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8.1 Basic equation for thin-walled beams

 Typical aeronautical structures

● Typical aeronautical structures --- Light-weight, thin walled, beam-like structure
← complex loading environment
(combined axial, bending, shearing, torsional loads)

• Closed or open sections, or a combination of both : profound implications 
for the structural response (shearing and torsion)

• Thin-walled beams : specific geometric nature of the beam will be exploited
to simplify the problem’s formulation and solution
process

8.1 : closed section

8.2 : open section

8.3 : combination of both

8.4 : multi-cellular section
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8.1 Basic equation for thin-walled beams

8.1.1 The thin wall assumption

C : geometry of the section, along 

the mid-thickness of the wall

s : length along the contour, 

orientation along C

t(s) : wall thickness

• The thin wall assumption --- wall 

thickness is assumed to be 

much smaller than the other 

representative dimensions.

,               , (8.1)( ) 1t s
b
 ( ) 1t s

h


2 2

( ) 1t s

b h

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8.1 Basic equation for thin-walled beams

8.1.1 The thin wall assumption

• The thin-walled beam must also be long to enable the beam theory to be a 

reasonable approximation

2 2

1b h
L
 
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8.1 Basic equation for thin-walled beams

8.1.2 Stress flows

 The stress components acting in the plane of the cross-section are assumed to 
be negligible as compared to the others.

,                   ,

• Only non-vanishing components : axial stress
transverse shear stress      ,

 It is preferable to use the stress components parallel and normal to C.

• ,     , rather than Cartesian components.

(8.2a)

(8.2b)

1
3 1  23 12  23 13 

12 13

n s

3 2
12 13 12 13cos sinn

dx dx
ds ds

         

32
12 13 12 13sin coss

dxdx
ds ds

          

3 2cos ,sindx dx
ds ds

    Sign convention 
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8.1 Basic equation for thin-walled beams

8.1.2 Stress flows

• must vanish at the two edges of the wall because the outer surfaces 
are stress free.

• No appreciable magnitude of this stress component can build up since 
the wall is very thin.

• vanishes through the wall thickness.

• The only non-vanishing shear stress component :      , tangential stress

Inverting Eq. (8.2a), (8.2b), and 

,

 Principle of reciprocity of shear stress → normal shear stress

(8.3)2
12 s

dx
ds

 

n

n

s

3
13 s

dx
ds

 

0n 
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8.1 Basic equation for thin-walled beams

8.1.2 Stress flows

Thin-walled beams : 

It seems reasonable to assume that       is 

uniformly distributed across the wall 

thickness since the wall is very thin.

Concept of “stress flow”

n : “axial stress flow,” “axial flow”

f : “shearing stress flow,” “shear flow”

• Only necessary to integrate a stress flow along C, instead of over an 
area, to compute a force.

(8.4a)

(8.4b)

s

1 1 1

1 1

( , ) ( , ) ( )
( , ) ( , ) ( )s

n x s x s t s
f x s x s t s






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8.1 Basic equation for thin-walled beams

8.1.3 Stress resultant

• axial force

• bending moments

• Integration over the beam’s cross-sectional area → integration along curve C

• Infinitesimal area of the cross-section

• shear forces

(8.5)

(8.6)

(8.7)

dA tds

1 1 1 1( )
A C C

N x dA tds nds     

2 1 3( )
C

M x nx ds  3 1 2( )
C

M x nx ds 

2
2 1( )

C

dx
V x f ds

ds
  3

3 1( )
C

dx
V x f ds

ds
 

Axial flow
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8.1 Basic equation for thin-walled beams

8.1.3 Stress resultant

• Torque about origin O,

: position vector of point P

: increment in curvilinear coord.

1( )O PC
M x r fds 
  

2 32 3Pr x i x i 


2 32 3ds dx i dx i 


3 2
1 11 2 3 3 2 2 3( ) ( ) ( )O C C

dx dx
M x x dx x dx f i x x f i ds

ds ds
    



At point Po,

(8.8)3 2
2 3 2 3cos sinO

dx dx
r x x x x

ds ds
    
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8.1 Basic equation for thin-walled beams

8.1.3 Stress resultant

• Magnitude of the torque

,

--- torque = magnitude of the force X perpendicular

distance from the point to the line of action of 

the force

• Torque about an arbitrary point K, of the cross-section 

and,

• rk : perpendicular distance from K to the line of action of the shear flow

(8.9)

(8.10)

(8.11)

1 1( )O OC
M x fr ds  O Pr r



1 1( )k kC
M x fr ds  3 2

2 2 3 3 2 3( ) cos ( ) sink k k O k k
dx dx

r x x x x r x x
ds ds

       
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8.1 Basic equation for thin-walled beams

8.1.4 Sign conventions

variable s,

,                   ,

variable s’,

,

The perpendicular distance from O, to the 

tangent curve C, denote ro, becomes

r’o becomes,

(8.12)

(8.13)

2 ( ) 1 sx s a
l

   
 

2
'( ') sx s a

l


2 2l a b 

3
'( ) 1 sx s b

l
   
 

3 ( ) sx s b
l



3 2
2 3 1O

dx dx s b s a abr x x a b
ds ds l l l l l

            
   

3 2
2 3

' '' 1
' 'O

dx dx s b s a abr x x a b
ds ds l l l l l

            
   
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8.1 Basic equation for thin-walled beams

8.1.4 Sign conventions

 The sign convention for the torque is independent of the choice of the curvilinear
variable, s

s: counterclockwise, s’: clockwise

However, the resulting torque is unaffected by this 
choice.

1 1( ) ' ' 'O O OC C
M x fr ds f r ds  

'( ') ( )f s f s  ' ( ') ( )O Or s r s 
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8.1 Basic equation for thin-walled beams

8.1.5 Local equilibrium equation

After simplification,

• Any change in axial stress flow, n, along the beam axis must be equilibrated 
by a corresponding change in shear flow, f, along curve C that defines the 
cross-section

(8.14)

1 1 1
1

0n fnds n dx ds fdx f ds dx
x s

               

1

0n f
x s
 

 
 

• A differential element of the thin-walled beam 

--- all the forces acting along axis 1i
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8.2 Bending of thin-walled beams

- axial flow distribution using Eq. (8.4a)

(8.15)

(8.16)

2 23 3 33 2 22 3 231
1 2 3

c c c cx H x H x H x HN
E M M

S H H


  
     

A
S EdA  2

22 33 23( )c c cH H H H  

2
22 3
c

A
H Ex dA  2

33 2
c

A
H Ex dA  23 2 3

c

A
H Ex x dA 

,

,                      ,

2 23 3 33 2 22 3 231 1
1 2 1 3 1

( ) ( ) ( ) ( )( )
( , ) ( ) ( ) ( ) ( )

c c c cx s H x s H x s H x s HN x
n x s E s t s M x M x

S H H
  

     

• A thin-walled beam subjected to axial forces and bending moments
--- Euler-Bernoulli assumptions are applicable for either open or closed cross-sections

- Assuming a displacement field in the form of Eq. (6.1) 
Stain field given by Eq. (6.2a) – (6.2c)

--- axial stress distribution, from Eq. (6.15)
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8.3 Shearing of thin-walled beams

• Bending moments in the thin-walled beams are accompanied by transverse 
shear force → give rise to shear flow distribution

- evaluated by introducing the axial flow, given by Eq. (8.16) into the local 
equilibrium eqn., Eq. (8.14)

- sectional equilibrium eqns, Eq. (6.16), (6.18), (6.20) substituting into (8.17),
and assuming that 

- Integration  -> shear flow distribution arising from V2, V3

c: integration constant corresponding to the value at s = 0

The procedure to determine this depends on whether cross-section is closed or 
open.

