Electrochemical Energy Engineering, 2012

2. Electronic and ionic conductivity

Learning subject

- 1. Classes of conductors
- 2. Mobility and transport number
- 3. Conductivity

Learning objective

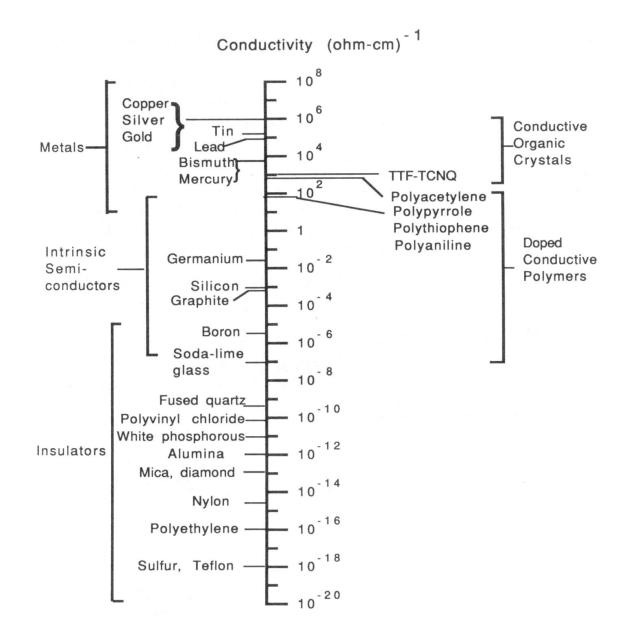
- 1. To identify electronic and ionic conductors
- 2. Understanding concepts of mobility and transport number
- 3. Understanding the concept of conductivity

1. Classes of conductors

Materials 1.Conductors Electronic conductors Ionic conductors

2. Insulators

Conductors: metals Insulators: plastics, ceramics, gases No clear cut distinction between conductor and insulator


	Material	κ/Sm ⁻¹
Ionic conductors	Ionic crystals Solid electrolytes Strong(liquid) electrolytes	$\begin{array}{c} 10^{-16} - 10^{-2} \\ 10^{-1} - 10^{3} \\ 10^{-1} - 10^{3} \end{array}$
Electronic conductors	Metals Semiconductors Insulators	$\begin{array}{l} 10^{3}-10^{7}\\ 10^{-3}-10^{4}\\ <\!10^{-10} \end{array}$

Typical value of electrical conductivity

 $S/m \rightarrow x10^{-2}$ for S/cm

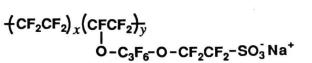
Electrical conductivity of various materials (most at 298 K)

Material
Superconductors (low temp) Ag Cu Hg C (graphite) Doped polypyrrole Molten KCl (at 1043 K) 5.2 M H_2SO_4 (battery acid) Seawater Ge 0.1 M KCl H2O Typical glass Teflon, (CF ₂)n Vacuum & most gases

Inert

-(CH2)n

polyethylene


polystyrene

poly(vinylchloride)

Ion exchange (ionic conductors)

SO₃M⁺

polystyrene sulfonate

Nafion

-(OCH2CH2), Li+CF3SO3

polyethylene oxide

 $-CH_2 + x$ NMe₃ X

quaternized polystyrene

H --{Ċ-CH₂}-

polyvinylpyridinium

polymer	structure	typical methods of doping	typical conductivity (ohm-cm) ⁻¹
polyacetylene	$\{ \sim \}_n$	electrochemical, chemical (AsF ₅ , I ₂ , Li, K)	500 (2000 for highly- oriented films)
polyphenylene	$-\left\{ \begin{array}{c} \\ \end{array} \right\}_{n}$	chemical (AsF ₅ , Li, K)	500
poly(phenylene sulfide)	$\left\{ \begin{array}{c} \\ \\ \end{array} \right\}_{n}$	chemical (AsF ₅)	1
polypyrrole	$\left[\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	electrochemical	600
polythiophene		electrochemical	100
poly(phenylquinone)		electrochemical, chemical (sodium naphthalide)	50
polyaniline	$\left[\begin{array}{c} H \\ N \end{array} \right]_n$	electrochemical	500

Electronically conductive polymers

Measurement of electrical conductivity

1. Four terminal method: κ calculation from measured I, $\Delta \phi, A$ and x

2. a.c. impedance method

The nature of the charge carriers

1) <u>Electronic conductors</u>: mobile electrons; metals, some inorganic oxides and sulfides (e.g., PbO_2 and Ag_2S which are slightly non-stoichiometric), semiconductors (n-type: electrons, p-type: holes, intrinsic: both), conducting polymer (pi-electrons), graphite(pi-electrons), organic metals (organic salts, e.g., TTF-TCNQ(tetrathiafulvalene tetracyanoquinodimethane, pi-electrons)

