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s Example of structural component which are designed to carry
torsional loads

> Power of drive shaft
* Solid or thin-walled circular cross-section

» Aircraft Wing
* Needs to carry the bending and torsional moments generated

by the aerodynamic forces

» ‘bar’ rather than ‘beam’
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7.1 Torsion of circular cylinders

4i
+ Fig.1 e L o,
» Infinitely long, homogeneous, ool o i,
solid or hollow circular cylinder 4

Circular
cylinder R,

subjected to end torques Q, ﬁ,‘f,ﬁ'ﬁ'ﬁ:

Fig. 7.1. Circular cylinder subjected to end torques.
\/

0’0

2 types of symmetries

@ Cylindrical symmetry about I, (Fig. 7.2)
@ Symmetric with regard to any plane, P,
passing though axis I,

Shear stress due to Q, must be of

constant magnitude along circle C,
and tangent to it

— loading is anti-symmetric with regard to P

Fig. 7.2. A plane of symmetry, P,
of the circular cylinder.
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7.1 Torsion of circular cylinders

% Axial displacement at A and B, U and u;

@ ulA — ulB
@ u=-u’
— axial displacement must vanish

“the cross-section does not warp out-of plane”

but =u’ =0

s Each axis “rotate about its own center like a rigid disk”
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7.1 Torsion of circular cylinders

‘ 7.1.1 Kinematic Description

< Rotation angle @,

> Rigid body rotation of each axis (Fig. 7.3)

s Sectional in-plane displacement field

u,(x,ra)=-rd,(x)sina
u,(X,r,a)=ro,(x)cosa } 7-1)

Fig. 7.3. In-plane displacements for a circular

o Out_of_p|ane displacement field cylinder. The cross-section undergoes a rigid
body rotation.

> U (X, X%,%)=0 (7.2)
> Uy (X, X5, X5) =—=X,D, (X))

v (7.3) from Eq.(7.1)
> U3(X1,X2,X3):X2(I)1(X1) }
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7.1 Torsion of circular cylinders

% Strain field

&=0¢&=0¢&=0 (7.4)

V=0 (7.5)
ou, ou
Y12 = (9_)(;+5_Xj ==Xk, (X)), 715 = X, (X) (7.6)
o,
K (%) = 5 (7.7)  “section twist rate”

» To visualize the strain field, describe them in the polar coordinate (I, )
— Y and Y, , or simply 7, and 7,
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7.1 Torsion of circular cylinders

< Transformation between the Cartesian and the Polar strain
component

Y, =7,C08a+y,.SIine, ¥, =—y,SINa+y,C08a (7.8) from Eq.(7.6)
7, (X, ra)=0, 7,(x,ra)=rk(x) (7.9)
L circumferential shearing strain (Fig. 7.4)

‘:T rdd,
\

i

Iig. 7.4. Visualization of out-of-plane
shear strain in polar coordinates.
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7.1 Torsion of circular cylinders

‘ 7.1.2 The Strain Field
s The only non-vanishing stress components

7, = —GX;x,(X,), 73 =GXx,(X) (7.10)

using polar coordinate,
7.(x,ra)=0, 7,(x,r,a)=0Crx,(x) (7.11)

L radial Leircumferential stress component

« Distribution of the circumferential shear stress (Fig. 7.5)
@ Circumferential direction exists only, radial direction vanishes
@ Varies linearly along the radial direction

£ i3 s A is .
/ Circular / Circular
|, cylinder . annulus
o & i,

Fig. 7.5. Distribution of circumferential shearing stress over the cross-section.
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7.1 Torsion of circular cylinders

‘ 7.1.3 Sectional Constitutive Law

s Torque acting on the axis at a given span-wise location

M, (%)= 7,rdA (7.12)
M, (%) :IAGrle(xl)dA:UAGerA}Kl(xl) = H,.x,(x) (7.13) from Eq. (7.11)

L torsional stiffness
H,, = IAGrsz (7.14) for circular axis only

» Constitutive for the torsional behavior of the beam

s If homogeneous material

H,=GJ, where J= IArsz : “area polar moment” for circular axis only
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7.1 Torsion of circular cylinders