(8.17)

(8.18)

2 23 3 33 2 22 3 23 31 2

1 1 1

1 c c c cx H x H x H x H dMdN dMf Et
s S dx H dx H dx

  
       

2 23 3 33 2 22 3 23
3 2( ) ( )

c c c cx H x H x H x Hf E s t s V V
s H H

  
       

1 2 3, , 0p q q 

(8.19)2 23 3 33 2 22 3 23
3 20

( )
c c c cs x H x H x H x H

f s c Et V V ds
H H

  
      



15



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

(8.20)

(8.21)

3 23 2 33 3 22 2 23
3 2

( ) ( ) ( ) ( )
( )

c c c cQ s H Q s H Q s H Q s H
f s c V V

H H
 

  
 

2 30
( ) ( )

s
Q s Ex s tds  3 20

( ) ( )
s

Q s Ex s tds 

8.3 Shearing of thin-walled beams

- Since are function of x1 alone

where “stiffness static moment” or “stiffness first constant”

--- static moments for the portion of the cross-section from s = 0 to s

2 3, ,cH V V

16



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

8.3 Shearing of thin-walled beams

8.3.1 Shearing of open sections

Principle of reciprocity of shear stress

→ shear flow vanishes at the end points of curve C

12 21 23 32 13 31, , ,       

Shear flow must vanish at point A and D
since edges AE and DF are stress free.

If the origin of s is chosen to be located 
at such a stress free edge, the 
integration constant c in

must vanish.

3 23 2 33 3 22 2 23
3 2

( ) ( ) ( ) ( )
( )

c c c cQ s H Q s H Q s H Q s H
f s c V V

H H
 

  
 
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8.3 Shearing of thin-walled beams

8.3.1 Shearing of open sections

1. Compute the location of the centroid of the cross-section, and select a set of 

centroid axes,      and     , and compute the sectional centroidal bending stiffness

2. Select suitable curvilinear coord. s to describe the geometry of cross-section.

3. Evaluate the 1st stiffness moments using

4. f(s) is determined by

(8.21)

(8.20)

2 30
( ) ( )

s
Q s Ex s tds  3 20

( ) ( )
s

Q s Ex s tds 

3 23 2 33 3 22 2 23
3 2

( ) ( ) ( ) ( )
( )

c c c cQ s H Q s H Q s H Q s H
f s c V V

H H
 

  
 

Procedure to determine the shear flow distribution over cross-section

1i 2i

22
cH ,       and       . (principal centroidal axes →            )33

cH 23
cH 23 0cH 
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8.3 Shearing of thin-walled beams

8.3.2 Evaluation of stiffness static moments

similar result of the other stiffness static moment,

(8.22)

(8.23)

2 3 3 30 0
( ) ( sin ) ( sin )

2
s s sQ s Ex tds E d s tds Est d      

3 2( ) ( cos )
2
sQ s Est d  

homogeneous, thin-walled rectangular strip oriented at an angle 

Young’s modulus     the area of strip      coord. of the 
centroid of the local area

 

2 30

Area static moment

( )
s

Q s E x tds 

Since the strip is made of a homogeneous material, E factors
Out of integral.
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8.3 Shearing of thin-walled beams

8.3.2 Evaluation of stiffness static moments

• ”Parallel axis theorem”, but in this case, only the transport term remains 
since the static moment about the area centroid itself is zero, by definition.

(8.24)

2 3
2 3 30 0
( ) ( sin ) 1 cos

s d
Q s Ex tds Et d R Rd EtR

R


          
  

2 2
3 ( ) 1 cos

d
Q s EtR

R
 

      
  

Thin-walled homogeneous circular arc of radius R

ds Rd

stiffness static moment = E area     distance to the area
centroid

 

2 3( )Q s EAx 3 2( )Q s EAx
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8.3 Shearing of thin-walled beams

8.3.3 Shear flow distributions in open sections

(8.25)2
3

22

( )
( ) c

Q s
f s c V

H
 

23 3 2

22 2
12 2 12 2

c th h h bhH E bt E t
           

     

 Example 8.1 Shear flow distribution in a C-channel

- uniform thickness t, vertical web height h, flange width b, subject to a vertical
shear force V3

- centroid: 

- symmetric about axis    , principal axes of bending, 

2

bd
h
b


  
 

23 0cH 2i
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8.3 Shearing of thin-walled beams

8.3.3 Shear flow distributions in open sections

Because,

Because,

(8.26)

(8.27)

(8.28)

1
32 1 1

1 1 3 3
22 22 22

( ) 2( ) 0
2c c c

hEts VQ s Ehts
f s c V V

H H H
     

1( 0) 0f s  

2
2 2 2( )

2
h s

Q s Ets


 3 32
2 2 2 2 2

22 22

1( ) [ ( )]
2 2c c

EV tEVh s
f s c ts bh s h s

H H


     

2 1( 0) ( )f s f s b  

3
3 3

3 3 3
22 22

2( )
2c c

hEts hs tEV
f s c V

H H
  

 Example 8.1 Shear flow distribution in a C-channel
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8.3 Shearing of thin-walled beams

8.3.3 Shear flow distributions in open sections

 Example 8.1 Shear flow distribution in a C-channel

- upper and lower flange: linearly distributed, 0 at the edges
- vertical web: varies in a quadratic manner, shear flow and the stress pointing
upward

- max. shear flow: mid-point of the vertical web
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8.3 Shearing of thin-walled beams

8.3.3 Shear flow distributions in open sections

• 2-wall joint : equilibrium of forces along the beam’s axis → -f1+f2=0, or f1=f2

: The shear flow must be continuous at the junction J

• 3-wall joint : -f1-f2-f3=0, or more generally

• “sum of the shear flows converging to a joint must vanish.

(8.29)0if 

 Example 8.2 Shear flow continuity conditions
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8.3 Shearing of thin-walled beams

8.3.5 Shear center for open sections

• Problem is not precisely defined --- Whereas the magnitudes of the 
transverse shear forces are given, their lines of action are not specified.
-> It is not possible to verify the torque equilibrium of the cross section.

 Definition of the shear center

• subjected to horizontal and vertical shear force V2, 
V3 with lines of action passing through K, (x2K, x3K), 
no external torque applied, M1K=0
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8.3 Shearing of thin-walled beams

8.3.5 Shear center for open sections

 3 equipollence conditions

1 Integration of the horizontal component of the shear flow over cross
-section must equal the applied horizontal shear force

will be satisfied since it simply corresponds to the definition of shear
force

2 Integration of the vertical component of the shear flow over cross-
section must equal the applied vertical shear force

2
2C

dx
f ds V

ds
   
 

2
2 1( )

C

dx
V x f ds

ds
 

3
3C

dx
f ds V

ds
   
 
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8.3 Shearing of thin-walled beams

8.3.5 Shear center for open sections

 3 equipollence conditions

3 Torque generated by the distributed shear flow is equivalent to the 
externally applied torque, about the same point.

--- does require the line of action of the the applied shear forces about
point K, the torque,

torque generated by the external forces w.r.t. point K = 0

(8.10)

1 0k kC
M fr ds 

1k kC
M fr ds 

27
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8.3 Shearing of thin-walled beams

8.3.5 Shear center for open sections

28

--- point K cannot be an arbitrary point, its coords must satisfy the
torque equipollence condition

“Definition of the shear center location”

1 0k kC
M fr ds  (8.39)
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8.3 Shearing of thin-walled beams

8.3.5 Shear center for open sections

 Alternative definition

Perpendicular distance from an arbitrary point A to 

the line of action 

Subtracting this equation from Eq. (8.11)

Substituting into the torque equipollence condition, Eq. (8.39)

3 2
2 3a O a a

dx dx
r r x x

ds ds
  

3 2
2 2 3 3( ) ( )k a k a k a

dx dx
r r x x x x

ds ds
    

3 2
2 2 3 3

2 2 3 3 3 2

( ) ( )

( ) ( ) 0

a k a k aC C C

a k a k aC

dx dx
fr ds x x f ds x x f ds

ds ds

fr ds x x V x x V

           

     

  



29
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8.3 Shearing of thin-walled beams

8.3.5 Shear center for open sections

1 1 2 2 3 3 3 2( ) ( )a k k a k aM M x x V x x V    

1 0kM 

Eqs. (8.39), (8.40) ---
Torque generated by the shear flow distribution 
associated with transverse shear force must vanish 
w.r.t. the shear center.

