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Learning subject  

1. Butler-Volmer equation 

2. Tafel plot 

3. Mass transport 

Learning objective  

1. Understanding the relation between potential and current 

2. Understanding Butler-Volmer equation and Tafel plot 

3. Understanding limiting current from mass transport 



1. Butler-Volmer equation 
 

 

Nernst equation : equilibrium expression  electrode reaction rate? 

(kinetics) 

 

 

Electron transfer at an electrode  

 

Reduction & oxidation at electrode are accomplished by heterogeneous electron 

transfer reactions since electron transfer occurs at the interface between 

electrode and solution  relationship between potential and rate of electrode 

reaction (which determine current)  





Review of homogeneous kinetics 

Dynamic equilibrium 
                                                                kf 

                                         O + e  =  R 
                                                                 kb 

Rate of the forward process 

                                         vf (M/s) = kfCA 

Rate of the reverse reaction 

                                            vb = kbCB 

Rate const, kf, kb: s
-1 

Net conversion rate of A & B 

                                         vnet = kfCA – kbCB 

At equilibrium, vnet = 0 

                                         kf/kb = K = CB/CA 

*kinetic theory predicts a const conc ratio at equilibrium, just as thermodynamics 

At equilibrium, kinetic equations → thermodynamic ones 

→ dynamic equilibrium (equilibrium: nonzero rates of kf & kb, but equal)  

 

Exchange velocity  

                                     v0 = kf(CA)eq = kb(CB)eq 



   

Relationship between current and heterogeneous rate constants 

 

Faraday’s law: chemical reaction  electric current  an indicator of reaction 

rate 

Amount of electricity, 

q = nFN 

 

n: electron number, N: number of moles, F: Faraday constant (96485 C/mol) 

 

e.g., PbSO4(s) + 2H2O(l)  2e- + PbO2(s) + HSO4
-(aq) + 3H+(aq) 

  

q/2F = -NPbSO4 = -NH2O/2 = NPbO2 = NHSO4- = NH+/3 

 

The passage of two moles of electrons = destroy one mole of PbSO4, destroy two 

moles of water, create one mole of PbO2… 

 

 



If we generalize this result and apply it to the oxidation reaction, 

R  ne- + O 

Then,                       

q/nF = -NR = NO 

I = dq/dt = nFdN/dt 

I/nF = -dNR/dt = dNO/dt = rate 

  

O + e- = R 

  

En = E0 – RT/F ln(cR/cO) 

depends on the concentrations of the two species and E0’ 

  

“=” means, 

R  e- + O 

O + e-  R 

At En (Eeq), the rates 

rox(En) = rrd(En) 

because no net reaction occurs. The rate r depend on the electrode potential E. 



What exactly is meant by the “rate” of an electrode reaction? 

At the potential of E, 

rnet(E) = rox(E) - rrd(E) 

  

net reaction rate: the rate at which R is destroyed , or the rate at which O is 

created, per unit area of electrode (unit of molm-2s-1)  “heterogeneous reaction 

rate” 

  

rnet(E) = -(1/A)(dNR/dt) = (1/A)(dNO/dt) 

  

rox(E) = kox(E)cR
s 

“s” means that the concentrations at the electrode surface 

kox(E): oxidative rate constant (ms-1) 

rrd(E) = krd(E)cO
s 

krd(E): reductive rate constant 

rnet(E) = I/nAF = i/nF 



From rnet(E) = rox(E) - rrd(E), rox(E) = kox(E)cR, rrd(E) = krd(E)cO  

 

Relate the faradaic current and rate constants 

  

                                       i = nF[koxcR
s - krdcO

s] 

 

cf) kox = ka of anode, krd = kc of cathode 

  

when kox(E)cR
s = krd(E)cO

s  zero current  equilibrium 

when kox(E)cR
s > krd(E)cO

s  anodic current (ia)  oxidation of R to O 

when kox(E)cR
s < krd(E)cO

s  cathodic current (ic)  reduction of O to R  

 

 



 

 Potential dependence of heterogeneous rate constants 

O + ne- = R 

Transition state model, 

krd = kf = Aexp(-Gf
‡/RT) 

  

where Gf
‡ is the free energy of activation and A is a frequency factor which 

accounts for the rate of collision of the electroactive molecule with the 

electrode surface 

cf) kox = kb of anode, krd = kf since forward direction () is reduction one.  