‘ 7.1.4 Equilibrium Equations

% Infinitesimal slice of the cylinder of length dx;

2q,(x,) dx,

M, +
(dM,/dx,) dx,

< >

i
i dx,

Fig. 7.6. Torsional loads acting on an
infinitesimal slice of the bar.

s Torsional equilibrium equation

dM,
dx,

=—04 (7.15)
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7.1 Torsion of circular cylinders

‘ 7.1.5 Governing Equations

< Eq. (7.13) — (7.15) and recalling Eq. (7.7)

d do
—|H, —*|=— 7.16
dxl{ - dxl} % (7.16)

s Boundary Condition

@ Fixed(clamped): ®, =0
dd,

& da
@ subjected to a concentrated torque Q,: M, =Q, — H11_1 =Q

dx,

=0

@ Free(unloaded): M, =0 —> «; =
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7.1 Torsion of circular cylinders

‘ 7.1.6 Torsional Stiffness

< If Homogeneous material

27 R,
H= GI Irzrdrda :EGR4 (7.17)
0 R 2
s For a circular tube
27 Ry -
Hy =G| [ rirdrda = EG(RS ) (7.18)
0 R

< For a thin-walled circular tube, mean radius

H, = %G(Roz +R)(R,+R)R,—R)~27GR 1 (7.19)
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7.1 Torsion of circular cylinders

s Thin-walled circular tube consisting of N concentric layer

H,, = %ile:G[i] [(R[iﬂ] )4 _(R[i])“}

N (Rl pil?
zznZG“]t[‘](R 2+R ] (7.20)
i=1

» “weighted average” of the shear moduli of the various layer

A

1;

Fig. 7.7. Thin-walled tube made of layered
materials.
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7.1 Torsion of circular cylinders

/7
000

‘ 7.1.7 Measuring the Torsional Stiffness

Deformation of the test section

» Measured by the chevron strain gauge

Q, .‘.: €45 ' . 45° Q,
| «G |
i ; £ 114D
V12 = €.45 — €45 (Fig. 7.8) ‘ R
K= (e+45 —9_45)/ R (@ r=R)

Test section
Fig. 7.8. Configuration of the test to deter-

mine the torsional stiffness.
Slope of 8,vs. k;,Curve — torsional stiffness

» Valid as long as the cylindrical symmetry is maintained
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7.1 Torsion of circular cylinders

‘ 7.1.8 The Shear Stress Distribution
< Local circumferential stress

> Eq. (7.11) — (7.13)

M, (X
T, = G—l( ) r(7.21)
11
» increases linearly from zero at the center to a max. value at the outer radius
A; Aj,

Circular /" Circular
cylinder = annulus

Fig. 7.5. Distribution of circumferential shearing stress over the cross-section.
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7.1 Torsion of circular cylinders

s Concentric layers of district material

0 i M,
11
» which each layer, still linear distribution,
but discontinuities at the interface

Fig. 7.7. Thin-walled tube made of layered
materials.

% Maximum shear stress for homogeneous material

e _ 2M(5)

o 3

T

(7.22)

s Strength criterion

ﬁ_lRl|M1max| < Tallow (7-26)
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7.1 Torsion of circular cylinders

‘ 7.1.9 Rational Design of Cylinders under Torsion

s Material near the center of the cylinder is not used efficiently since

*

the shear stress becomes small

» Thin-walled tube is a far more efficient design

< 2 thin-walled tube of the same material, mass per unit span, but
different mean radii R_and R’

| . H, (ulp)GR, (R,
@ torsional stiffness: " (,u/p)GR;f 2 (7.28)

11 m

2

@ shear stress under the same torque
r, GMR,/H, R,/H, R,
7 GMR'/H! R./H, R

a

(7.29)

» inversely proportional to the mean radius
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7.1 Torsion of circular cylinders

s Large mean radius

» High H,,, lower maxr

» but in practice, limits “torsional buckling”
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7.2 Torsion combined with axial

forces and bending moments

J/

< What is the proper strength criterion to be used when both axial
and shear stresses are acting simultaneously?