30

--- moment at A due to force and moment 
resultant at point K

By Eq. (8.39)

Torque generated about point A by the shear flow distribution 

(8.40)1 2 2 3 3 3 2( ) ( )a a k a k aC
M fr ds x x V x x V    



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

8.3 Shearing of thin-walled beams

8.3.5 Shear center for open sections

 Summary

• A beam bends without twisting if and only the transverse shear loads are 
applied at the shear center.

• If the transverse loads are not applied at the shear center, the beam will 
both bend and twist.

• If the cross-section features a plane of symmetry, the shear center must 
lie in that plane of symmetry.

31



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

8.3 Shearing of thin-walled beams

8.3.5 Shear center for open sections

2
3

1 1 10
22

( )
4

b

c

EVhb tR f s ds
H

 

2
3

3 3 3 10
22

( )
4

b

c

EVhb tR f s ds R
H

  

2
2 2 2 3

2

( )
h

hR f s ds V


 

32

 Example 8.6 Shear center for a C-channel

- axis i2: axis of symmetry -> shear center lies at a point along this axis
- It is necessary to evaluate the shear flow distribution by V3, to determine

the shear center location
- Resultant force in each segment: by Eqs. (8.30) – (8.32)

 3 equipollence conditions

1 1 0R R 

2 3R V
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8.3 Shearing of thin-walled beams

8.3.5 Shear center for open sections

33

(8.41)

1 2 1 0
2 2kC

h hfr ds R R e R    
2 2

1

2 22

3
4 6

c

hR h b t E be
hR H
b

  


 Example 8.8 Shear center for a thin-walled right-angle section

Lines of actions of two resultant of the shear flow distributions, R1

and R2, will intersect at point K → procedures no torque about this 
point → must then be the shear center

Figure 8.33 - Shear center in thin-walled right-angle section
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8.3 Shearing of thin-walled beams

8.3.7 Shearing of closed sections

Same governing equation

still applies, but no boundary condition is readily available to 
integrate this equation.

(8.19)2 23 3 33 2 22 3 23
3 20

( )
c c c cs x H x H x H x H

f s c Et V V ds
H H

  
      



Exception: axis of symmetry

If V3 acts in the plane of symmetry

→ mirror image of shear flow distribution

 1 3,i i

34

point A : joint equilibrium condition 

symmetry condition : 

shear flow vanishes at A and similarly B

1 2 0f f 
1 2 0f f 

1 2f f
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8.3 Shearing of thin-walled beams

8.3.7 Shearing of closed sections

1st step : Beam is cut along its axis at an arbitrary point.

→ “auxiliary problem,” shear flow distribution fo(s)

2nd step : fo(s) creates a shear strain    → infinitesimal axial strain 

(8.43)0
1

( )s
s

f s
du ds ds ds

G Gt


  

35

s 1du
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8.3 Shearing of thin-walled beams

8.3.7 Shearing of closed sections

3rd step : total relative axial displacement at the cut

4th step : fc is applied to eliminate the relative axial 

displacement, thereby returning the section to its 

original, closed state (fc : “closing shear flow”)

(8.44)

(8.45)

0
0

( )
C

f s
u ds

Gt
 

0 ( )
0c

t C

f s f
u ds

Gt


 

0 ( )

1
C

c

C

f s ds
Gtf

ds
Gt

 




total shear flow

displacement compatibility eqn. for the closed section

36

     0 cf s f s f s 
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8.3 Shearing of thin-walled beams

8.3.7 Shearing of closed sections

 Summary

• f0(s) for an auxiliary problem

• fc(s) by  →→→→→→→→

•

0 ( )

1
C

c

C

f s ds
Gtf

ds
Gt

 




37

     0 cf s f s f s 
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8.3 Shearing of thin-walled beams

8.3.7 Shearing of closed sections

38

(8.46)

2
31

0 1
13( )
360 39

Vs
f s

t t
   
 

2
3 3

0 3
13( )
360 39

s V
f s

t t
    
 

2
3 32

0 2
13 1( ) 1
360 72 15

V Vs
f s

t t t

      
   

 Example 8.9 Shear flow distribution in a closed triangular section

- shear flow distribution for open section: already computed in Example. 8.4

- constant closing shear flow : by Eq. (8.45)

(8.47)

39 15 390 0 1 0 2 0 3 3
1 2 30 15 0

( ) ( ) ( ) 23
10

t t t

C t

f f s f s f s V
ds ds ds ds

Gt Gt Gt Gt Gt
      

1 108(39 30 39 )
C

ds t t t
Gt Gt G

   
3

3

23
2310

108 1080c

V
VGtf

t
G

   
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8.3 Shearing of thin-walled beams

8.3.7 Shearing of closed sections

39

 Example 8.9 Shear flow distribution in a closed triangular section

- final shear flow distribution

- Both shear flow in the auxiliary section and the closing shear flow are (+)
when pointing along the local curvilinear variable

   0 cf s f s f 
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8.3 Shearing of thin-walled beams

8.3.8 Shearing of multi-cellular sections

∙ Procedure similar to that used for a single 

closed section must be developed. One 

cut per cell is required.

• Shear flow distribution in the resulting open sections is evaluated using the 
procedure in sec. 8.3.1  f0(s1), f0(s2), f0(s3) along C1, C2, C3

• Closing shear flows are applied at each cut. : fc1, fc2

• Then, shear flow distribution :               ,                  ,                          ,
along     ,     ,     .1C 2C 3C

0 1 1( ) cf s f 0 2 2( ) cf s f 0 3 1 2( ) ( )c cf s f f 

40
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8.3 Shearing of thin-walled beams

8.3.8 Shearing of multi-cellular sections

 Extension to multi-cellular section with N closed cells
• Open section by N cut, one per cell: shear flow distribution in open 

section by the procedure in sec 8.3.1

• Closing shear flows are applied at each cut and displacement 
compatibility conditions are imposed: N simultaneous equations.

• Total shear flow distribution is found by adding the closing shear 
flow to that for the open section.