   (a)  equilibrium between O and R 

O  R: pass over the activation free energy barrier, Gf
‡ 

R  O: pass over the activation free energy barrier, Gb
‡ 

At equilibrium, Gf
‡ = Gb

‡  probability of electron transfer  si the same in each 

direction  no net curent  ic + ia = 0 

No net current means same rates between forward and backward (not zero current) 

 exchange current i0 at equilibrium; i0 = ic = -ia 

  

i0  as G  

(b) net reduction 

applying negative potentials 

reduction: more negative potential   kf , kb  

 

 

 

 

 

                                                            E                                               E 

krd 

 
kox 

 



Negative potential E  lower Gf
‡ and raise Gb

‡ 

Potential change E – E0  free energy change –nF(E-E0)  part of this 

energy change (factor )  decrease in the activation barrier for reduction 

(forward reaction) ; part (factor (1 - ))  increase in the activation barrier 

for oxidation 

  

Gf
‡ = G0‡ - nF(E-E0’) 

  

Gb
‡ = G0‡ + (1-)nF(E-E0’) 

  

Applying potential to the electrode  activation free energy barrier 

; “transfer coefficient” or “symmetry factor” since  is a measure of the 

symmetry of the energy barrier  a symmetrical energy barrier ( = 0.5), real 

systems: 0.3 ~ 0.7 semiconductor: ~ 0 or ~ 1 

                                       

                                              O + ne-  R 

Actually,                       O + ne-  R – (1 - )ne- 

 

, -(1-); orders of the reductive and oxidative processes  



another interpretation of : increasing electrochemical activity of electrons  it 

accelerates the reductive process and retards the oxidative process   is the 

fraction of the increase rrd, (1-) is the fraction that diminishes rox 

= 0.5; perfect symmetric, these fractions are equal 

 

 

 

 

 

 

 

 

Arrhenius form, 

                              kf = k0exp[-nF(E-E0)/RT] 

                              kb = k0exp[(1-)nF(E-E0)/RT] 

  

Where k0 is the standard rate constant, kf = kb = k0 at E0. k0,   rate constant. 

Relationship between potential and rate  



  

 

Relationship between current and potential 

 

 

ic = nFcO
skf   and   ia = -nF cR

skb 

  

ic = nFk0cO
sexp{-nF(E-E0)/RT} 

ia = - nFk0cR
sexp{(1-)nF(E-E0)/RT} 

  

i = ic + ia 

Butler-Volmer equation 

  

i = nFk0[cO
sexp{-nF(E-E0)/RT} - cR

sexp{(1-)nF(E-E0)/RT}] 

  

This relationship links the faradaic current, electrode potential, the concentrations 

of electroactive species at the electrode surface  

 



i and ic and ia as a function of potential E; negative E  ic  (forward reaction), 

positive E  ia  (backward) 

k0; 1 ~ 50 cm s-1 for very fast reactions, 10-9 cm s-1 for very slow reactions. 

Exchange current density i0; 10 Acm-2 ~ 1 pAcm-2 

 



The effect of the value of k0 on the current density close to Eeq (a) k0 large  (b) k0 

smaller 

 

At equilibrium, zero net current, ic = -ia 

Butler-Volmer equation (kinetics)  Nernst equation (thermodynamics) 

  

E = E0 – (RT/nF)ln(cR
s/cO

s) 

  

i0 = ic = nFk0cO
sexp{-nF(E-E0)/RT}= ia = - nFk0cR

sexp{(1-)nF(E-E0)/RT}  

  

i0 = nFk0(cO
s)1-(cR

s) 

high exchange current density  high reaction rate 



Essentials of electrode reactions    

*accurate kinetic picture of any dynamic process must yield an equation of the 

thermodynamic form in the limit of equilibrium 
                                                                         kf 

                                              O + ne  =  R 
                                                                          kb 

Equilibrium is characterized by the Nernst equation 

 

                                      E = E0′ + (RT/nF)ln(Co
*/CR

*) 

                                                                      bulk conc 

Kinetic: dependence of current on potential 

      Overpotential                     η = a + blogi                                Tafel equation 

 

2. Tafel plot 



                                The effect of exchange current density on overpotential 

  

  

Butler-Volmer equation/i0 

i = nFk0[cO
sexp{-nF(E-E0)/RT} - cR

sexp{(1-)nF(E-E0)/RT}] 

  

and let F/RT = f, overpotential  = E –E0  current-overpotential equation 

  

i = i0[exp(-nf) – exp((1-)nf)] 

>>0 (oxidation, only O in bulk)  exp(-nf) << exp((1-)nf) 

i = -i0 exp((1-)nf) 



apply log, 

 = -(RT/(1-)nF)lni0 + (RT/(1-)nFlni 

  

for  << 0 (reduction),  = (RT/nF)lni0 - (RT/(nF)lni 

 

Tafel plot  measure i0 and  

E-E0 =  = alni0  blni  

 

 

 

 

 

 

 

 

 

 

Plot of lni vs. E showing how to measure i0 and  from the slopes of the 

lines  



Tafel plots (i vs. η) → evaluating kinetic parameters (e.g., i0, α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

anodic cathodic 



e.g., real Tafel plots for Mn(IV)/Mn(III) system in concentrated acid 

 

- At very large overpotential: mass transfer limitation 



3. Mass Transport 
 

  

Mass transport 

  

rate = kaCR
s - kcCO

s 

  