1) Propeller shaft under torsion and thrust

» Torque M, and thrust N,

2M, N,
T = R o= R (7.30)

> Tresca’s criterion, Eq. (2.31) Fig. 7.10
most stringent condition among 3 -

Af‘ +16 3 =1 ellipse in Fig. 7.10
TR o, 7Ro.

J )

---Tresca
—Von Mises

> von Mises’ criterion, Eq.(2.36)

Afl +12 i <1llipse in Fig. 7.10
7Z'R'O'}. JTRB'O'J,

NONDIMENSIONAL TORQUE

_______

-1 -0.5 0 0.5 1
NONDIMENSIONAL AXIAL FORCE
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7.2 Torsion combined with axial

forces and bending moments

2) Shaft under torsion and bending

> Bending moment M, and torque M,

AM . r
o= 3;1 , T=2M1r (7.31)
7R 7R’
» Tresca’s criterion
M y M ; :
16 8 b 4186 1 =1 Fig. 7.11 Fig. 7.11
( 7R? o, J { /TR3O'J. J g .

> von Mises’ criterion

2 2
16| Ma | | M| < Fig.7.11
mRo, 7Ro .

J

-==Tresca
—Von Mises

NONDIMENSIONAL TORQUE

-
---------

02 01 0 01 02
NONDIMENSIONAL BENDING MOMENT
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

‘ 7.3.1 Introduction

» Circular symmetry of the problem is not maintained any more
> At any point along the edge of the bar’ s section,
the shear stress must be tangent to the edge — 7, = 0

but, non-zero 73 is required from the circular symmetry

» Fewer symmetries than the circular cross section has.

Fig. 7.14. Shearing stresses along the edge of
a rectangular section.
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

» Symmetry built planes (iZ, TZ) and (E, E)
but, no circular symmetry

» Torsional loading and the resulting solution : anti-symmetry

. = A _ B c _ D
with regard to (1, I,) — U =-U;, U =-U | Cross section will
warp out-of-plane

with regard to (i, i) — u=-u’ u’=-u’

c D

Fig. 7.15. Four points on a rectangular cross-
section.
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

‘ 7.3.2 Saint-Venant’s solution

1) Kinematic description

» Each cross section rotates like a rigid body, and warp out-of-plane
— assumed displacement field

Uy (X0, X5, %) = (X, X3) (%)
U, (X, X5, %3) = =X, P, (%) o (7.32)
US(Xl’ Xy Xs) = qu)l(xl)

T(XZ, X3) :unknown warping function, will be determined by enforcing
equilibrium equations for the resulting stress field
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

2) The Strain field

> Eq.(7.32) — Eq. (1.63) and (7.71)
dxK

& = ‘{I(xzax_;)_l = Odue to “uniform torsion” )
dx,
£ =0, =0, y,=0 b (7.33)
d¥ dw
Y12 = d_X2 X3 |Ky Vi3 = dXS + X, |K;
3) The Stress field
0,=0, 0,=0, 0;=0, 753=0 }
oY oY ¢ (7.34)
—Gk,| Z——x, | T3 =0Kx(—+x
T1 Kl(@xz 3} 13 1(8)‘4_3 2)
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

4) Equilibrium equations

» Stress field must satisfy the general equilibrium equations.
Eq.(1.4) at all point of the section.