1

2

0 1 1 0 3 1 2
1 1 33

0 2 2 0 3 1 2
2 2 33

( ) ( ) ( )
0

( ) ( ) ( )
0

c c c
t C C

c c c
t C C

f s f f s f f
u ds ds

Gt Gt
f s f f s f f

u ds ds
Gt Gt

  
  

  
  

 

 

1 3 3 1 3

3 2 3 2 3

0
1 2

0
1 2

( )1 1

( )1 1

c cC C C C C

c cC C C C C

f s
ds f ds f ds

Gt Gt Gt
f s

ds f ds f ds
Gt Gt Gt

 

 

           
           

  

  

front cell : clockwise / aft cell : counterclockwise

41
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8.3 Shearing of thin-walled beams

8.3.8 Shearing of multi-cellular sections

23 3
3

22
2 232 2( 2 )
12 12 2 12

c tb tb bH E bt b t tb E
             

    

42

 Example 8.11 Shear flow in thin-walled double-box section

- multi-cellular, thin-walled, double-box section subjected to a vertical shear 
force, V3

- right cell wall thickness 2t, while the remaining three walls of the left cell 
wall thickness t

- Due to symmetry, i2: principal axis of bending ->
- bending stiffness based on thin-wall assumption

- 1st step: transformed into an open section by
cutting the two lower flanges

23 0cH 
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8.3 Shearing of thin-walled beams

8.3.8 Shearing of multi-cellular sections

43

3 3 3 31 4
0 1 0 3 0 4

3 3 5 52 2
0 2 0 5

3 6 3 7 7
0 6 0 7

6 6 12
( ) ,   ( ) 1 ,   ( )

23 23 23

6 12
( ) 1 1 ,   ( ) 1 1

23 23

12 12
( ) 1 ,   ( ) 1

23 23

V V s Vs s
f s f s f s

b b b b b b

V V s ss s
f s f s

b b b b b b

V s V s s
f s f s

b b b b b

     
 

               
      

          
   

- shear flow distribution for open section

- 2nd step: closing shear flows, fc1, fc2 , are added to the left and right cells

- axial displacement compatibility at left cell

0 1 1 0 2 1 0 3 1
1 1 2 30 0 0

0 7 1 2 1 2 3
70

( ) ( ) ( )

( ) 7 12
0

2 2 2 23

b b bc c c
t

b c c c c

f s f f s f f s f
u ds ds ds

Gt Gt Gt
f s f f f f Vbds

G t Gt b

  
  

          

  


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0 4 2 0 5 2 0 6 2
2 4 5 60 0 0

0 7 1 2 1 3
7 20

( ) ( ) ( )
2 2 2

( ) 12
2 0

2 2 23

b b bc c c
t

b c c c
c

f s f f s f f s f
u ds ds ds

G t G t G t
f s f f f Vbds f

G t Gt b

  
  

  
          

  



8.3 Shearing of thin-walled beams

8.3.8 Shearing of multi-cellular sections

44

- axial displacement compatibility at right cell

- sol. of two simultaneous eqn.: 

- total shear flow in each segment of the section

(8.50)

2
3 31 2 2

1 2

3 3 3 4
3 1

2
3 5 5 3 6

5 6

3
7

2 2
( ) 4 9 ,   ( ) 5 9 9

69 69

2 4
( ) 5 9 ,   ( ) 4 9

69 69

4 4
( ) 5 9 9 ,   ( ) 5 9

69 69

12
( ) 2 3

69

V Vs s s
f s f s

b b b b b

V s V s
f s f s

b b b b

V s s V s
f s f s

b b b b b

V s
f s

b

             
     

         
  

            
     

 
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8.3 Shearing of thin-walled beams

8.3.8 Shearing of multi-cellular sections

45

- shear flows in the webs vary quadratically, while those in flanges linearly

- Net resultant of the shear flows in the flanges must vanish because no
shear forces is externally applied in the horizontal direction.

- Resultant of the shear flows in the webs must equal the externally applied 
vertical shear force, V3
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8.4 The shear center

 Chap. 6… Assumption that transverse loads are applied in “such a 
way that the beam will bend without twisting”

 More precise statement : the lines of action of all transverse loads pass 
through the shear center

- If the sear forces are not applied at the shear center, the beam will undergo 
both bending and twisting

• Involves two linearly independent loading cases
① , unit shear force              , no shear force along  

→ shear flow 

②

- from Eq.(8.7), shear forces equipollent to

[2]( ) [2]
2 1V  [2]

3 3, 0i V 
[2] ( )f s

[3] [3] [3] [3]
3 2( ) , 1, 0 ( )V V f s   

[ 2] [ 2] [ 2] [3] 32
2 31, 0

c c

dxdxV f ds V f ds
ds ds

    

8.4.1 Calculation of the shear center location

8.4 Shear Center

(8.51) 

46

[2] ( )f s
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8.4 The shear center

- shear center location                  : Eq (8.10)

: distance from     to the tangent to contour     , Eq. (8.11) 

2 3( , )K KK x x 
[ 2] [ 2] 3 2

1 0 2 3( )K K K
c c

dx dxM f r ds f r x x ds
ds ds     

Kr K C

- Rearranging 

by Eq.(8.51)

[ 2] [3] [ 2]3 2
2 3 0

0 1

K K
c c c

dx dxx f ds x f ds f r ds
ds ds

          
 

  

[ 2]

3 0K
c

x f r ds   (8.52) 

(8.53) 
[3]

2 0K
c

x f r ds similarly,  
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8.4 The shear center

- alternate torque equipollence condition, Eq.(8.40)

[ 2]

3 3K a c ax x f r ds   (8.54) 

(8.55) [3]

2 2K a c ax x f r ds  

2 3( , )a ax x : coordinate of an arbitrary point A

• General procedure for determination of the shear center
① compute the x-s centroid and select a set of centroidal axes

(sometimes convenient with principal centroidal axes)

② compute            corresponding to 

③ compute            corresponding to 

 according to Sections 8.3.1 or 8.3.7

④ compute the coordinate of shear center using Eqs (8.52) and (8.53)
or (8.54) and (8.55)

[2]( )f s
[3]( )f s

[2] [2]
2 31, 0V V 

[3] [3]
2 30, 1V V 

- If the x-s exhibits a plane of symmetry, simplified

plane           is a plane of symmetry, the s.c. must be located in that plane.

, Eq. (8.52) can be bypassed.

 2,i i

3 0Kx 
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8.4 The shear center

49

 Example 8.12 Shear center of a trapezoidal section

- closed trapezoidal section
- shear flow distribution generated by a vertical shear force, V3

: sum of the shear flow distribution in the auxiliary open section and the
closing shear flow    0 cf s f s f 

(8.48) 

(8.49) 

2 2 23 32 1
0 1 1 2 1 0 2 2 1 1 2

22 22

2 2 23 32 1 1 2
0 3 3 1 3 0 4 4 2

22 22

( ) , ( ) ( ) ,
2

( ) , ( )
2 2

c c

c c

EV EVh hf s s h s f s s h h h l
H l H
EV EVh h h hf s s h s l f s s h
H l H

           
            

3 3 2
3 1 2 1 2 1 2 1

22 1 2

2( ) ( 2 ) 3( )
6( )c c

EV h h h h l h h lhf
H l h h

    


 

Fig. 8.38. Thin-walled trapezoidal section subjected to a vertical shear force, V3
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- location of the shear center: by Eq. (8.49)

- Evaluation of integral

- Due to the symmetry of the problem,
- If , by symmetry

      2 2
2k o c oC

x f s f r ds 
       2 2

3 3 3, , 1o o c cf s f s V f f V V  

3 0kx 

 
 

   
     

2 2 3 3
2 1 2 11 22 1

2 3 3 3 3
1 2 2 1 2 1 2 1

11
4 1 1

k

l h h h hh h lh hbx
l h h l l h h h h l h h

   


     

3 0kx 2 1h h

Fig. 8.38. Thin-walled trapezoidal section subjected to a vertical shaer force, V3

8.4 The shear center
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8.5 Torsion of thin-walled beams

8.5 Torsion of thin-walled beams

 Chap. 7… Saint-Venant’s theory of torsion for x-s of arbitrary shape. 
solution of PDE is required to evaluate the warping or stress 
function. However, approximate solution can be obtained for thin-
walled beams

