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i) PVW : entirely equivalent to the equilibrium eqns. However, does not provide 

any information about the other 

2 sets of eqns.

ii) PCVW : entirely equivalent to the strain-displacement relationships

2 sets of eqns.

- 2 virtual work principles

◦ Type of forces

- In virtual work principles, various categories of forces are clearly defined and used.

① Internal, external forces

② Reaction forces : can be eliminated from the formulation since the work they 

perform vanishes when using kinematically admissible virtual 

displacements
But, when arbitrary virtual displacements are used, the virtual work does not vanish

Become an integral part of the formulation

Strain-displacement relationship

Constitutive laws

Equilibrium eqns

Constitutive laws{

{
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◦ Conservative forces

- The work they perform always vanishes for a closed path displacement

- Total mechanical energy of the system is preserved

- If the externally applied forces are conservative, they can be derived from a      

potential        further simplify the calculation of VW

- If the strain energy of an elastic component exists, the corresponding elastic 

forces can be derived from this strain energy        further simplify the calculation of VW

◦ combination of PVW

Strain energy

Potential of external forces

Principle of minimum total 

potential energy

PVW is always valid

PMTPE is limited to systems involving conservative forces
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10.1 Conservative forces

: position vector of a particle

: force acting the particle, depends only upon the position of the particle,

- Fig. 10.1 ⋯ two arbitrary paths ACB, ADB 

r
F ( )F F r
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10.1 Conservative forces

◦ Definition

- is conservative if the work it performs along any path joining the same initial 

and final points is identical

- Work done along path ADB = (-). that along BDA

- Work over the closed path ACBDA = 0 

◦ Potential of a conservative force

- Stoke’s theorem

F

ACB ADB
W F dr F dr    

0
anypath C

W F dr F dr      

0
C A

W F dr r FdA     
A
r

0F  0 

: area enclosed by curve C

: outward normal to area A (Fig. 10.2)

(    : arbitrary scalar function)

(10.1)

(10.2)

(10.3)
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10.1 Conservative forces

- Solution of eqn.

- Work done by a conservative force

⋯ depends only on the position of initial/final points

can be evaluated as the difference between the values of the potential function

0F 

F  

justified later
“potential”

1 2 3
1 2 3

F i i i
x x x
  

     
  

2 2

1 1

r r

r r
W F dr dr     

2 2

1 1
1 2 3 1 2

1 2 3

( ) ( ) ( )
r r

r r
dx dx dx d r r

x x x
  

         
   

1 2( ) ( )W r r     (10.6)

(10.5)

(10.4)
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10.1 Conservative forces

◦ Examples of conservative forces

i) Gravity force ⋯

ii) Restoring force of an elastic spring ⋯
restoring force 

Potential

elastic force

3 3mgr i mgx  

3 3 3/gF x i mgi      

ku
21( )

2
A u ku

S
AF ku
u


   


⋯ “strain energy”

3 3

3 3
3 3 3

3

( ) ( )b b

a a

x x

g a bx x
W F dr dx x x

x


      
 

( ) ( )b b

a a

u u

S a bu u

AW F du du A u A u
u


     
 
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10.1 Conservative forces

10.1.1 Potential for internal and external forces

- In PVW, a distinction is made between

- In elastic systems, internal forces

Internal forces

Externally applied loads

Stresses acting in a body

Elastic forces in structural components{
{

Potential of internal forces = “strain energy”, “deformation energy”, “internal energy”

- Potential of external forces

- Total potential energy

⋯ A

IW A ⋯ Φ

EW  

A  

(10.7)

(10.8)

(10.9)
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10.1 Conservative forces

- Total work done by both internal and external forces

⋯ “for conservative systems, the work done by the internal and external forces =    

negative change in total potential energy”

- Adding an arbitrary constant to the potential fn. will not alter the work done

I EW W W A        (10.10)
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10.1 Conservative forces

10.1.2 Calculation of the potential fns

- Potential of internal forces   ⋯ “strain energy”, 

It is convenient to select                      , undeformed or unstrained state

- It is cumbersome to compute the work done within a solid as the negative product of 

the internal stress component acting through strains or deformations   

alternative approach

Eq. (9.19),

⋯ if the internal forces in a solid are conservative, the work done by the externally 

applied forces = strain energy stored in a body

( )A A 

( 0) 0A  

[ ( ) ( 0)] ( )IW A A A A         

( ) IA W  

I EW W  ( ) EA W 

(10.11)

(10.12)
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10.1 Conservative forces

- assumption  

- Non-conservative forces

⋯ potential of the externally applied loads,   Φ ⋯ negative of the work done by the 

external forces acting through the displacements.

