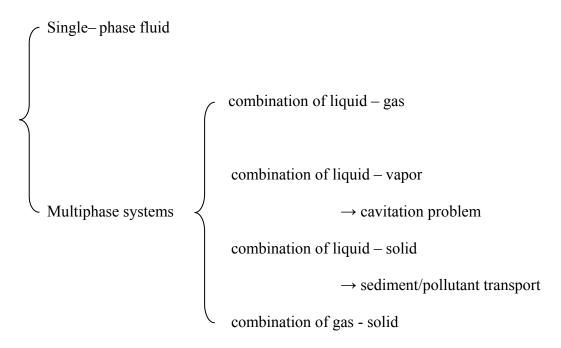



Figure 1.1 Density at a point.



Figure 1.3 Normal stress at a point.

### 1.1.5 No-slip condition at rigid boundary

- 1) behavior of continuum type viscous fluids
- 2) zero relative velocity at the boundary surface (proven by experiments)



### 1.1.6 Multiphase system



### **1.2 Units of Measurement**

- SI system: metric system

– English system: ft-lb system

\* Newton's 2nd law of motion

F = ma

$$F = \text{force(N)}$$
;  $m = \text{mass(kg)}$ ;  $a = \text{acceleration(m/sec}^2)$ 

$$F \rightarrow 1 \text{kg} \cdot \text{m/sec}^2 = 1 \text{ N}$$

$$W = mg$$

W = weight; g = gravitational acceleration

#### 1.3 Properties and States of Fluids

- 1) extensive properties ~ depend on amount of substance
  - → total volume, total energy, total weight
- 2) intensive properties ~ independent of the amount present
  - $\rightarrow$  volume per unit mass, energy per unit mass weight per unit volume (specific weight,  $\gamma$ ) pressure, viscosity, surface, tension
- 1.3.1 Properties of importances in fluid dynamics
  - (1) Pressure,  $p \sim \text{scalar}$

$$p = F / A (N/m^2)$$

$$p_{\rm gauge} = p_{\rm absolute} - p_{\it atm}$$

Forces on a fluid element

Body force: act without physical contact

Surface force: require physical contact for transmission

1) body force

gravity force

- 2) surface forces
- normal stress

tensile stress (unusual for fluid)

 $\begin{array}{ccc} & & & & \\ & & & \\ tangential\ stress & \rightarrow & shear\ stress \end{array}$ 

(2) Temperature, T

two bodies in thermal equilibrium → same temperature

(3) Density,  $\rho$ 

$$\rho = \text{mass / volume} = \frac{M}{V}$$

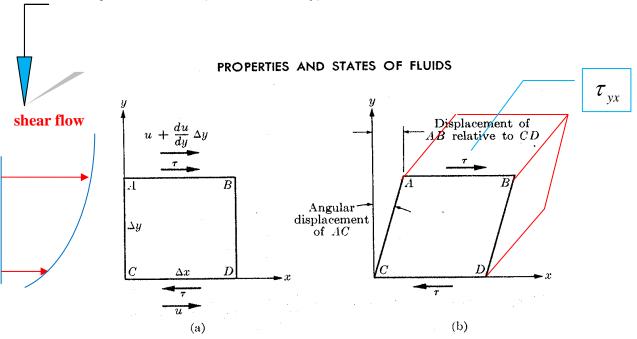


volume  $\propto$  (pressure, temperature)

(4) Specific weight,  $\gamma$ 

 $\gamma$  = weight / volume

#### [Re] Flow of a continuous medium


- ~ Fluids are treated as homogeneous materials.
- ~ Molecular effects are disregarded.

mass density 
$$\rho(x, y, z, t) = \lim_{\Delta V \to 0} \frac{\Delta M}{\Delta V}$$

velocity vector 
$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

- (5) Viscosity,  $\mu$ 
  - ~ due to molecular mobility
  - ~ whenever a fluid moves such that a <u>relative motion</u> exists between

adjacent volumes (different velocity)