8.5.1 Torsion of open section

 Sec. 7.4 … Torsional behavior of beams with thin rectangular x-s

 Sec. 7.5 … Thin-walled, open x-s of arbitrary shape, shear stresses 
are linearly distributed through the thickness, 
torsional stiffness ~ (wall thickness)3 (Eq. (7.61)), very limited 
torque carrying capability
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8.5.2 Torsion of closed section

 Fig. 8.50… thin-walled, closed x-s of arbitrary shape subjected to 
an applied torque, assumed to be in a state of uniform torsion, 
axial strain and stress components vanish  n(s) =0
- local equilibrium eqn. for a differential element, Eq.(8.14) 

0f
s





(8.59) 

 shear flow must remain constant along curve C

( ) .f s f const  (8.60) 

- constant shear flow distribution generates a torque M1

2A (Eq. (8.56))

(A : enclosed area by C)  

1 0 0( ) ( ) ( )
c c

M f s r s ds f r s ds  

1 2M Af (8.61) 

“Bredt-Batho formula”

8.5 Torsion of thin-walled beams

Fig. 8.50. Thin-walled tube of arbitrary 
cross-sectional shape

Shear
Flow

1 0M 

O
0 / 2

dA
r ds



0r
( )t s

2i

3i c s

s

ds

P
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- shear stress     resulting from torque M1

8.5 Torsion of thin-walled beams

s

1( )
2 ( )s

Ms
At s

  (8.62) 

twist rate vs. applied torque… simple energy argument
- strain energy stored in a differential slice of the beam of length dx1

2

1

1 1
2 2

s
s s

c c
dA r tds tds dx

G
            (8.63) 

- introducing shear stress distribution, Eq.(8.62) 

2

1
12

1
2 4 ( )c

M dsdA dx
A Gt s

 
  
  (8.64) 

- work done by the applied torque

1
1 1 1 1 1 1 1

1

1 1 1
2 2 2

ddW M d M dx M dx
dx


           

where twist rate 1
1

1

d
dx

 


(8.65) 
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- 1st law of thermodynamics…

8.5 Torsion of thin-walled beams

(8.66) 

 proportionality between        and     , torsional stiffness
2

11

4

c

AH ds
Gt



 (8.67) 

- arbitrary shaped closed x-s of const. wall thickness, homogeneous material

(8.68) 

… maximum         thin-walled circular tube (maximize the numerator)

dW dA

1
1 24 c

M ds
A Gt

  
1M 1x

2

11

4 , :GtAH l
l

 Perimeter of C

11H
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8.5 Torsion of thin-walled beams

• Sign convention
A : area enclosed by curve C that defines the section’s configuration

: perpendicular distance from the origin, O, to the tangent to C, its sign 
depends on the direction of the curvilinear variable, s

A is (+) when s describes C while leaving A to the left 
(-) in the opposite.    

02 ( )A r s ds
c

 
0 ( )r s

10, 0 2 0f A M Af    

- s’ : clockwise direction, ,f f A A    

1 2 2 0M A f Af   
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8.5 Torsion of thin-walled beams

• Closed section : shear stress is uniformly distributed through the thickness
• Open section : shear stress is linearly distributed
• Torsional stiffness      (enclosed area)2 for closed section, Eq(8.67)
• Torsional stiffness      (thickness)2 for open section, Eq(7.64)

8.5.3 Comparison of open and closed sections




- Fig.8.51. Circular shape, thin-walled tube of mean radius Rm

, Eq(7.64)

, Eq(7.19)

- Maximum shear stress         subjected to t he same torque, 

3

11 2 / 3open

mH GR t
3

11 2closed

m
H GR t

2

11

11

3
closed

m

open

RH
H t

   
  (8.69) 

max
1M

1 1
max 21

11

3
2

open open

open

m

M t MG t G
H R t

 


   1 1
max 21

11 2
closed closed m

m closed

m

M R MR G G
H R t

 


  

max

max

3
open

m

closed

R
t




   
 

(8.70) 

Closed
tube

s

tmR

s

mR t

Open
tube

Fig. 8.51 A thin-walled open tube and closed tube 
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8.5 Torsion of thin-walled beams

8.5.4 Torsion of combined open and closed sections

- Example : Rm =20t

① that of closed section will be 1,200 times larger than that of the open section

② that of open section will be 60 times larger than that of the closed section
 closed section can carry a 60 times larger torque

11H   

max 

• x-s presenting a combination of open and closed curves (Fig. 8.52)
- twist rate is identical for    the trapezoidal box

rectangular strips

• Torques they carry


1 11 1

1 11 1

box box

strip strip

M H
M H





 

w w

t t t

t
hC

1b

2b

Fig. 8.52 Thin-walled trapezoidal beam 
with overhangs
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8.5 Torsion of thin-walled beams

2

11

2

11

4 /
/ 3

box

strip

H GtA l
H Gwt


 

• Torsional stiffness

• Total torque 

Eq.(8.68) 

Eq.(7.64) 

1 1 12box stripM M M 

2

11
1 11 1 11 12

11 1 2

21 2 1
3 ( )

strip
box box

box

H wl tM H H
H b b h

 
                

… for thin-walled section,

 torsional stiffness of the section is nearly equal to that of 
the closed trapezoidal box alone.

11 111 , boxt H H
h
 

1
1 11 1 11 1

11

11
1 11 1 1

11

box box box

box

strip
strip strip

box

MM H H M
H

HM H M
H





 







58



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

8.5 Torsion of thin-walled beams

• Max. shear stress … from Eqs. (8.62), (7.65)

… the max. shear stress in the strip is far smaller than that in the trapezoidal box

1
max 1

1 11
max 12 2

11

1
2 2
3 3
20

box
box

strip strip
strip

box

M M
At At
M H M

t wt H













• ratio

max

max 1 2

strip

box

l t
b b h




     
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8.5 Torsion of thin-walled beams

• 4-cell, thin-walled x-s subjected to a torque      (Fig. 8.53)
- only uniform torsion exists, and hence the axial stress flow vanishes

: Eq.(8.14) reduces to            

 shear flow is constant

• Free-body diagrams of the portion of the section
- Fig. 8.54-(1) … axial stress flow=0,
- Fig. 8.54-(2) … 
- Fig. 8.54-(3) …   
… “the sum of the shear flows going into a joint must vanish”

8.5.5 Torsion of multi-cellular sections

1M

A Bf f

C Df f
0 , 0C F G B if f f f f     (8.71) 

0f
s



 C E B

AF G

D

Fig. 8.53 A thin-walled, multi-cellular section under torsion

dx1

D

B A

C C

F G

E
B

fB

dx1

fA

fC

fD

fC fB

fG
fF

(1) (2) (3)

Fig. 8.54 Free-body diagrams of the thin-walled, multi-cellular section.
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8.5 Torsion of thin-walled beams

• Const. shear flows are assumed to act in each cell of the section
• Determination of the const. shear flow in each cell

8.5.5 Torsion of multi-cellular sections

① total torque = sum of the torques carried by each individual cell
“Bredt-Batho formula”

[ ] [ ] [ ]

1 1
1 1

2
N N

i i i

i i
M M A f

 
   (8.72) 

• Determination of the const. shear flow in each cell

• Const. shear flows are assumed to act in each cell of the section (Fig. 8.55)

[1 ]f [ 2 ]f [ 3 ]f
[ 4 ]f

E

[ 2]-f
[ 2] [ 3]f f

[4]f
[ 3] [4]f -f

Fig. 8.55 Shear flows in each cell of a thin-walled, multi-cellular section
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② compatibility condition … twist rates of the various cells are identified.
[1] [ 2] [ ] [ ]

1 1 1 1

i N          (8.73) 