⋯ the forces are applied slowly, in a quasi-steady manner associated 

kinetic energy is negligible

NP forces, Pi, const. magnitude, line of action fixed in space        “dead loads”

i) Aerodynamic force ⋯
ii) Follower force ⋯

Lift    AOA, non-conservative, cannot be derived 

from potential

Const. magnitude, but the orientation of their line 

of action changes with the rotation of structures

Ex) thrust of a rocket jet engine

1 1

OP NN

E i i j j
i i

W Pd Q 
 

       (10.13)
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10.2 Principle of minimum total 
potential energy

- System represented by N generalized coord.   

- If the system is conservative, strain energy

potential of the externally applied loads

Infinitesimal increment

- VW done by the internal forces

external forces

1 2{ , ,....., }TNq q q q

( )A A q

( )q  

1 2
11 2

....
N

N i
iN i

A A A AdA dq dq dq dq
q q q q

   
    
   

1 2
11 2

....
N

N i
iN i

d dq dq dq dq
q q q q

   
     

   
(10.14)

( )IW A q  

( )EW q   

1
( )

N

I i
i i

AW A q dq
q

 



   



1
( )

N

E i
i i

W q dq
q

 



    


(10.15)
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10.2 Principle of minimum total 
potential energy

- Comparing Eq.(9.24) and (10.15)

,I E
i i

i i

AQ Q
q q
 

   
 

(10.17)

(10.18)
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- PVW :                   , by introducing Eq.(10.16)0I E
i iQ Q 

( ) 0
i i i i

A A
q q q q
    

    
   

where,     is total potential.

W   

1
0 , 0 .(10.17)

N

i
i i i

q Eq
q q

 


  
       



0W     

0  

(10.19)

◦ Principal 4 : a system is in static equilibrium if the sum of the VW done by the internal 

and external forces vanishes for all arbitrary virtual displacements,
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10.2 Principle of minimum total 
potential energy

14

◦ Principle 8 : A conservative system is in equilibrium if virtual changes in the total PE 

vanish for all virtual displacements.

“Principle of stationary TPE”

- Kinematically admissible virtual displacements are used

 reaction forces are eliminated from the formulation.

Arbitrary virtual displacements are used

 reaction forces must be treated as externally applied loads.

- Graphical illustration of Principle 8 (Fig. 10.3)

… TPE is stationary at points A, B and C.

Fig. 10.3 Total potential energy.
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10.2 Principle of minimum total 
potential energy

15

- Increments in TPE by Taylor series

in the neighborhood of static equilibrium

① >0 for all             TPE is minimum at equilibrium

“stable” (A) … TPE cannot increase without an external source of E

② =0      “neutrally stable” (B)

③ <0       “unstable” (C)… released PE is converted to KE, leading to 

spontaneous motion of the system

2

1 1 1

N N N

i i j
i i ji i j

d dq dq dq
q q q  

  
 

   

2

1 1

N N

i j
i i i j

d dq dq
q q 

 


 




 idq 



 

◦ Principle 9 : A conservative system is in a “stable” state of equilibrium if the TPE is a min.

w.r.t. changes in the generalized coord.
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10.2.1 Non-conservative external forces

- If the externally applied loads are not conservative

16

0nc
L E EW W W A W         

- If externally applied forces are a mixture of




conservative
forces

non-conservative

10.2 Principle of minimum total 
potential energy

◦ Principle 10 : A system is in equilibrium if virtual changes in the strain energy equal the

VW done by the externally applied loads for all arbitrary virtual displacements.

