Electrochemical Energy Engineering, 2012

5. Electrode Processes 2

Learning subject

1. Butler-Volmer equation
2. Tafel plot

3. Mass transport

Learning objective

1. Understanding the relation between potential and current
2. Understanding Butler-Volmer equation and Tafel plot

3. Understanding limiting current from mass transport



1. Butler-Volmer equation

Nernst equation : equilibrium expression — electrode reaction rate?
(kinetics)

Electron transfer at an electrode

Reduction & oxidation at electrode are accomplished by heterogeneous electron
transfer reactions since electron transfer occurs at the interface between
electrode and solution — relationship between potential and rate of electrode
reaction (which determine current)
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FIGURE19-10 Steps in the reaction Ox + ne = Red at an electrode. Note that
the surface layer is only a few molecules thick. (Adapted from: A. J. Bard
and L. R. Faulkner, Electrochemical Methods, p. 21, Wiley: New York, 1980.
Reprinted by permission of John Wiley & Sons, Inc.)



Review of homogeneous kinetics
Dynamic equilibrium

K
O+e =R
kb
Rate of the forward process
V¢ (M/s) = k;C,
Rate of the reverse reaction
Vp = K,Cpg
Rate const, ks, k,: s
Net conversion rate of A & B
Vnet = kaA o kbCB
At equilibrium, v, =0
kik, = K=Cg/C,
*Kinetic theory predicts a const conc ratio at equilibrium, just as thermodynamics
At equilibrium, Kinetic equations — thermodynamic ones
— dynamic equilibrium (equilibrium: nonzero rates of k; & ki, but equal)

Exchange velocity
VO = kf(CA)eq = kb(CB)eq



Relationship between current and heterogeneous rate constants

Faraday’s law: chemical reaction — electric current — an indicator of reaction
rate
Amount of electricity,

d = nFN
n: electron number, N: number of moles, F: Faraday constant (96485 C/mol)
e.g., PbSO,(s) + 2H,0(l) — 2e- + PbO,(s) + HSO,(aq) + 3H*(aq)
Q/2F = -ANppso = “ANyj50/2 = ANpyo, = ANpgo, = AN, /3

The passage of two moles of electrons = destroy one mole of PbSO,, destroy two
moles of water, create one mole of PbO,...



If we generalize this result and apply it to the oxidation reaction,
R—>ne+0
Then,
g/nF =-ANg = AN,
| = dg/dt = nFdN/dt
I/nF = -dN/dt = dN/dt = rate

O+e =R

E. = E®°—RT/F In(cg/c,)
depends on the concentrations of the two species and E”

“=" means,
R—>e+0
O+e >R
AtE, (E,), the rates
Fox(En) = rg(Ep)
because no net reaction occurs. The rate r depend on the electrode potential E.



What exactly is meant by the “rate” of an electrode reaction?
At the potential of E,

rnet(E) = rox(E) B rrd(E)

net reaction rate: the rate at which R is destroyed , or the rate at which O is
created, per unit area of electrode (unit of molm=st) “heterogeneous reaction
rate”

[ (E) = -(1/A)(dNR/dt) = (1/A)(dN/dt)

r(E) = K, (E)cg®
“s” means that the concentrations at the electrode surface
k., (E): oxidative rate constant (ms)
rro(E) = Kg(E)Co’
K.4(E): reductive rate constant
[ (E) = I/nAF = i/nF



From rnet(E) = I’ox(E) B rrd(E)’ rox(E) = kox(E)CR’ rrd(E) = krd(E)CO

Relate the faradaic current and rate constants

| = NF[K,,CR® - KiCo°]

cf) k,, = k, of anode, k.4 = k. of cathode

when k_,(E)cg® = k,4(E)co® — zero current — equilibrium

when K, (E)cg® > k,4(E)co® — anodic current (i,) — oxidation of R to O

when K, (E)cg® < k,4(E)cy® — cathodic current (i.) — reduction of O to R



Potential dependence of heterogeneous rate constants
O+ne =R

Transition state model,
k.4 = K; = Aexp(-AG{/RT)

where AG/* is the free energy of activation and A is a frequency factor which
accounts for the rate of collision of the electroactive molecule with the
electrode surface

cf) k., = k,, of anode, k, = k; since forward direction (—) is reduction one.