8.5 Torsion of thin-walled beams

- Eq.(8.66) 
[ ] [ ] [ ]

[ ] 1
1 [ ] [ ][ ] 2 [ ] 2

[ ]

[ ][ ]

2
4( ) 4( )

1
2

i i i
i

i ii iC C

i

ii C

M ds A f ds
A Gt A Gt

f ds
A Gt

  



 


(8.74) 

• Eqs.(8.72), (8.73) … Ncells eqn.s for Ncells shear flows 
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8.5 Torsion of thin-walled beams

63

 Example 8.17 Two-cell cross-section

- Two-cell cross- section (Fig. 8.56): highly idealized airfoil structure
- Eq. (8.72): total torque carried by the section is the sum of the torques

carried in each cell

- Eq. (8.73): twist rates for the two cells are identical.
twist rate for the front cell

twist rate for the aft cell

(8.75)        1 22 2
1

1
2 6

cellN
i i

i
M A f R f R f



  

 

     
     

1

1 1 2
1 1 2[1]

1 21

1 1 1 22 ( )
( ) 2 / 2 3 32 C

f f f fds R R f f f
Gt s G R t t G RtA

  
 

             


 

   
       

2

2 1
2 2 1 2[2]

1 22

1 1 1 22 2 10 ( ) 2 10
( ) 2 3 3 6 32 C

f f f Rds R f f f f
Gt s G R t t GRtA


             


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8.5 Torsion of thin-walled beams

64

 Example 8.17 Two-cell cross-section

- Equating the two twist rate -> second eqn. for the shear flow

- which simplifies to

- This can be used to solve for      and 

- largest contribution to the torsional stiffness comes from the
outermost closed sections, which is the union of the frount and
aft cells.

The largest shear flow circulates in this outmost section, leaving
the spar nearly unloaded.

- torsional stiffness

   1 21.04f f

 1f  2f

           1 2 1 2 1 21 2 1 2( ) ( ) 2 10
3 6 3

f f f f f f

             

 

 

22 2
31

11 [1] 2
1

( 1.04 6 ) 2.81
1 / ( )[1.04 2 / 3(1.04 1)]

M R R fH GR t
GRt f

 
  


  

 
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8.6 Coupled bending-torsion problems

• Fig. 8.65 … concentrated transverse load acting at the tip and it point of 
application, A, with coord.             ,

distributed loads

8.6 Coupled bending-torsion problems

2 3( , )a ax x

 Chap. 6… arbitrary x-s subjected to complex loading conditions
2 important restrictions
① no torques
② transverse shear forces are assumed to be applied in such a way

that the beam will bend without twisting
 Now can be removed

2P

1 1 2 1 3 1( ) , ( ) , ( )p x p x p x   

2i

3i
1i

3i

2i1 1( )p x

2 1( )p x

3 1( )p x
3P

3 1( )q x 1 1( )q x

2 1( )q x
2P

1P

2Q

1Q

3Q

2P

A



 C

K

2 3

Point of
application

( , )a aA x x

2 3

Centroid
( , )c cC x x

2 3

Shear center
( , )k kK x x

Cross-
section

Fig. 8.65 Beam under a complex loading condition
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8.6 Coupled bending-torsion problems

• Solution procedure
① Compute location of the centroid, 
② Compute orientation of the principal axes of bending 

and the principal bending stiffness (sec. 6.6)
③ Compute location of the shear center,                 (sec. 8.4)
④ Compute torsional stiffness (chap. 7, or sec. 8.5.2)
⑤ Solve the extensional problems Eqs. (6.31), (6.32) in principal centroidal axes of 

bending planes

2 3( , )c cC x x
* * *

1 2 3, ,i i i

2 3( , )x x 

⑦ Compute torsional problem
*

* * * * * * * * * * *1
11 1 1 2 2 3 1 3 3 2 14 *

1 1

[ ( ) ( ) ( ) ( ) ( )]a a

d dH g x x x p x x x p x
dx dx  

 
      

 
(8.76) 

B.C.              at root*

1 0 
*

* * * * * * * *1
11 1 2 2 3 3 3 2*

1

( ) ( ) @a a

dH Q x x P x x P at tip
dx  


     (8.77) 

… : axis system defined by the principal centroidal axes of bending
 More convenient to recast the governing eqn. in a coord. system for which

axis      is aligned with the axis of a beam*

1i
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8.6 Coupled bending-torsion problems

- Knowledge of centroid and shear center  complete decoupling of a problem
 4 independent problems     axial problem

bending problem
torsional problem

- If no torque and all transverse loads are applied at the s.c.
 R.H.S of Eq(8.77) =0  , the beam does not twist
If not, the beam twists, rigid body rotation             about the s.c.





1 1( ) 0x 
1 1( )x
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 Example 8.18 Wing subjected to aerodynamic lift and moment

- Wing coupled bending-torsion problem (Fig. 8.66)
- principal axes of bending i2 and i3 : their origin at shear center
- axis i1 : along the locus of the shear centers of all the cross-sections

-> straight line called the “elastic axis” 
- aerodynamic loading : lift per unit span LAC, applied at the aerodynamic

center
aerodynamic moment per unit span MAC

- differential eqn for bending in plane (i2 , i3)

BC: at the root, at the unloaded tip 

- governing eqn for torsion

BC: at the root, at the tip 

e: distance from the aerodynamic center to the shear center

(8.79) 
22

3
222 2

1 1

c
AC

d ud H L
dx dx

 
 

 

8.6 Coupled bending-torsion problems

3
3

1

0duu
dx

 
2 3

3 3
2 3
1 1

0d u d u
dx dx

 

 1
11

1 1
AC AC

dd H M eL
dx dx

 
   

 

1 0  1

1

0d
dx



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8.6 Coupled bending-torsion problems

 Example 8.18 Wing subjected to aerodynamic lift and moment

- typical transport aircraft: e = 25 – 35% chord
- it is convenient to select the origin of the axes at the s.c., rather than at

the centroid.: bending problem is decoupled from the axial problem.
beam will rotate about the origin of the axes system.

- The rotation Ф1 of the section is, in fact, the geometric angle of attack of
the airfoil.

- lift, LAC , is a function of the angle of attack 

- aerodynamic problem: computation of the lift as a function of the angle of
attack

- elastic problem: computation of wing deflection and twist as a function of
the applied loads

- aeroelasticity: study of this interaction

Fig.8.66. The wing bending torsion coupled problem
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8.7 Warping of thin-walled beams 
under torsion

 Thin-walled beam subjected to an applied torque

 Particularly pronounced for non-uniform torsion of open sections

→ Shear stress generated

Twist rate varies along the span

↔ Contrasts with Saint-Venant theory

→ Out-of-plane deformations, “warping”, in x-s : magnitude is typically 
small, but dramatic effect on the torsional behavior

Uniform torsion, constant twist rate
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8.7.1 Kinematic description

 Fig 8.70 : thin-walled beam subjected to a tip concentrated 
torque Q1

8.7 Warping of thin-walled beams 
under torsion

 Displacement field
• Similar to that for Saint-Venant solution
• Each x-s is assumed to rotate like a rigid body about R

(“center of twist”, (x2r, x3r)) ← unknown yet

Unknown warping function
Twist rate

(8.80a)

(8.80b)

(8.80c)
71

1 1 1 1( , ) ( ) ( )u x s s x 

2 1 3 3 1 1( , ) ( ) ( )ru x s x x x   

3 1 2 2 1 1( , ) ( ) ( )ru x s x x x  

Fig. 8.70. Thin-walled beam subjected to 
an applied torque.
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8.7 Warping of thin-walled beams 
under torsion