( )

c nc
E E E

nc
E

W W W

A W

  

 

  

 

VW done by the non-conservative forces
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10.3 Strain energy in springs

- Strain energy … function of deformation of the structure

deformation field       function of 

spring

( )A A E

 



diplcement field
generalized coord.





rectilinear spring
torsional rotational spring

10.3.1 Rectilinear springs

- 2 primary lumped properties

- force applied to the spring :     ,  force in the spring :  

constitutive behavior :                                   : extension

0





stiffness constant
unstretched length : u

F SF

0( ),F F u u    

0( 0) ( ) 0F F u u    
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- Relationship between an applied load and the resulting extension is 

linear                     spring is linear

: stiffness constant, unit : force/length, N/m

- Strain energy in the spring

: positive-definite  fn. of , i.e. A>0 for any (+) or (-)

vanishes only when 

- internal force in the spring 

(-) : force in the spring opposes the externally applied force.

- constitutive law : straight line in the force vs. extension plot (Fig. 10.5)

strain energy (A) : shaded area under the curve

◦ Linearly elastic spring

( )F k  

k

0 0

2

0

1 1
2 2

u u

E u u
A W Fdu k du k d k F


             (10.21)

 

0 

S
AF k
u


    


10.3 Strain energy in springs
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10.3 Strain energy in springs

Fig. 10.5. Constitute law a linearly 
elastic spring

Fig. 10.6. Constitute law a nonlinearly 
elastic spring

- Complimentary strain energy (A’), stress energy : shaded area to the left of the 

straight line, “force energy”
2

00 0 0

1 1( )
2 2

F F F F FA u u dF dF dF F
k k

           (10.22)

2
21 1 1

2 2 2
1 ,
2

FA F k A
k

A A F A A F

      

      
(10.23)
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10.3 Strain energy in springs

- metals(aluminum, copper) … slight amount of nonlinearly elastic behavior prior to

yield point

elastomers … quite obvious nonlinearly elastic behavior

- analytical models, the simplest form

: ref. force,      : ref. displacement

-Fig.(10.6) … aluminum, no sharp transition from linear to nonlinear behavior

: stiffness of the spring at zero elongation    

◦ Nonlinearly elastic spring

0
0

tanhF F
u

 
  

 
(10.24)

0F

0
0

0

: ,F
u



0u

2 20 0
0

0 0 0

sech sechF F
u u u

 
     

         
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- Strain energy

complementary strain energy

- in contrast to the linearly elastic spring,            , however, 

- elastic force in the spring

- Fig.(10.7), 

upper … strain energy or potential

middle … force-extension relationship

: “softening spring”, decreasing stiffness 

at higher extensions

10.3 Strain energy in springs

0 0 0 00 0
tanh ln(cosh )A Fdu F u du F u

 
     

2
0 0 0 00 0

arctanh( ) ( arctanh ln 1 )
F F

A dF F u F dF u F F F F       
A A A A F  

0 0 0
0 0

1 ln(cosh ) tanhAF F u F
u u

   
          

(10.25)



Fig. 10.7. Nonlinear spring with the constitutive law 
given by eq.(10.24). Top figure : strain energy; middle 

figure : force; bottom figure: stiffness. Solid line: 
nonlinear spring; dashed line: linear spring.
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10.3.2 Torsional springs

- Angular motion,    , under the action of an externally applied torque, M (Fig. 10.9)

- linearly elastic torsional spring : 

- : unit



M k

k / , /    N m rad N m deg

10.3.2 Bars

10.3 Strain energy in springs

Fig. 10.9. Tosional spring subjected 
to a moment, M.

- strain energy

: bar elongation

2 21 1
2 2

EAA ke e
L

  (10.29)

e
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10.4.1 Beam under axial loads

- Beam subjected only to axial loads (Fig. 5.6)

- infinitesimal slice, left force displacement 

- infinitesimal slice, right force displacement

- Left force, axial force N, displacement from 0 to     , work :

- , (-) due to that displacement and force are counted 

positive in opposite directions        

-right force, work : 

- total work : 

- external work : 

1 1
1
2
N u

10.4 Strain energy in beams

1u
1

1 1
1

duu dx
dx

 
  
 

1u

1
1 1 1

1

1
2

duN u dx
dx

  
  
  

1
1 1 1 1 1

1

1 1
2 2

duN dx N dx
dx


 

 
 

2
1 1 1 1 1

1 1
2 2EdW N dx S dx   (10.33)
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10.4 Strain energy in beams

: “strain energy density function”

… potential of the axial force,

  2
1 1

1
2

a S 

1
1 1

1

( )aN S 



   



Internal force in the beam

(10.34)

- total strain energy by the axial force distribution

- in terms of the axial force

: “strain energy density function”