Neglecting body forces, the remaining equation is

ot,, OT
12 + 13

OX,  OX,

=0 (7.35)

> Eq.(7.34c) — (7.35)

2 2
0 ‘f+8 \f =0 (7.36)
OX,  OX,

the warping function must satisfy the PDE at all points of the cross section
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

» Boundary condition: satisfaction of the equilibrium equations along the
outer contour of the section (Fig. 7.16)
> Along the C, according to Fig. 7.14, 7 = 0 (7.37)
7, does not necessarily vanish
in terms of Cartesian components,

T, =17,5IN f+7,,C08 f =1, (—zz3j+113(——ddxsz j =0 (7.38)
oY dx oY dx
> Eq.(7.34¢) — (7.38): | — —X 3 _ +X, |—2=0 (7.39
a{ )= ) Lax2 3j ds (ax3 Zj ds ( )

Eq.(7.36): Laplace’s equations
Eq.(7.39): rather complicated boundary condition

T, 1 4T,

Tah 21
L

< r

A\

i, iz
>

Fig. 7.14. Shearing stresses along theedgeof ~ Fig. 7.16. Equilibrium condition
arectangular section. along the outer contour C.
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

5) Prandtl’s stress function

> Alternative formulation leading to simple boundary condition
: stress function, @(x,,X;)

_o _ __ 9
T = 8x3 T3 = ox. (7.41)

automatically satisfies the load equilibrium equation, Eq.(7.35)

» By comparing Eq.(7.34c) and (7.41)

oY 0 oV 0
z-12 :le(g_'x%) :—¢5z-13 — GKI(E—FXZ): —'—¢ (7.42)

2 OX;s 3 X
8T @T
ax L] L

(-)
82¢ 83¢
+ =-2GkK, (7.4
ox2 Bx;? 1 (7.43)

-
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

s Boundary condition

» from Eq.(7.38), (7.41)
£ = 99 5, + 0p &, _de =0 (7.44)

= =
Ox; ds Ox, ds ds | constant value may be chosen to vanish
: constant ¢ along C

» EQq.(7.43): Poisson’s equation

» EQ.(7.44): much simpler boundary condition
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

5) Sectional equilibrium

> Global equilibrium of the section
* Resultant Shear force

V, =0
: no shear forces are applied
« Total torque acting on the section

M, =[ (xyry—xm,)dd = | (-x, %—xs %)dA (7.46)
Integrating by parts

M, = 2_[,, pdA _L [x2¢]x’ dx, _L2 [x3¢]x3dx2 (7.47)
M, = 2j¢dA - (7.48)

applied"torque = 2 X “volume” under the stress function,

only valid for solid cross section bounded by a single curve
otherwise, use Eq.(7.46)
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s Torsion of an elliptical bar

Al

X * (xY . . :
> Curve C:[—-J +£—’J =1, A stress function of the following form is assumed

¢=Co[(x—3) +[%]—1:l C, :Unknown const.
a

» Boundary condition, Eq.(7.45b) is clearly satisfied since ¢ =0 along C.
» Substituting into the governing egn., Eq.( 7.45)

& (i+bij =-2G,

&b (6 (xY
—_ 2| 4[5 21e
¢ a’ +b’ l:[a] -{b) } b (7.49)

30
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s Torsion of an elliptical bar

» Torque: Eq.(7.48)

242 2 2 3;3
Ml=-2,a—b,ij ["_) +(‘T—3] =Y
a +b- "\ a b a +b-

» Torsional stiffness of the elliptical section

B, =g AL (7.50)
' a +b-
» Stress fn. In terms of the applied torque

SEROE
zTab |\ a b

» Stress distribution: Eq.(7.41)

2% 2%
- wab za'b
» Shear stress vector -+ Fig.7.18b, tangent to curve C.
2M, _
| T |- —3 (Fig. 7.18a)
mrab®
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*

D)

% Torsion of an elliptical bar

» Shear stress vector - Fig. 7.18b, tangent to curve C.
» Warping function --- by integrating Eq.(7.42)

¥ a—-5 ¥ a —b’
— == I =——X
&x, a+b Tax, a+b "’
l Integrating l
X X5
- w.r.t. :
a -b a* —b?
¥=-xx———+f(x,) ¥Y=-xx,—/—>+g()
T Ca +b ST a +b -

Equal only if f(x,)=g(x,)=0

2 b2
a —
> ¥ =—-———xx
a +b°

> 9]
a —b

Eq(732a) _)ul(x"?x3) — —xlﬁ
- a +b-

> % X

32
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L)