 Strain field

1 1
1

1 1

( )u ds
x dx

 
  


2
2

2

0u
x

 
 


3
3

3

0u
x

 
 


1 2
12 3 3 1

2 1 2

( )r
u u d x x
x x dx

 
   

        

2 3
23

3 2

0u u
x x

  
  
 

2 3
13 2 2 1

3 2 3

( )r
u u d x x
x x dx

 
   

        

 Non-uniform torsion is assumed  →

→ axial strain ≠ 0

In-plane strain components =0 since rigid body rotation assumed
Shear strain components → partial derivatives of warping function and twist rate

1

1

0d
dx




(8.81)
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8.7.2 Stress-strain relations

 Non-vanishing components of the stress

8.7 Warping of thin-walled beams 
under torsion

 Only non-vanishing shear stress component for thin-walled beams → τs

{ {
Distance from the twist center to 
the tangent to C, Eq.(8.11)Total derivative of  Ψ w.r.t. s

→ for open and closed sections

(8.82)

(8.83)
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   
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    
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8.7.3 Warping of open sections

8.7 Warping of thin-walled beams 
under torsion

74

 Shear stress distribution in open-section 
→ linearly distributed across the wall thickness and 0 along the wall mid-line

 τs = 0 along curve C, Eq.(8.83)

(8.84)1 0s r
d r G
ds

     
 

 Warping function relation

 Purely geometric function,  Γ(s)

 Warping function

(8.87)

(8.86)

(8.85)

2 3 3 2 1( ) ( ) r rs s x x x x c     

o
d r
ds

 

3 2
2 3r o r r

dxd dxr r x x
ds ds ds
        

 
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8.7.3 Warping of open sections

8.7 Warping of thin-walled beams 
under torsion

75

 Uniform torsion,

→ c1 and (x2r, x3r) cannot be determined, simply represents a rigid body displacement 
field, does not affect the state of stress/strain

 Non-uniform torsion

→ non-vanishing axial strain/stress although acted upon by a torque alone

but, still N1, M2, M3=0

{ varying applied torque
constrained warping displacement at a boundary or at some point

→ axial strain/stress = 01

1

0d
dx




 Axial force  N1 =0 → Eq.(8.82a), (8.87)

1 0
c

tds 
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8.7.3 Warping of open sections

8.7 Warping of thin-walled beams 
under torsion

76

 

0 0{ {
S

origin of  the axes is selected to be 
at the centroid

(axial stiffness)

2 3 3 2 1 0r rC C C C
E tds x Ex tds x Ex tds c Etds       

(8.88)1
1

C
c E tds

S
  

 Bending moment

 { { {
(principal centroidal
axes of bending)

2 1 3 0
C

M x tds 
2

3 2 3 3 2 3 1 3 0r rC C C C
E x tds x Ex tds x Ex x tds c Ex tds       

22
CH 23 0CH  0
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8.7.3 Warping of open sections

8.7 Warping of thin-walled beams 
under torsion

77

 M3 = 0

(8.89)

(8.90)

2 3
22

1
r C C

x E x tds
H

  

3 2
33

1
r C C

x E x tds
H

  
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8.7 Warping of thin-walled beams 
under torsion

78

 Example 8.20 Warping of a C-channel

- C-channel cross section subjected to a tip torque (Fig. 8.24)
- axes in the figure: principal centroidal axes of bending i2 and i3
- axis i2 : axis of symmetry
- 1st step : compute the purely geometric function, 

: normal distance from the origin of the axes to the tangent
of the curve C

o
d r
ds

  (8.86)

 s

or

Fig. 8.71. The warping function for a C-channel
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8.7 Warping of thin-walled beams 
under torsion

79

where, r h0 / 2 

1 1( ) / 2s hs c   

1 1( ) 0 0s at s  

1 1( ) / 2s hs  

0 0 / 2r d and r h   

2 2

3 3

( ) ( )
( ) / 2 ( 2 ) / 2
s ds h b d
s hs h b d

   

   

b h b

r c h

c

Et h hx s ds s s ds s ds
H

h b t Ed
H

/ 2

2 1 1 2 2 2 3 30 / 2 0
22

2 2

22

( )( ) ( ) ( )
2 2

4



          

  

  

applying boundary condition,                              then, 

- For the lower flange (s1)

-2nd step: evaluate the integration constants

- Final step: coord. of the twist center

b h b

h

Et hc s ds s ds s ds b d
S

/ 2

1 1 1 2 2 3 30 / 2 0
( ) ( ) ( ) ( )

2

             
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The warping function then follows from eq.(8.87) as 

   1 1 2 2 3 3( ) ; ( ) ; ( )
2 2
h hs s e b s es s s e         

2 2

22/ (4 )ce h b tE H

where,

/2

3 1 1 2 2 3 30 /2 0
22

2 2

22

( )( ) ( )( ) ( )( ) 0

4

b h b

r c h

c

Etx s b d s ds s d ds s s d ds
H

h b t Ed
H



             

  

  

- The location of shear center coincides that of the twist center.
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8.7.5 Warping of closed sections

 Shear stress distribution

8.7 Warping of thin-walled beams 
under torsion

→ constant through the wall thickness in closed section

 Eq. (8.83) →

 Process of integration of Eq. (8.94) → similar to that for open section

① Purely geometric function  Γ(s)

② c1 and (x2r, x3r) can be determined by the vanishing of F1, M2, M3

arbitrary B.C. is used to integrate Eq.(8.95)

 governing equation for        in closed sections( )s

(8.94)

(8.95)

A = area enclosed by curve C (8.62)
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8.7.6 Warping of multi-cellular sections

 Section 8.5.5 

8.7 Warping of thin-walled beams 
under torsion

→ shear flow distribution  f(s) due to applied torque

 Governing equation for the warping function

(8.97)
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1( ) ( )f s s  1( )s s
t
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( )
r

d s r
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 

 Determination of the warping function --- exactly mirrors that for open and
closed sections, except the following

(8.98)
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8.8 Equivalence of the shear and 
twist centers

 Shear center → defined by torque equipollence condition, Eq.(8.39)

 Center of twist → introduced for the analysis of thin-walled beams under torsion

Eq.(8.53) → Eq.(8.86)

 Integrating by parts

by Eq.(8.58)

similarly,

→ Equivalence of the shear and twist center for open sections. 
Equivalence also holds for closed sections direct consequence of Betti’s reciprocity 
theorem. Eq.(10.117)

by Eq.(8.89)
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8.9 Non-uniform torsion

 Non-uniform torsion
→ both shear and axial stresses generated by differential warping

Markedly different behavior from that under uniform torsion

 Axial stress distribution → uniform across the wall thickness
axial flow

 Although the axial stress does not vanish, the resulting axial force and bending 
moment do vanish → local equilibrium equation, Eq.(8.14), is not necessarily 
satisfied

 For this local equilibrium to hold, a shear flow, fw, “warping shear flow” is generated 
to satisfy the local equilibrium
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8.9 Non-uniform torsion

• Question of overall equilibrium

→ the warping shear flow generate resultant transverse shear force?