“complementary strain energy density”

2
1 1 1 1 10 0

1( ) ( )
2

L L
A a dx S dx     (10.35)

2
1

1 1 10
( ) ( )

2
L NA dx A N
S

  
" "
" "

E
E

total stress 
complementary (10.36)

2
1

1( )
2
Na N
S

 
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10.4.2 Beam under transverse loads

- Beams subjected only to transverse loads (Fig. 5.14)

- left force rotation : 

- right force rotation : 

- work by bending moment      at left force : 

(-) due to that rotation and moment are counted positive in opposite directions

- work by bending moment      at right force :

- total work : 

- external work : 

2
2 2

12
1 1

du d u dx
dx dx

 
  
 

(10.37)

10.4 Strain energy in beams

2

1

du
dx

2
3

1

1
2

duM
dx


3M

3M
2

2 2
3 12

1 1

1
2

du d uM dx
dx dx

  
  
  

2
2

3 1 3 3 12
1

1 1
2 2

d uM dx M dx
dx


 

 
  sectional curvature

2
3 3 1 33 3 1

1 1
2 2

c
EdW M dx H dx  

25

Fig. 5.14. Beam subjected to transverse loads.
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… potential of the bending moment :

- Total strain     by the bending moment distribution

10.4 Strain energy in beams

2
3 33 3

1( )
2

ca H  : “strain energy density fn” (10.38)

3
3 33 3

3

( ) caM H 



   


Internal moment in the beam

E

2
3 3 1 33 3 10 0

22
2

2 1 33 120
1

2
3

3 1 30
33

2
3

3
33

1( ) ( )
2

1( ( ))
2

( ) ( )
2

1( ) :
2

L L c

L c

L

c

c

A a dx H dx

d uA u x H dx
dx

MA M dx A M
H

Ma M
H

   

 
  

 

 

 

 





(10.39)

or

or

(10.40)

(10.41)

“stress E density fn”
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10.4.3 Beam under torsional loads

- circular cylindrical beam subjected to torsion

- rotation of the left force : 

- rotation of the left force : 

- work by the torque       at the left force : 

(-) due to that rotation and torque are counted positive in opposite directions

- work by the torque       at the right force :

- total work : 

- external work : 

1
1 1

1

d dx
dx


 
  
 

(10.42)

1

1 1
1
2
M 

1
1 1 1 1 1

1

1 1
2 2

dM dx M dx
dx
 

 
 

  sectional twist rate

2
1 1 1 11 1 1

1 1
2 2EdW M dx H dx  

10.4 Strain energy in beams

1M

1M 1
1 1 1

1

1
2

dM dx
dx


  
   

  
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(10.43)

10.4 Strain energy in beams

… potential of the torque:

- Total strain energy by the torque distribution

2
1 11 1

1( )
2

a H  : “strain energy density fn”

(10.44)1
1 11 1

1

( )aM H 



   



2
1 1 1 11 1 10 0

2
1

1 1 10
11
2
1

1
11

1( ) ( )
2

( ) ( )
2

1( ) :
2

L L

L

A a dx H dx

MA M dx A M
H

Ma M
H

   

 

 

 



(10.39)or

or
(10.40)

(10.41)“stress E density fn”

“total complementary 

strain E stored”
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10.4.4 Relationship with VW

- internal VW by a bending moment                                  Eq.(9.69)  

However, in Sec.10.4, strain energy stored in beam is

- internal VW : bending moment is assumed to remain constant 

while undergoing a curvature

1
2

10.4 Strain energy in beams

3 3 3 1: ,IM dW M dx

3 3 1E IdW dW M dx  

3 3 1
1
2EdW M dx

factor difference

3 3

3 3 1 3 3 1 3 3 10 0EdW M dx M d dx M dx
 

              
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10.4 Strain energy in beams

- Strain energy stored in beam : bending moment is assumed grow in 

proportion to the curvature

- Same reasoning for torsion

Internal, external VW : 

Strain energy             :

- When computing VW and CVW : virtual displacements do not affect 

the forces or stresses in the system

Strain energy stored in the structure : internal forces and moments increase in

proportion to the deformation

3 3

3 3 1 3 3 1 3 10 0

3 3 1

1
2
1
2

EdW M dx k d dx k dx

M dx

 
   



           