Oxidation <«<—— uction Oxidation <—

Reduction

Free energy ——

AG} = AG! - anF(E - E°) AG} = AG} + (1 - o) nF(E - E°)

Reaction coordinate ——————=
O +ne=R

(a) Equilibrium (b) Net reduction



(a) equilibrium between O and R

O — R: pass over the activation free energy barrier, AG/

R — O: pass over the activation free energy barrier, AG,*

At equilibrium, AG# = AG,* — probability of electron transfer si the same in each

direction — no net curent > i +1,=0

NoO net current means same rates between forward and backward (not zero current)

— exchange current i, at equilibrium; i, =1_= -I_
i, TasAG{

(b) net reduction

applying negative potentials

reduction: more negative potential - k. T, k, ¥

0oX

v
v




Negative potential E — lower AG¢ and raise AG,*

Potential change E — E? — free energy change —nF(E-E®) = part of this
energy change (factor o) — decrease in the activation barrier for reduction
(forward reaction) ; part (factor (1 - o)) — increase in the activation barrier
for oxidation

AG# = AGY% - anF(E-E®)

AG, = AGY + (1-a)nF(E-E®)

Applying potential to the electrode — activation free energy barrier

o; “transfer coefficient” or “symmetry factor” since o Is a measure of the
symmetry of the energy barrier — a symmetrical energy barrier (o = 0.5), real

systems: 0.3 ~ 0.7 semiconductor: ~0or ~1

O+ne—>R
Actually, O+ ane- > R—(1- a)ne-

o, -(1-a); orders of the reductive and oxidative processes



another interpretation of a.: increasing electrochemical activity of electrons — it
accelerates the reductive process and retards the oxidative process — o is the
fraction of the increase r 4, (1-a) is the fraction that diminishes r,

o= 0.5; perfect symmetric, these fractions are equal
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Fig. 4.4 Energy profiles for the cases (a) a.=0; (b) a.=3; (c) a.=1.

Arrhenius form,
K, = kP%xp[-anF(E-E°)/RT]
k, = k%exp[(1-a)nF(E-E°)/RT]

Where K° is the standard rate constant, k; = k, = k% at E%. k° o — rate constant.
Relationship between potential and rate



Relationship between current and potential

I.=nFc’ke and I, =-nFc’k,

I, = nFko% sexp{-anF(E-E°%)/RT}
I, = - nFkoc sexp{(1-a)nF(E-E°)/RT}

=10 +i
C a
Butler-Volmer equation

I = nFK[cSexp{-anF(E-EY)/RT} - csexp{(1-a)nF(E-E%)/RT}]

This relationship links the faradaic current, electrode potential, the concentrations
of electroactive species at the electrode surface
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iand i_and i, as a function of potential E; negative E T— i_ T (forward reaction),
positive E T— i_ T (backward)

k0: 1 ~ 50 cm st for very fast reactions, 10-° cm s for very slow reactions.
Exchange current density i,; 10 Acm2 ~ 1 pAcm™



JA
(a)

(b)

n=E-Eq

—

The effect of the value of k, on the current density close to E,, (a) k, large (b) k,
smaller

At equilibrium, zero net current, I, = -I,
Butler-Volmer equation (kinetics) — Nernst equation (thermodynamics)

E = E°— (RT/nF)In(cg’/c,®)
i, = i, = nFk%sexp{-anF(E-E%)/RT}= i, = - nFkOc Sexp{(1-a)nF(E-E°)/RT} =

i, = NFKO(c5)t(cgs)”
high exchange current density — high reaction rate



2. Tafel plot

Essentials of electrode reactions
*accurate kinetic picture of any dynamic process must yield an equation of the
thermodynamic form in the limit of equilibrium

Equilibrium is characterized by the Nernst equation

E =EY + (RT/nF)In(C,"/Cy")
bulk conc
Kinetic: dependence of current on potential
Overpotential n =a+ blogi Tafel equation



((uA cm ?)

The effect of exchange current density on overpotential
Butler-Volmer equation/i,
| = nFKo[cSexp{-anF(E-E%)/RT} - csexp{(1-a)nF(E-E°)/RT}]
and let F/RT = f, overpotential n = E —E® = current-overpotential equation

| = i[exp(-anfn) —exp((1-a)nfn)]
n>>0 (oxidation, only O in bulk) — exp(-anfn) << exp((1-a)nfn)

| = -1, exp((1-a)nfn)



apply log,
N = -(RT/(L-c)nF)Inig + (RT/(L-o)nFnl i

for n<< 0 (reduction), n = (RT/anF)Ini, - (RT/(anF)In| i

Tafel plot - measure iy and o
E-E° =7 = alni, + bin| i

In [j] 4

Slope e2

Plot of In | i| vs. E showing how to measure I, and o from the slopes of the
lines



Tafel plots (i vs. n) — evaluating kinetic parameters (e.g., iy, o)
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e.g., real Tafel plots for Mn(I1\V)/Mn(I1l) system in concentrated acid

- At very large overpotential: mass transfer limitation
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3. Mass Transport

Mass transport
rate = k,.C5 - kK .C?