Eq.(8.7) →

 Introducing Eq.(8.82a) for the case of open sections

→ can be integrated 
by the procedure in Section 8.3

- Simple C-channel Fig. (8.75)

Eq.(8.99) →

Similarly,



0Integrating by parts since  fw = 0 at the edge of the contour

(8.99)
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8.9 Non-uniform torsion

 Torque resultant about the shear center generated by the warping shear flow

Eq.(8.10) →

Integrating by parts

 Total torque = that by the twist rate + that due to warping

 Equilibrium equation for a differential element of the beam under torsional load

Introducing Eq.(8.99)  

→ Eq.(7.15)

“warping stiffness”

Additional contribution from the warping 
shear flow, =0 for uniform torsiongenerated by shear 

stress distribution

(8.100)

(8.101)

(8.102)

(8.105)

(8.104)
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8.9 Non-uniform torsion
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 Example 8.23 Torsion of a cantilevered beam with free root warping

- Uniform cantilevered beam of length L subjected to a tip torque, Q
- Root condition: No twisting is allowed, but warping is free to occur
-> attaching the beam’s root to a diaphragm that prevents any root rotation, 

but does not constrain axial displacement
- uniform properties along its length, Eq. (8.105) becomes

- at the root : no twist occurs, 
- free warping at the root : axial stress must vanish, 

- at the tip: torque must equal the applied torque,

- at the tip: axial stress must vanish once again,

- Introduction of non-dimensional span-wise variable,  

- Governing eqn.: 

2 4
1 1

11 2 4
1 1

0w
d dH H
dx dx
 
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1 0  2
1
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dx
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8.9 Non-uniform torsion

88

- New BC’s: at the root,
at the tip ,

: ratio of the torsional stiffness to the warping stiffness

- General sol. of the governing differential eqn.:

- Application of BC’s:

-> identical to the uniform torsion solution 

- torsional warping stiffness,      , disappears from the solution.

1 10, 0   
2 3

1 1 10, wk QL H      
2

11

w

H Lk
H

 (8.107)

1 1 2 3 4cosh sinhC C C k C k       (8.108)

1
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QL
H
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8.9 Non-uniform torsion

89

 Example 8.24 Torsion of a cantilevered beam with constrained root warping

- Same uniform cantilevered beam, but the root section is now solidly fixed
to prevent any wapring at the root
-> at this built-in end, no twisting occurs

no axial displacement

- Governing eqn. is the same, Eq. (8.106). But BC’s are
New BC’s: at the root,

at the tip ,

- General sol. is the same as Eq. (8.108)
- Application of BC’s:
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dx
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influence of the non-uniform torsion 
induced by the root warping constraintuniform torsion
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Fig. 8.76. Twist distribution for the closed 
rectangular section under non-uniform torsion.          

=16.54 (◊),    =8.27 (∆),    =5.04 (□), 
=2.52(O).

Fig. 8.77. Twist distribution for the C 
channel section under non-uniform torsion.

=2.65 (◊),    =1.33 (∆),    =0.808 (□), 
=0.404(O).

k k k
k

k k k
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8.10 Structural idealization

 Actual thin-walled beam structures
→ “stringers” added to increase the bending stiffness

 can be idealized by separating the axial and shear stress carrying components 
into distinct entities called stringers

sheets

Axial stress

Shear stress

→ assumed to be carried only in the stringers

→ assumed to be carried only in the sheets

“box beam”, “L” shaped longitudinal 
members located away from the centroid

sheet-stringer idealization

→ much larger contribution to the 
bending stiffness

→ considerably simplified analysis 
procedure for stress distribution

(a) (b)

Sheet 
Stringer

91
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8.10 Structural idealization

8.10.1 Sheet-stringer approximation of a thin-walled beam

 Idealized structures

→ no discrete “stringers” or with far smaller x-s area
 still possible to construct a sheet-stringer model

 Figure 8.80

① Axial stresses are carried solely by the stringers
② Shear stresses are carried solely by the sheets
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8.10 Structural idealization

 Approach to estimate the areas of the stringers

① Triangular equivalence method (sec. 6.8) → guarantee the same bending 
stiffness and centroid location

② Linear distribution of axial stress,  σ1 = σ1
[1] + (σ1

[1] - σ1
[1] ) s/b

 Force equivalence

 Bending moment equivalence

- σ1
[1] : stresses of point A

- σ1
[2] : stresses of point B

- s : local position along the contour of width b
→ the areas     , and      , of the stringers need to be determined. 

2 constraints
1) Axial stresses at A and B are the same as the actual
2) Force and moment equivalences are maintained

solution

, (8.110)
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8.10 Structural idealization

 2 special cases

① Uniform axial stress            σ1 
[1] = σ[2]      → A[1]=A[2]=bt/2

② Pure bending                      σ1 
[1] = -σ1

[2]  → A[1]=A[2]=bt/6
 Different stress distributions are considered, equivalent idealized area need to be 

recomputed

8.10.2 Axial stress in the stringers

 The same approach as developed in Chapter 6,

axial stress σ1 
[r] acting in the r-th stringer

Uniform stress is assumed in a small “lumped” case

→ net axial force = A[r]σ1
[r]

(8.111)
(8.112)

(8.113)

94

[ ] [ ] [ ] [ ]33 2 23 3 23 2 22 31
1 3 2

C C C C
r r r rH M H M H M H MNE x x

S H H


  
     



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

8.10 Structural idealization

 Local equilibrium condition, Eq.(8.14)   → , since no axial stress

 Stringer equilibrium
 Figure 8.81

8.10.3 shear flow in the sheet components

axial equilibrium for the r-th stringer

- Eq. (8.113) → (8.115)

→ f = const.

1 1 1 1( / )x dx   

1

2f 2f

1f

1f

(8.114)

(8.115)

(8.116)
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8.10 Structural idealization

 general thin-walled x-s

sheet-stringer idealization

→ shear flow distribution is governed by a differential 
equation, Eq. (8.20)

→ shear flow distribution is governed by a difference
equation, Eq. (8.116)

{
 Integration constant needs to be determined { open section → 0 at stress-free edge

closed section → Section 8.3.7

 Shear flow resultants
→ curved sheet carrying a constant shear flow f12, and connecting 
2 stringers, shear force resultant

 Figure 8.82

similarly,

direction parallel to the line connecting the 2 stringers (8.118)

96

2 2 [2] [1] 2 [2] [1] 2
2 3 12 2 2 3 3 12 12( ) ( )V V V f x x x x f L      

2 2 [2] [1]
3 3 12 12 3 12 3 31 1

( )V i f ds f dx f x x    

[2] [1]
2 12 2 2( )V f x x 



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

8.10 Structural idealization

 Moment resulting from the shear flow distribution w, r, t point O

: area of the sector defined by the 2 stringers (Fig. 8.82) 

 Distance e of line of action from O

A


(8.119)
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8.10 Structural idealization

8.10.4 Torsion of sheet-stringer sections

 Open section 

If different thickness for individual sheets

→ linear shear stress distribution through thickness,             
inefficient at carrying torsional loads

(8.120)
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 Example 8.25 Shear flow in a sheet-stringer C-channel section

- C-channel section subjected to a shear load, V3, and a bending moment, M2
- i2: axis of symmetry, principal centroidal axes.

- Under the bending moment, axial stress will be const. over the top flanges
and bottom flanges, but will vary linearly in the web.

- Use Eqs. (8.111) and (8.112) to evaluate the stringers.

- This idealization yields the same bending stiffness as that for the thin-walled
section
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- Equilibrium condition for stringer    , Eq. (8.116), yields

- Shear flow in the upper flange

- Shear flow in the vertical web

- Shear flow in the lower flange

- Observation
• shear flow is const. in each sheet in contrast with the thin-wall solution

(Fig. 8.25)
• Max. shear flow in the sheet-stringer idealization
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Max. shear flow in the thin-wall solution

Thus, sheet-stringer idealization underestimates the true shear flow and thus
is not conservative.

• Sheet-stringer idealization exactly satisfy overall equilibrium requirements.

• Torque equipollence about an arbitrary point of the section yields the location
of the shear center, K. This result exactly matches the location found using the
thin-wall solution.

8.10 Structural idealization
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