 

1 1 1

2
11 1 1

1
2

E I

E

dW dW M dx

dW H dx





  


1
2

factor difference
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10.5 Strain energy in solids

10.5.1 3-D solid

- Sec. 9.7.3, work done by the constant, external stress

- Then, if the stresses increase in proportion to the deformations

- Hook’s law, 

T
E V

W dV  

(10.46)

Eq.(9.76)

1
2

T
E V

W dV  
  C

(2.14)

1
1 0

1
1 2

2(1 )(1 2 )
1 20 2

1 2
2

  
  
  


 





 
  
 
      

 
 

 
 

EC
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10.5 Strain energy in solids

2 2 2
1 2 3 1 2 1 3 2 3

2 2 2
23 31 12

1 [(1 )( ) 2 ( )
2 (1 )(1 2 )

1 2 ( )] ( ) ( )
2

E V

V

EW

dV a dV A

          
 

     

      
 


    




( )a 

- more compact form

: first 2 invariants of the strain tensor, Eqs.(1.86) 

- Hook’s law is a linear relationship 

- complementary strain E density

: “strain E density fn for a 3-D solid”

2
1 2

1( ) [(1 ) 2(1 2 ) ]
2 (1 )(1 2 )

Ea I I  
 

   
 

(10.48)

1 2,I I
1( )
2

   Ta C (10.49)

( ) ( )a a  

2 2 2
1 2 3 1 2 1 3 2 3

2 2 2
12 23 31

1( ) [ 2 ( )
2

2(1 )( )]

a
E

          

   

      

   
(10.50)
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10.5 Strain energy in solids

S 

1
1 0

11
2(1 )

0 2(1 )
2(1 )

S
E

 
 
 






  
   
  

   
 
 

 

1( )
2

Ta S   

(2.10)

(2.12)

(10.52)
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10.5.2 3-D beams

- Eq.(9.78) : internal W done by const. stress results in 3-D beams

- W done by the same stress resultants when they increase in proportion 

to the deformation

- Hook’s law,      sectional constitutive laws, Eq.(6.12) 

- complementary strain E … using the compliance form, Eq.(6.13)

assuming that the origin must be located at the section’s centroid

(10.53)
1 1 2 2 3 3 10

1 ( )
2

L

EW N M M dx    

10.5 Strain energy in solids



2 2
1 22 2 23 2 3 33 3 10

1 ( 2 )
2

L c c c cA S H H H dx        (10.54)

2

2
2 21 33 33 22
2 2 3 3 10

22 33 23

1 2
2

c c cL

c c c

N H H HA M M M M dx
S H H H

H H H H

 
        

  


where,
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10.6.1 Application to trusses

◦ 3-bar, hyperstatic truss (Fig. 10.16)

- bar length : 

- bar elongations : Eq.(9.27), 

- bar strain E :               , Eq.(10.29),              (bar stiffness)

10.6 Applications to trusses and 
beams

 

2 2 2
1 2 3

2 2
1 2 2

2
1 2

2 3 2 2
1 2

1 cos cos
2
1 [( cos sin ) cos
2

( cos sin ) cos ]
1 2 cos 1 2sin cos
2

EA EA EAA e e e
L L L

EA u u u
L

u u
EA u u
L

 

  

  

  

    
 

  

  

    

1 3 2,cos
LL L L L  

1 1 2 2 2

3 1 2

cos sin , ,
cos sin

e u u e u
e u u

 
 

  
  

21
2

A ke 
EAk
L

Fig. 10.16. Simple 3-bar truss
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10.6 Applications to trusses and 
beams

- potential of externally applied load, 

total potential 

- 2 D.O.F.’s, PMTPE, Eq.(10.17)   

- Matrix form … two linear eqn.s for the 2 generalized coord.