% Torsion of an elliptical bar

.-+ 2 planes of symmetry, warping displacement antisymmetric w.r.t Z planes (Fig.
7.19)

» Circular section -+ a=b=R, warping fn.=0
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

O/

S Summary

» Bar of arbitrary cross section subjected to uniform torsion

» Stress distribution: Warping function Eq.(7.40)
Stress function Eq.(7.45)

» Stress field: Eq.(7.34c) or Eq.(7.41)

— exact solution although the displacement field is assumed as in Eq.(7.32)

Active Aeroelasticity and Rotorcraft Lab., Seoul National Universit



7.3 Torsion of Bar
with Arbitrary Cross-Sections

7.3.2 Saint-Venant’s solution for a Rectangular X-S

» 2 Solution — approximation solution based on the co-location approach
— exact solution based on the co-location approach

1) Approximate solution

» Rectangular cross section of width a, height b (Fig. 7.21) C B
« Assumed stress function | A

1.0 = Coi —X P =0y 1 =2 ¢ =X . >
775 0 77 4 4 ,7 3 b I’ ‘I 1
d(n=%1/2,)=0,4(n, =%1/2)=0 - 2 |
+1/2 TC
— ¢ =0 along the curve C B
NEg
— PDE, Eq(7.43): _1/21/2 1
2 1 1 2 1 1 _ - ik
ZCO(g _ngJrZCO (77 _ZJF_ 2GK, (Fig. 7.21)

assumed solution does not satisfy PDE.
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

» Approximate solution: “co-location method”, satisfy PDE only at
a specific part of points of the cross section

- PDE will be satisfied at the center, (77,{)=(0,0)

c, C 4Gk,a’b’
T oyt 28R G
4a’b’G 5 deugs A
© Then, =" TR - -

M1 — ZL ¢dA , torsional stiffness H11

shear stress field 7,,, 73

Active Aeroelasticity and Rotorcraft Lab., Seoul National Universit



7.3 Torsion of Bar

with Arbitrary Cross-Sections

2) Open form exact solution using a Fourier series

> Fourier series expansion of the stress function

€0

dp(n,¢) = Z Z C; cosinncos jag
i=odd j=odd
» Satisfaction of B.C. Eq.(7.45b): when i, j=o0dd, ¢ =0
thus only odd values of I, ] are included

» Governing PDE, Eq.(7.43)

. 2 - 2

= I\ T ) )
> > C, (—] +(J—j cosizn cos jal
i—odd j—odd a b

» By using the orthogonality properties of cosine function

i i Ci, ('ﬁ] J{%] Djz/cosmymcosimdn}“% COSWZ'{COSjﬂ'é/dé’:|

i—odd j—odd a e

=-2Gk; U_Zi cosmznd 77} [J‘jz/ cosnzgd 4}
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

> The bracket integrals vanish when m=i on n=# j. The remaining terms

2 2 m-— n—
Co (") ) (D7 (-1 o

a 4 mnrx

32GK, & % )R
> Then, ¢(n,¢) =" Kl > ) cosizncos jal (7.53)

i=odd j= odlj[(iﬂ/a)2+(jﬁ/b)2:|

» Externally applied torque

Torsional stiffness

Shear stress field: Although it is a doubly infinite series, it converges rapidly

(1, 2 term) — Fig 7.22, 7.23

0 llllllllllllll

TR
\\ I \\\ \\\‘
: ”ﬂ/}o“‘{&&\\\\\“‘“‘ z
i gz - Fig. 7.23. Distribution of shear stress over

cross-section. The arrows represent the shear
stresses; the contours represent constant val-
Fig. 7.22. Stress function, ¢. ues of the stress function ¢.
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

3) Comparison of solution

> H,: Fig. 7.24
» Non-dimensional shear stress: Fig. 7.25, 7.26
» Large discrepancies, approximate solution is not good enough