Metals: shared valence electrons with all atoms in solid (delocalized electrons)
→ high electric and thermal conductivity

cf: insulator vs. conductor: valence band completely filled vs. partially filled

e.g., Diamond (insulator); sp³ orbital (completely filled valence band), E_g: 5.6 eV Na (alkali metal); 11 electrons (10 filled 1s & 2p, 1 valence electron 3s (half filled → electric conduction using unfilled part of VB) Alkaline earth metal (divalent, 12 e's) → good conductors because their valence band overlaps another band

Conductivity of metal increases as temperature lowered or impurities reduced since low resistance

• Semiconductors: E_g is smaller than insulator (1 ~ 2 eV; relatively small excitation energy, cf) $1eV = 12000 \text{ K} = 1240 \text{ nm} (1.2 \text{ } \mu\text{m} (\text{IR})))$

Conductivity of semiconductors increases as temperature & impurity concentration increased.

• Semimetals; between metals & semiconductors, e.g., graphite \rightarrow planar sheet of hexagons with weak van der Waals forces (2-dimensional molecule), $E_g = 0$ (top energy level of pi(π)-bonding orbitals (the valence band) is at the same level of that of the anti-bonding orbital

• Conducting polymer: π-electrons

2) <u>Ionic conductors</u>: motion of anions and/or cations; solutions of electrolytes (salts, acids and bases) in water and other liquids, molten salts, solid ionic conductors (solid electrolyte)(O^{2-} in ZrO_2 at high temperature, Ag^+ in $RbAg_4I_5$ at room temperature, fluoride ion holes in EuF_2 doped LaF_3)

3) <u>Electronic & ionic conductors</u>; plasmas (hot gases, positive ions and free electrons), sodium metal in liquid ammonia(Na⁺ cation and solvated electrons), hydrogen dissolved in Pd metal(hydrogen ions(protons) and electrons)

conductors	electronic		ides & sulfides n-type ntrinsic p-type
		f organic metals conducting polyme	
	mixed	plasmas some solids & solu	itions
	ionic	solutions of electro molten salts solid ionic conduct doped crystals	•

2. Mobility and transport number

<u>Mobilities</u>: conduction from the standpoint of the charge carriers

Electric current = rate at which charge crosses any plane = [number of carriers per unit volume][cross sectional area][charge on each carrier][average carrier speed]

$$\mathbf{I} = d\mathbf{q}/dt = (\mathbf{N}_{\mathbf{A}}\mathbf{c}_{\mathbf{i}})(\mathbf{A})(\mathbf{q}_{\mathbf{i}})(\mathbf{v}_{\mathbf{i}})$$

i: particular charge carrier, c_i; concentration, q_i; charge, v_i; average velocity, N_A; Avogadro's constant (6.0220 x 10²³ mol⁻¹), A; area z_i ; charge number = q_i/q_e where q_e (1.6022 x 10⁻¹⁹ C), e.g., electrons:-1, Mg²⁺; +2

$$\nu_i \propto f_i \propto X \propto d\phi/dx$$

f_i; force exerted on the charge carrier, X; electric field strength

mobility of the carrier, u_i (m²s⁻¹V⁻¹ unit) = velocity to field ratio (v_i / X)

$$v_i = \pm u_i X = -(z_i / |z_i|) u_i d\phi/dx$$

 $|z_i|$: absolute value of the charge number

 $u_{e^{-}}$ of electrons: 6.7 x 10⁻³ m²s⁻¹V⁻¹ for Ag, less mobile in other metals mobility of ions in aqueous solution: smaller than the factor of 10⁵ (factor 10⁵ slower); $u_{cu2+}^{o} = 5.9 \times 10^{-8} \text{ m}^2 \text{s}^{-1} \text{V}^{-1}$ in extremely diluted solution

Current I,

 $\mathbf{I} = -\mathbf{A} \mathbf{N}_{\mathbf{A}} \mathbf{q}_{\mathbf{e}} \, \big| \, \mathbf{z}_{\mathbf{i}} \, \big| \, \mathbf{u}_{\mathbf{i}} \mathbf{c}_{\mathbf{i}} \mathbf{d} \phi / \mathbf{d} \mathbf{x}$