1 1 1  P Pu

1 1    A A Pu



3
1 1

1

2
2

2

2 cos 0

(1 2sin cos ) 0



 


  




  


EA u P
u L

EA u
u L

3
1 1

2
2

1
1 23

cos 0
00 1 2sin cos

, 0
2 cos


 



     
        

  

u Pz L
u EA

PLu u
EA

36



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

10.6 Applications to Truss and Beams

10.6.3 Applications to beams

- Potential of the externally applied loads

37

2 1( )p x

2 1 2 1 10
( ) ( )

L
p x u x dx  

- Total Potential     of the beam .......................from Eq.(10.9)E

22
2

33 1 2 2 12 20 0
1

1
2

L Lc d uA H dx p u dx
d x

 
     

 
 

…. now                       , a function of another function       “functional”2 1( ( ))u x  

Eq.(10.40)

Beam problems are infinite dimensional or continuous problems since determination 
of the transverse displacement field,  2 1( )u x

planar truss w/ 2N unknowns, “ finite dimensional, discrete”

◦beam under a distributed transverse load,          , Fig. 5.14

(10.58)
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10.6 Applications to Truss and Beams

◦ Minimization of the TPE of finite dimension      standard calculus  

functional      calculus of variations   

◦ Reduction of infinite # of D.O.F      finite # ……………..by choosing specific

functions for                Chap.11

3-D beam under complex loading condition

distributed loads          ,         ,   

concentrated loads    ,    ,

distributed moment          ,         ,  

concentrated moment    ,    ,

2 1( )u x

1 1( )p x 2 1( )p x 3 1( )p x

1P 2P 3P

1 1( )q x 2 1( )q x 3 1( )q x

1Q 2Q 3Q

   1 1 1 1 1 1 1 1 1 10 0

L L
p u dx Pu L q dx Q L         

   3 3
2 2 1 2 2 2 1 20 0

1 1

L L du dup u dx Pu L q dx Q L
dx dx

     

   2 2
3 3 1 3 3 3 1 20 0

1 1

L L du dup u dx Pu L q dx Q L
dx dx

     

(10.59)
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10.6 Applications to Truss and Beams

Euler-Bernoulli assumption                  ,2
3

1

du
dx

   3 3Q L   2
3

1

duQ L
dx



3
2

1

du
dx

    2 2Q L ,  3
2

1

duQ L
dx


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10.8 Principle of minimum complementary 
energy

◦ Sec 10.2 ---- Principle of Virtual Work      Principle of Minimum Total Potential Energy

two assumptions ---- ① internal forces are conservative       strain Energy

② external forces are also conservative       potential of the      

externally applied loads

◦ Figure 10.27 -- constitutive relation ship strain energy
2nd assumption not shown
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10.8 Principle of minimum complementary 
energy

Principle of minimum complementary energy      Principle of complementary virtual work  

two assumptions ---- ① complementary strain energy function

② prescribed displacements can be derived from a potential

Sec. 10.8.1

10.8.1 The potential of the prescribed displacements

Fig. 10.28 Three-bar 
truss with prescribed 

displacement

- 3- bar truss, prescribed displacement      at B driving force D, 

unknown quantity

- Principle of complementary virtual work, Eq.(9.57) 
'
EW D  

now it is assumed that the prescribed displacement can be 

derived from a potential, '

'( )D
D


  



“potential of the prescribed displacement” or 
“dislocation potential”

' ' '( )EW D D D
D

   
      





(10.101)

(10.102)
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10.8 Principle of minimum complementary 
energy

10.8.2 Constitutive laws for elastic materials

◦ strain energy for a bar ……               , 21
2

A ke EAk
L



bar forces ( )A eF ke
e


 



complementary strain energy ………                  ,  21 1'
2

A F
k


1
k : compliance  

elongation
( ) 1A Fe F
F k


 



linearly elastic material,            ,                    ,'A A 21( )
2

A e ke 21 1'( )
2

A F F
k


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10.8 Principle of minimum complementary 
energy

- elastic, but not linear

Eq.(10.23) '( ) ( )A e A F eF 

differentiate, 'A Ade dF Fde edF
e F

             

Regrouping ' 0A AF de e dF
e F

              

- 2 bracketed terms must vanish

( )A eF
e





'( )A Fe
F




,

……….. Some constitutive laws {in stiffness}     form
{in compliance}

- existence of the {strain energy function}

{complementary counterpart}
assumption of constitutive law

(10.103)
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10.8 Principle of minimum complementary 
energy

10.8.3 Principle of minimum complementary energy

◦ Principle of Complementary Virtual Work ……. ' ' ' 0E IW W W    

◦ 3-bar truss, Fig 10.28

'
I A A B B C CW e F e F e F      

- Assuming elastic material, existence of complementary strain energy function

Eq. (10.103b)  