B )]
—oLk T

w
T

N
T

-
T
1
1

NONDIMENSIONAL TORSIONAL STIFFNESS
NONDIMENSIONAL SHEAR STRESS AT A

NONDIMENSIONAL SHEAR STRESS AT B

2 4 8 8 10 12 LT 4 6 g o A0 12 2 4 6 8 10 12
alb alb alb

o

Fig. 7.24. Non-dimensional torsional stiffness, Fig. 7.25. Non-dimensional shear stress at  Fig. 7.26. Non-dimensional shear stress at

Hy, versus aspect ratio, a/b. Exact solution: point B versus aspect ratio a/b. Exact solu-  point A versus aspect ratio a/b. Exact solu-

solid line; approximate solution: dashed line.  tjon: solid line; approximate solution: dashed tion: solid line; approximate solution: dashed
line. line.
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7.4 Torsion of a thin rectangular

Cross Section

> Fig. 7.28: t <« b, assume that both stress function and
associated shear stress distributions will be

nearly constant along 1,
A
0 i
— — a0 =
53(?3 b >>t
8 Tmax
1
b | > Al T
> Governing Equation is from Eq.(7.43) s .‘_/ ul,b
d2¢ ‘\ T '; Tma\'
- =-2GK; (7.56) '
. raStE
_ 2
¢(X2) =-G KX, + C1X2 + C2 Fig. 7.28. Thin rectangular strip under tor-

sion.

» Boundary Condition Eq.(7.45b)

p(x, =21/2)=0—>C,=0,C, =G’ / 4

,
#(x,)=—-Gr (x; A )

—
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7.4 Torsion of a thin rectangular

Cross Section

» Resulting torque

i I 1
M, =2[ ¢dd=-2Gx, | (x}- b, = nglbr-”

-t/2

> Torsional stiffness

H M, _ %th3 (7.58)

Ky

1=

» Shear stress distribution

T, = %= 0,74 =—% =2GKx, =
T Ox, Ox, - bt
s R.H.S. of Fig. 7.28

GA{I x, (7.59)
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7.4 Torsion of a thin rectangular

Cross Section

» Warping function: Eq.(7.57) — (7.42)

oF 1 o4 oF 1 o4
= i S — = -Xx, =X,
ox, Gk, Ox, ox, Gk, Ox,
l l
¥ =X%+ f(X) ¥ =X,%+0(x,)
Y =X,X,

Fig. 7.29. Warping function for a thin rectan-

» Axial displacement gular strip.
U (X, X, ) =W (X, X3 ) Ky = KX, X, (7.60)
anti-symmetric with regard to 1, and I
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7.5 Torsion of thin-walled

open section

» Gradient of the stress function will vanish along the local tangent to the section’s
thin wall: corresponding shear stress will be linear through the wall thickness

Fig. 7.30. Semi-circular thin-walled open
section.

3
» Torsional stiffness: from Eq.(7.58) — H11 :Glt_ (7.61)
3

> Shear stress: tangential shear stress, 7, only non-vanishing component,
vary linearly from 0 at the middle to max.(+) and (-) at edges
" =CGtx,  (7.62)
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7.5 Torsion of thin-walled

open section

» More general thin-walled open section
: multiple curved and straight sections (Fig. 7.31)

Fig. 7.31. Thin-walled open section com-
posed of several curved.

» Torsional stiffness: sum of those corresponding to the individual segment
a1
H, =) HY = gZGiIiti3 (7.64)
i i

» Max. shear stress

M
z-smax = Gtmax — (7.65)
H

11
» Warping: more complex, described in chap.8

Active Aeroelasticity and Rotorcraft Lab., Seoul National Universit



e

» Torsion of thin-walled section

i

» C-channel: torsional stiffness, by Eq. (7.64) - X ;

L
H,, =S (bt? + 1t +bt2 ) =2 (nt? + 20t 7.66

“_5( t2 +ht® + tf)_g( ts +2bt7 ) (7.66) h .

i,

> Tangential stress at the outer edge: by Eq. (7.62) 1, 3

M M b

7, =Gt K :GtWH—l,rf =Gt x, =Gt, —+

Fig. 7.32. A thin-walled C-channel section
11

11

» Max. shear stress exists in the segment featuring the max. thickness
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