Stress,  $\tau \propto$  time rate of angular deformation

i) displacement of AB relative to CD in  $\Delta t$ 

$$\left(u + \frac{du}{dy}\Delta y\right)\Delta t - u\Delta t = \frac{du}{dy}\Delta y \Delta t$$

ii) strain = relative displacement = angular displacement

$$\left[\frac{du}{dy}\Delta y\Delta t\right]/\Delta y = \frac{du}{dy}\Delta t$$

iii) time rate of strain ( = time rate of angular displacement of AC)

$$\frac{du}{dy}\Delta t / \Delta t = \frac{du}{dy}$$

$$\tau \propto \frac{du}{dy}$$

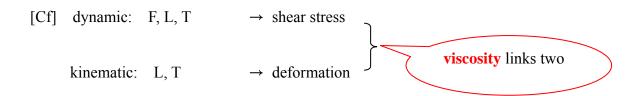
$$\tau_{yx} = \mu \frac{du}{dy}$$

where

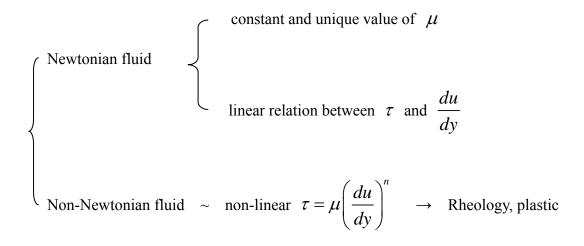
 $\tau_{yx}$  = shear stress acting in the x - direction on a plane

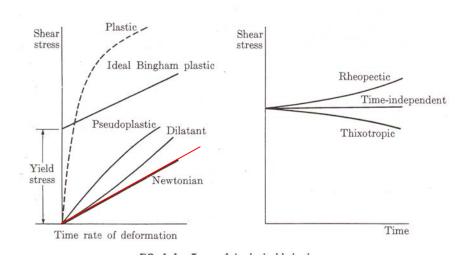
whose normal is y-direction  $(N/m^2)$ 

$$\frac{du}{dy}$$
 = rate of angular deformation (1 / sec)


 $\mu$  = dynamic molecular viscosity

$$\mu = \frac{\tau}{\frac{du}{dy}} = \frac{N/m^2}{\frac{m/s}{m}} = N \cdot s/m^2$$


= 
$$(kg \cdot m / s^2) \cdot \frac{s}{m^2} = kg / m \cdot sec = kg/m \cdot s$$


 $\spadesuit$  Kinematic viscosity,  $\nu$ 

$$v = \frac{\mu}{\rho} = \frac{\text{kg/m} \cdot \text{s}}{\text{kg/m}^3} = \text{m}^2/\text{s}$$
  $\rightarrow$  kinematic dimensions  $\rightarrow$  Fig. 1.4



# Types of Fluid





[Cf] Stress-strain relationship for solid

$$\tau_{yx} = G \frac{d\xi}{dy}$$

 $d\xi$  = relative station displacement of AB

$$\frac{d\xi}{dy}$$
 = angular deformation (shear strain)

G =modulus of elasticity in torsion

 $\frac{du}{dy} \qquad \frac{d\xi}{dy}$ velocity

displacement

 $\spadesuit$   $\mu$  = function of (temperature, pressure)

|                  | Liquid               | Gas                         |  |  |
|------------------|----------------------|-----------------------------|--|--|
| major factor     | intermolecular       | exchange of                 |  |  |
| for viscosity    | cohesion             | momentum                    |  |  |
|                  | decrease             |                             |  |  |
| when temperature |                      | increase molecular activity |  |  |
|                  | cohesive force       |                             |  |  |
| is increasing    |                      | → increase shear stress     |  |  |
|                  | → decrease viscosity |                             |  |  |
|                  |                      |                             |  |  |

## [Re] Exchange of momentum

# fast-speed layer (FSL)



molecules from FSL speed up molecules in LSL  $\,$ 

molecules from LSL slow down molecules in FSL

Two layers tend to stick together as if there is some viscosity between two.

low-speed layer (LSL)

Water:

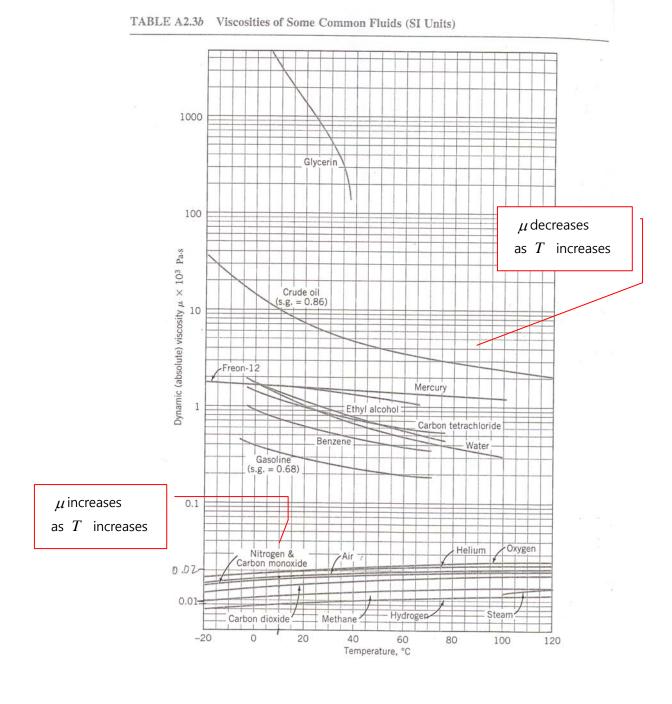

$$\mu = 1.0 \times 10^{-3} \, \frac{N}{m^2} \, s$$

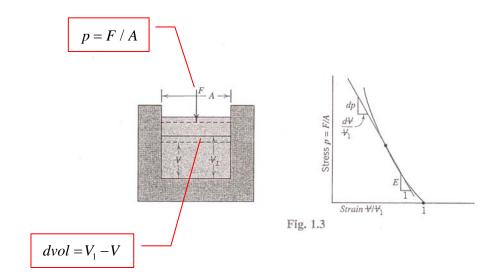
TABLE A2.1 Approximate Properties of Some Common Liquids at Standard Atmospheric

sure (cont.)

| -                      |                  |                       |       | SI Units   |                                                                                |           |                         |
|------------------------|------------------|-----------------------|-------|------------|--------------------------------------------------------------------------------|-----------|-------------------------|
|                        | <i>T,</i><br>°C  | $_{ m kg/m^3}^{ ho,}$ | s.g., | E,<br>kPa  | $\begin{array}{c} \mu \times 10^4 \\ \mathrm{Pa} \cdot \mathrm{s} \end{array}$ | σ,<br>N/m | p <sub>v</sub> ,<br>kPa |
| Ethyl alcohol          | 20               | 788.6                 | 0.79  | 1, 206 625 | 12.0                                                                           | 0.022     | 5.86                    |
| Freon-12               | 15.6             | 1 345.2               | 1.35  | _          | 14.8                                                                           | _         |                         |
|                        | -34.4            | 1 499.8               | -     | _          | 18.3                                                                           | -         | _                       |
| Gasoline               | 20               | 680.3                 | 0.68  | -          | 2.9                                                                            | -         | 55.2                    |
| Glycerin               | 20               | 1 257.6               | 1.26  | 4 343 850  | 14 939                                                                         | 0.063     | 0.000 014               |
| Hydrogen               | -257.2           | 73.7                  | _     | _          | 0.21                                                                           | 0.0029    | 21.4                    |
| Jet fuel (JP-4)        | 15.6             | 773.1                 | 0.77  | _          | 8.7                                                                            | 0.029     | 8.96                    |
| Mercury                | 15.6             | 13 555                | 13.57 | 26 201 000 | 15.6                                                                           | 0.51      | 0.000 17                |
| Oxygen (Liquid)        | 315.6<br>- 195.6 | 12 833<br>1 206.0 V   | 12.8  | =          | 9.0<br>2.78                                                                    | 0.015     | 47.2<br>21.4            |
| Sodium                 | 315.6            | 876.2                 |       | _          | 3.30                                                                           | _         | - 0                     |
|                        | 537.8            | 824.6                 | _     | _          | 2.26                                                                           | _         | _166                    |
| Water <sup>b</sup>     | 20               | 998.2                 | 1.00  | 2,170,500  | 10.0                                                                           | 0.073     | 2.34                    |
| Sea water <sup>b</sup> | 20               | 1024.0                | 1.03  | 2,300,000  | 10.7                                                                           | 0.073     | 2.34                    |

 $<sup>^</sup>b The$  specific heat of liquid water is approximately 25 000 ft·lb/slug·°R or 4 180 J/kg·K.