'' '
' ( )( ) ( ) C CA A B B
I A B C

A B C

A FA F A FW F F F
F F F

    
   

  
' ' ' '
A B BA A A A        

' ' ' '
A B CA A A A   total complementary strain energy
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10.8 Principle of minimum complementary 
energy

- Prescribed displacement at B……..can be derived from a potential 

' ' ( )EW D   

- Principle of Complementary Virtual Work

' ' ' ' ' ' '( ) 0E IW W W A A              

- total complementary energy,     ………' ' ' 'A   (10.104)

- Statement ……… ' 0   (10.105)

◦ Principle 11 (Principle of stationary complementary energy)  A conservative system 

undergoes compatible deformations if and only if the total complementary energy vanishes 

for all statically admissible virtual forces

- Stationary = minimum value for stable equilibrium

Principle of minimum complementary energy
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10.8 Principle of minimum complementary 
energy

◦ Principle 12 (Principle of Minimum complementary energy) A conservative system 

undergoes compatible deformations if and only if the total complementary energy is a 

minimum with respect to arbitrary changes in statically admissible forces.  
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10.8 Principle of minimum complementary 
energy

Example 10.8  Three-bar truss with prescribed displacement

47

◦ only relevant equilibrium eqn: at joint O

◦ complementary strain energy, first in terms of FA, FB, and FC

◦ three bar forces are expressed in terms of one, say FC

◦ Potential of the prescribed displacement

◦ Total complementary potential E

, cos cos    A C A B CF F F F F P

22 21
2 cos cos 
 

    
 

CA B

A B C

FF FA
k k k

 22 2 22 cos1
2 cos cos 2 cos


  

 
     

  

CC C C

A B C A B C

FF F kFA
k k k k k k

, 0, 2 cos , 2 cos             B B C CD D F F F F

2

2 cos ,
2 cos




       C
C

A B C

kFA F
k k k
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10.8 Principle of minimum complementary 
energy

48

22 cos , 1  
       

 
A C A C

A C B B B
k k k kF F k F D k

k k

◦ PMCE

◦ This yields  FA, FB, and FC

◦ displacement at O: extension of the bar B

2 cos 0,
cos





   


C

C A B C

kF
F k k k

 
1


    B A C

B
k ku e
k
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10.8 Principle of minimum complementary 
energy

10.8.4 The principle of least work

◦ total complementary energy=system’s complementary energy + potential of the           

prescribed displacement

if  prescribed displacement = 0, total complementary energy = complementary strain 

energy

Principle of least work

◦ Principle 13 (Principle of least work)  In the absence of prescribed displacement , a 

conservative system undergoes compatible displacements if and only if the complementary 

strain energy is min with respect to arbitrary changes in statically admissible forces.  

◦ Principle 14 (Principle of least work)  In the absence of prescribed displacement, a linearly 

elastic system undergoes compatible deformations if and only if the strain energy is a 

minimum with respect to arbitrary changes in statically admissible forces.    
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10.8 Principle of minimum complementary 
energy

50

Example 10.9. Three-bar truss with tip load
◦ only relevant equilibrium eqn: at joint O

◦ strain energy, first in terms of FA, FB, and FC

◦ three bar forces are expressed in terms of one, say FC

◦ Principle of least work, principle 14

◦ can be solved for the bar force,   , and the equilibrium eqn then yield the other bar forces

◦ PMCE: derive the same condition in a more abstract but also systematic manner

, cos cos    A C A B CF F F F F P

22 21
2 cos cos 
 

   
 

CA B

A B C

FF FA
k k k

 22 22 cos1
2 cos cos


 

 
   

  

CC C

A B C

P FF FA
k k k

 2 cos 2cos
0

cos cos
 

 
 

      
CC C

C A B C

P FF FA
F k k k

22 cos , 
  C A C A CA BF k k k kF F

P P k P k
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10.9 Energy theorems

Fig. 10.40. Elastic body subjected to various 

loads

Properly constrained elastic body subjected to various 

concentrated loads and couples

,                                  displacement  

,                                  rotation  
iP 1,2,. . . . . . . .i N

jQ 1,2,. . . . . . . .j M
i

j

10.9.1 Clapeyron’s theorem

◦ Eq.(10.12) ---- strain energy stored in the body=work done by the external forces 

as they are increased quasi-statically from zero to final values. 