Faraday constant

 $F = N_A q_e = (6.02 \text{ x } 10^{23} \text{ mol}^{-1})(1.6022 \text{ x } 10^{-19} \text{ C}) = 96485 \text{ Cmol}^{-1}$

is numerically equal to the charge carried by one mole of univalent cations. (F is large. Small amount of chemicals \rightarrow higher electricity)

If there are several kind of charge carriers,

 $I = -AFd\phi/dx\Sigma | z_i | u_i c_i$ $i = -Fd\phi/dx\Sigma | z_i | u_i c_i$

Transport number t_i; the fraction of the total current carried by one particular charge carrier

$$\mathbf{t}_{i} = (\mid \mathbf{z}_{i} \mid \mathbf{u}_{i}\mathbf{c}_{i}) / \Sigma(\mid \mathbf{z}_{i} \mid \mathbf{u}_{i}\mathbf{c}_{i})$$

From $i = \kappa X = -\kappa d\phi/dx$,

conductivity κ

 $\kappa = F\Sigma \mid z_i \mid u_i c_i$

molar ionic conductivity (λ_i); Fu_i

Ion mobilities at extreme dilution in aqueous solution at 298 K

Ion	u ^o /m ² s ⁻¹ V ⁻¹
H ⁺	362.5 x 10 ⁻⁹
K ⁺	76.2 x 10 ⁻⁹
Ag ⁺	64.2 x 10 ⁻⁹
Cu ²⁺	58.6 x 10 ⁻⁹
Na ⁺	51.9 x 10 ⁻⁹
Li ⁺	40.1 x 10 ⁻⁹
OH-	204.8 x 10 ⁻⁹
SO ₄ ²⁻	82.7 x 10 ⁻⁹
Cl-	79.1 x 10 ⁻⁹
ClO ₄ -	69.8 x 10 ⁻⁹
C ₆ H ₅ COO ⁻	33.5 x 10 ⁻⁹

cf. u_{e-} of electrons: 6.7 x 10⁻³ m²s⁻¹V⁻¹ for Ag

Capacitance

parallel conducting plate separated by a narrow gap containing air or insulator

 $\int I dt = Q \propto \Delta E$

 $\mathbf{Q} = -\mathbf{C}\Delta\mathbf{E}$

C; capacitance (unit; farads (F) = C/V)

 $C = -Q/\Delta E = \epsilon A/L$

A; cross-section area of the gap, L; width, ε ; permittivity of the insulator

• Relative permittivity (ϵ_r) or dielectric constant air: ~ 1 water: 78 \rightarrow Coulomb interaction energy is reduced by two orders of magnitudes from its vacuum value polar molecules: $\epsilon_r \uparrow$ refractive index: $n_r = \epsilon_r^{1/2}$ at the frequency

Capacitor; — | | — ; current integrator

Permittivity of various materials

Material	10 ¹² ε/Fm ⁻¹	Material	10 ¹² ε/Fm ⁻¹
vacuum (ε_0)	8.85419	Neoprene	58
$N_2(g)$	8.85905	$ClC_2H_4Cl(l)$	91.7
$Teflon(s), (CF_2)_n$	18	$CH_{3}OH(1)$	288.9
$\operatorname{CCl}_4(l)$	19.7	$C_6 H_5 NO_2(1)$	308.3
Polyethene (s)	20	CH ₃ CN(Î)	332
Mylar (s)	28	$H_2O(1)$	695.4
$SiO_2(s)$	38.1	$\tilde{\text{HCONH}}_{2}(l)$	933
Typical glass (s)	44	$TiO_2(s)$	≤1500
$C_6H_5Cl(1)$	49.8	BaTiO ₃ (s)	≤110000

 ϵ/ϵ_0 ; relative permittivity or dielectric constant mylar; poly(ethylene glycol terephthalate), $(CH_2OOCC_6H_4COOCH_2)_n$ Liquid > solid: large capacitance in electrochemical capacitor (supercapacitor)