1–13

- (6) Specific heat, c
  - = ratio of the quantity of heat flowing into a substance per unit mass to the change in temperature
- (7) Internal energy, u specific internal energy = energy per unit mass, J/kg kinetic + potential energy  $\rightarrow$  internal energy
- (8) Enthalpy specific enthalpy  $= u + p / \rho$
- (9) Bulk modulus of elasticity and Compressibility
  - 1) Compressibility, C
    - = measure of change of volume and density when a substance is subjected to normal pressures or tensions
    - = % change in volume (or density) for a given pressure change

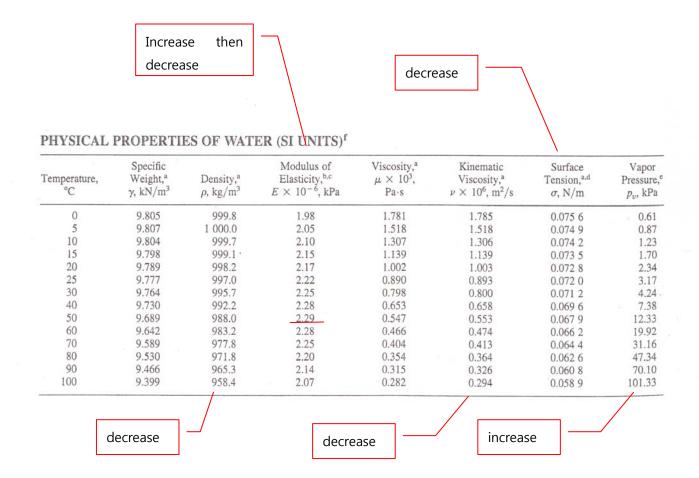
$$C = -\frac{dvol}{vol} / dp = \frac{d\rho}{\rho} \frac{1}{dp}$$

2) Bulk modulus of elasticity,  $E_{v}$ 

$$E_{v} = \frac{1}{C} = -\frac{dp}{dvol/vol} = \frac{dp}{d\rho/\rho}$$



# (10) Vapor pressure, $p_v$


- = pressure at which liquids boil
- = equilibrium partial pressure which escaping liquid molecules will exert above any free surface
- ~ increases with temperature
- ~ The more volatile the liquid, the higher its vapor pressure.

## (11) Surface energy and surface tension, $\sigma$

At boundaries between gas and liquid phase, molecular attraction introduce forces which cause the interface to behave like a membrane under tension.

$$\sigma = \frac{\text{(force)} \times \text{(distance)}}{\text{area}} = \frac{\text{work}}{\text{area}} = \frac{\text{force}}{\text{length}}$$

~ water: decrease with temperature

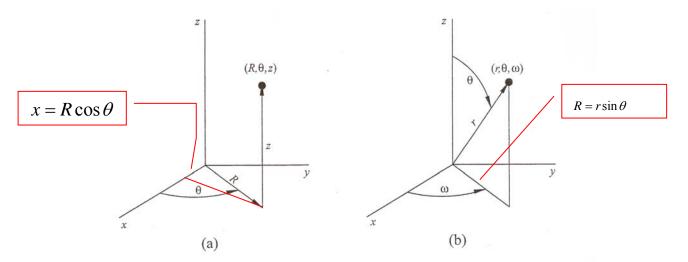


# [Appendix 1] Coordinate Systems

- i) Cartesian (x, y, z)
- ii) Cylindrical  $(R, \theta, z)$

$$x = R\cos\theta$$

$$y = R \sin \theta$$


$$z = z$$

# iii) Spherical $(r, \theta, \omega)$

$$x = r \sin \theta \cos \omega$$

$$y = r \sin \theta \sin \omega$$

$$z = r \cos \theta$$



**FIGURE A.1** Relationship between cartesian coordinates and (a) cylindrical coordinates and (b) spherical coordinates.

[Appendix 2] Tensor

Scalar – quantity with magnitude only

Vector – quantity with magnitude and direction

Tensor – an order array of entities which is invariant under coordinate transformation, this includes scalars and vectors

• Rank (order) of tensors

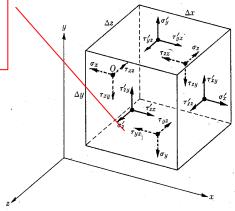
0th order – 1 component, scalar (e.g., mass, length, pressure)

1st order - 3 components, vector (e.g., velocity, force, acceleration)

2nd order - 9 components, (e.g., stress, rate of strain, turbulent diffusion coeff.)

• Example of 2nd order tensor

~ stress acting on a fluid element


Stress tensor = 
$$\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix}$$

 $\sigma$  = normal stress,  $\tau$  = shear stress



 $\tau_{yx}$  = shear stress in xz - plane

and in x - direction