Electrochemical reaction at electrode/solution interface: molecules In bulk
solution must be transported to the electrode surface — “mass transfer”

Mechanisms for mass transport:
(a) Migration: movement of a charged body under the influence of an electric
field
a gradient of electric potential
(b) Diffusion: movement of species under the influence of gradient of chemical
potential (i.e., a concentration gradient)
(c) Convection: stirring or hydrodynamic transport




Nernst-Planck equation (diffusion + migration + convection)
J.(X) = -D,(0C;(x)/ox) —(z;F/RT)D,C.(0¢(x)/ox) + C.v(X)

Where J.(x); the flux of species i (molsectcm2) at distance x from the surface,
D.; the diffusion coefficient (cm4/sec), oC,(x)/ox; the concentration gradient at
distance X, 0¢(x)/ox; the potential gradient, z, and C;; the charge and
concentration of species i, v(x); the velocity (cm/sec)

1. Steady state mass transfer
steady state, (0C/ot) = 0; the rate of transport of electroactive species is equal to
the rate of their reaction on the electrode surface

In the absence of migration,
R=0+ne
The rate of mass transfer,

V. ¢ (OCK(X)/0X),-o = (CR? — C3)/
where X Is distance from the electrode surface & o: diffusion layer



Z

Elec‘trode

Vi = Mg[CRP — Cif]

where C_P is the concentration of R in the bulk solution, C_8 is the
concentration at the electrod surface
My, is “mass transfer coefficient”

I = nFmg[CLP — Cf]

i =-nFmg[C,° - C.’]



largest rate of mass transfer of R when C.8 = 0 — “limiting current”

- b
.= nFm,Cy,

Cb

Cl/Clr=1- (ifi; )
And
Ce=[1- (/i )] [, /nFm.] = (i, , — i)/(nFm_)
Same method,
Coi/Ct=1- (ifi, )
i =NFMyCP
CoP=[1-(/i, )] [1 /nFmg] = (i, — i)/(nFm)



Put these equations to E = EO —(RT/nF)In(C8/C*)

E = EO— (RT/nF)In(my/mg) - (RT/nE)IN[(i, , - i)/(i - i, )]
Let
E,, = E°— (RT/nF)In(my/my)
Then,
E = E,, - (RTMF)IN[(i, ,— /(i - iy )]

A

, C

" E




E, . half-wave potential, independent of C,P and C,P — characteristic of the R/O
system.

Reversibility:

reversible: k° >> mg or m; — Kinetic rate constant >> mass transport rate
constant — system is at equilibrium at the electrode surface and it is possible to
apply the Nernst equation at any potential

irreversible: k% << mg or mg




2. Non-steady state mass transport: diffusion control

The rate of diffusion depends on the concentration gradients
J=-D(0Clox) Fick’s first law
D: diffusion coefficient (cm?/sec)
The variation of concentration with time due to diffusion — Fick’s second law
oClot = -D(0°Clox?) 1-D

J =-D(0C/ox) = i/nF
D(6C/ox) = D(CP — C9)/8 = i/nF

Time-dependent, applying potential step E



Cb

tH0
E I Reaction %/3/{4

No reaction

t=0 _U R

5(t) 8(t) 5(t) d(t)

Moles of species in diffusion layer = [idt/nF ~ [CP —CS](AS8(t)/2)

Differentiating,
i/nF = [CP —Cs](Add(t)/2dt) = D(CP — C9)/3(t)
do(t)/dt = 2D/o(t), o(t) =0 att=0
5(t) = 2N(Dt)
i/nF = (DY2/2t12) [Cb —C9]

diffusion layer grows with t¥2 and current decays with t -1/2



potential step (chronoamperometry), planar electrode: Cottrell equation (in

Table)
constant current — potential variation at time (chronopotentiometry): Sand

equation (t =t (transition time) at C® = 0)