Electrochemical reaction at electrode/solution interface: molecules in bulk 

solution must be transported to the electrode surface  “mass transfer” 

  

CO
b  =  CO

s  =  CR
s  =  CR

b 

  

Mechanisms for mass transport:  

   (a)  Migration: movement of a charged body under the influence of an electric 

field   

          a gradient of electric potential 

(b) Diffusion: movement of species under the influence of gradient of chemical      

      potential (i.e., a concentration gradient) 

(c) Convection: stirring or hydrodynamic transport  



Nernst-Planck equation (diffusion + migration + convection) 

  

Ji(x) = -Di(Ci(x)/x) –(ziF/RT)DiCi((x)/x) + Civ(x) 

  

Where Ji(x); the flux of species i (molsec-1cm-2) at distance x from the surface, 

Di; the diffusion coefficient (cm2/sec), Ci(x)/x; the concentration gradient at 

distance x, (x)/x; the potential gradient, zi and Ci; the charge and 

concentration of species i, v(x); the velocity (cm/sec) 

  

1. Steady state mass transfer 

steady state, (C/t) = 0; the rate of transport of electroactive species is equal to 

the rate of  their reaction on the electrode surface 

  

In the absence of migration, 

R = O + ne- 

The rate of mass transfer, 

 

vmt  (CR(x)/x)x=0 = (CR
b – CR

s)/ 

where x is distance from the electrode surface & : diffusion layer  



                                                   

 

 

 

                        

 

                                     Electrode 

 

vmt = mR[CR
b – CR

s] 

 

where CR
b is the concentration of R in the bulk solution, CR

s is the 

concentration at the electrod surface 

mR is “mass transfer coefficient”  

i = nFmR[CR
b – CR

s] 

 

i = -nFmO[CO
b – CO

s]  

Cs 

 

Cb 

 

 

 



largest rate of mass transfer of R when CR
s = 0  “limiting current” 

 

il,a = nFmRCR
b  

 

 

 

 

 

 

 

 

CR
s/CR

b = 1 – (i/il,a) 

And 

CR
s = [1 – (i/il,a)] [ il,a/nFmR] = (il,a – i)/(nFmR) 

Same method, 

CO
s/CO

b = 1 – (i/il,c) 

il,c = nFmOCO
b 

CO
s = [1 – (i/il,c)] [ il,c/nFmO] = (il,c – i)/(nFmO) 

  

 

Cb 

 
Cs 

 
x 

 
0 

 

Cs = 0 

 



 Put these equations to E = E0 –(RT/nF)ln(CR
s/CO

s) 

  

E = E0 – (RT/nF)ln(mO/mR) - (RT/nF)ln[(il,a – i)/(i - il,c)] 

Let 

E1/2 = E0 – (RT/nF)ln(mO/mR) 

Then,  

E = E1/2 - (RT/nF)ln[(il,a – i)/(i - il,c)] 

 

 

 

  

 

E 

 

i 

 i l, a 

 

i l, c 

 

 

  

 



 

E1/2, half-wave potential, independent of CO
b and CR

b  characteristic of the R/O 

system.   

  

 

 

 

 

 

 

 

 

Reversibility: 

reversible: k0 >> mO or mR  kinetic rate constant >> mass transport rate 

constant  system is at equilibrium at the electrode surface and it is possible to 

apply the Nernst equation at any potential 

irreversible: k0 << mO or mR 

 

 

  

 i l, 

 

i  

 

E 

 
E1/2 

 

 

  

 



2. Non-steady state mass transport: diffusion control 

 

The rate of diffusion depends on the concentration gradients 

  

J = -D(C/x)    Fick’s first law 

  

D: diffusion coefficient (cm2/sec) 

  

The variation of concentration with time due to diffusion  Fick’s second law 

  

C/t = -D(2C/x2)         1-D 

  

J = -D(C/x) = i/nF 

D(C/x) = D(Cb – Cs)/ = i/nF  

 

Time-dependent, applying potential step E 

 

)) 

  

 



                                                                                        (t1)   (t2)  (t3)  (t4)  

  

 

Moles of species in diffusion layer = idt/nF  [Cb –Cs](A(t)/2)   

  

Differentiating, 

i/nF = [Cb –Cs](Ad(t)/2dt) = D(Cb – Cs)/(t)  

d(t)/dt = 2D/(t), (t) = 0 at t = 0 

(t) = 2(Dt) 

i/nF = (D1/2/2t1/2) [Cb –Cs] 

  

diffusion layer grows with t1/2 and current decays with t -1/2 

E 

 No reaction 

 

Reaction 

 

t = 0 

 

t  

 

Cb 
t=0 

 
t1 

 

t2 

 

t3 

 
t4 

 



 

potential step (chronoamperometry), planar electrode: Cottrell equation (in 

Table) 

constant current  potential variation at time (chronopotentiometry): Sand 

equation    (t =  (transition time) at Cs = 0) 

 

                                      I 

 

 

 

 

 

 

t 

 