3. Conductivity

Electricity flows either by electron motion or ion motion In both cases,

the intensity of the flow (= current density) \propto electric field strength

 $i = \kappa X = -\kappa d\phi/dx$

conductivity κ

 $\kappa = F\Sigma \mid z_i \mid u_i c_i$

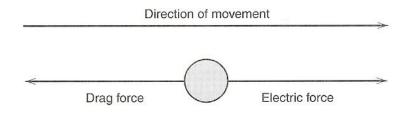
determined by the concentration of charge carriers and their mobilities

one form of Ohm's law

 $\Delta E = -RI$

potential difference across resistor to the current flowing through it

Resistor: dissipate energy Capacitor: store energy


(a)
$$Pt/H_2/\frac{+}{-} \frac{+}{-} \frac$$

<u>Transference number (or transport number)</u> The fraction of the current carried by H^+ and Cl^- : t_+ and t_-

$$t_{+} + t_{-} = 1$$
$$\sum t_{i} = 1$$

e.g., Figure above: $t_{+} = 0.8$, $t_{-} = 0.2$

Conductance (S = Ω^{-1}), L = $\kappa A/l$ conductivity (κ , Scm⁻¹): contribution from all ionic species ∞ ion conc, charge magnitude ($|z_i|$), index of migration velocity (u_i) Mobility (u_i): limiting velocity of the ion in an electric field of unit strength unit: cm²V⁻¹s⁻¹ (cm/s per V/cm) electric field, $E \rightarrow$ electric force \rightarrow counterbalance with frictional drag \rightarrow terminal velocity

Electric force = $|z_i|eE$ e: electronic charge Frictional drag (Stokes law) = $6\pi\eta rv$ η :viscosity of medium, r: ion radius, v: velocity When the terminal velocity is reached:

$$u_i = v/E = |z_i|e/6\pi\eta r$$

Conductivity

$$\kappa = F \sum |z_i| u_i C_i$$

Transference number for species i = conductivity by i /total conductivity

 $t_i = |z_i|u_iC_i/\sum |z_j|u_jC_j$

For pure electrolytes (e.g., KCl, CaCl₂, HNO₃) \rightarrow equivalent conductivity (Λ)

 $\Lambda = \kappa / C_{eq} \qquad (\text{conductivity per unit concentration of charge}) \\ C_{eq} : \text{concentration of } + (\text{or -}) \text{ charges} = C|z|$

$$\Lambda = F(u_+ + u_-) = \lambda_+ + \lambda_-$$

equivalent ion conductivity, $\lambda_i = Fu_i$

$$\mathbf{t}_{i} = \lambda_{i} / \Lambda = \mathbf{u}_{i} / (\mathbf{u}_{+} + \mathbf{u}_{-})$$

- Table: $t_+ \rightarrow$ individual ionic conductivities, λ_i

- λ_i , t_i depend on concentration of pure electrolyte because interactions between ions tend to alter mobilities
- \rightarrow Table : λ_{0i} (extrapolated to infinite dilution) \rightarrow calculate t_i

For pure electrolyte:

$$t_i = \lambda_i / \Lambda$$

$t_i = |z_i|C_i\lambda_i/\sum |z_j|C_j\lambda_j$

	Concentration, C_{eq}^{b}			
Electrolyte	0.01	0.05	0.1	0.2
HC1	0.8251	0.8292	0.8314	0.8337
NaCl	0.3918	0.3876	0.3854	0.3821
KCl	0.4902	0.4899	0.4898	0.4894
NH ₄ Cl	0.4907	0.4905	0.4907	0.4911
KNO3	0.5084	0.5093	0.5103	0.5120
Na ₂ SO ₄	0.3848	0.3829	0.3828	0.3828
K_2SO_4	0.4829	0.4870	0.4890	0.4910

Ion	$\lambda_0, \operatorname{cm}^2 \Omega^{-1} \operatorname{equiv}^{-1a}$	$u, \operatorname{cm}^2 \operatorname{sec}^{-1} \operatorname{V}^{-1b}$
H^+	349.82	3.625×10^{-3}
K ⁺	73.52	7.619×10^{-4}
Na ⁺	50.11	5.193×10^{-4}
Li ⁺	38.69	4.010×10^{-4}
NH_4^+	73.4	7.61×10^{-4}
$\frac{1}{2}Ca^{2+}$	59.50	6.166×10^{-4}
OH-	198	2.05×10^{-3}
Cl^{-}	76.34	7.912×10^{-4}
Br^{-}	78.4	8.13×10^{-4}
I	76.85	7.96×10^{-4}
NO ₃	71.44	$7.404 imes 10^{-4}$
OAc ⁻	40.9	4.24×10^{-4}
ClO_4^-	68.0	7.05×10^{-4}
$\frac{1}{2}SO_4^{2-}$	79.8	8.27×10^{-4}
HCO ₃	44.48	4.610×10^{-4}
$\frac{1}{3}$ Fe(CN) ₆ ³⁻	101.0	1.047×10^{-3}
$\frac{1}{4}$ Fe(CN) $_{6}^{4-}$	110.5	1.145×10^{-3}