0 0
1 1

i i
N M

E i i j j
i j

A W Pd u Q d
 

 

    
- lineary elastic -----applied loads are proportional to the displacements           ,  i iP u j jQ 

1 1

1 1
2 2

N M

E i i j j
i j

A W P Q
 

      (10.107)
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10.9 Energy theorems

---- Clapeyron’s theorem      useful for evaluating the strain energy as well as computing 

the deflection, ∆, at the point of application of a load, P 

Eq.(10.13) ----difference by a factor of ½.

load P is assumed to remain constant difference in the 

nature of the applied loading.

10.9.2 Castigliano’s first theorem

◦ Eq.(10.10) ----
1

N

i i
i

A A P


     
Dead loads

Principle of minimum total potential energy stationarity of the total energy, Eq.(10.17)

1

0
N

i i j
ij j j j

A AP P


    
     

       

i
i

AP 

 

Castigliano’s first theorem (10.108)

Example 10.13
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10.9 Energy theorems

* All theorems are valid only for elastic structures

Clapeyron’s theorem

Castigliano’s 2nd theorem
further limited to linearly elastic structures

10.9.3 Crotti-Engesser theorem

◦ Clapeyron’s and Castigliano’s first theorems
Principle of minimum total 

potential energy

Parallel developments based on principle of mimimum complementary energy

- Eq (10.104): ' ' 'A  

'

1

N

i i
i

P


    : driving forces required to obtain the    

prescribed displacements
iP

' ' ' '

1

N

i i
i

A A P


     
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- Statically admissible stress field ' ' ( )iA A P

Principle of minimum 

complementary energy

' ' '

1

0
N

i i j
ij j j j

A AP
P P P P

    
     

   
'

i
i

A
P


 


: Crotti-Engesser theorem (10.109)

… can be applied to multiple applied loads

10.9.4 Castigliano’s 2nd theorem

- In the derivation of the Crotti-Engesser theorem, existence of complementary energy 

is assumed for elastic material 

If linearly elastic, 'A A

i
i

A
P


 


: Castigliano’s 2nd theorem (10.110)

prescribed deflection
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10.9.5 Applications of energy theorems

◦ Castigliano’s 2nd theorem…. also useful for hyper static problems

- cantilevered beam with a tip support

… a prescribed tip displacement, which is required to vanish

iP :driving force, Reaction force at the support

◦ Castiglian’s 2nd theorem 0,i  0
i

A
P






Compatibility equation at the tip support Principle of least work (Principle 13)

Example 10.14
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10.9.6 The dummy load method

10.9 Energy theorems

◦ Is it possible to use Castigliano’s 2nd theorem to compute the deflection at a point 

where no load is applied?

◦ 1st step …… a fictitious or “dummy load,”    , is applied to the structure at the point 

where the displacement is to be computed. 

◦ 2nd step …….                By castigliano’s 2nd theorem

◦ last step .....



ˆ A= 




0
ˆl i m=


 



0
l i m A=






 

◦ if elastic, but nonlinear,     must be used instead of    . 

(10.111)

'A A
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Example 10.19    Tip deflection of a cantilevered beam

4 3
0 2ˆ
4 3c

3 3

p LA 1 L=
2 H

 
     




4
0

0
3 3

ˆl i m
8 c

p L=
H

  


or, can be obtained by taking the limit before carrying out the integrations  

2
3 3 3

1 10 0
03 30

L L

c c
3 3

M M M= d x d x
2 H H 

           
 


 

(10.112)
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10.9.7 Unit load method revisited 

◦ Principle of complementary virtual work Unit load method

dummy load method

Castigliano’s 2nd theorem

(?)

Principle of minimum 

complementary energy 

- dummy load method ……strain energy in an isostatic beam 

2
3

10
3 32

L

cA d x
H

 


3 1( )x …… bending moment distribution generated by the externally applied loads 

and dummy load
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- Castiglano’s 2nd theorem

3 3
100 0

3 3

l i m l i m
L

c

A= d x
H 


 

  

 
  (10.113)

3 30
l i m M





 = bending moment due to externally applied loads only

3
30
ˆl i m M

Ρ







= bending moment due to a unit load only

Eq. (10.113)        unit load method, Eq.(9.83) 

3 3
10

3 3

ˆL

c

M M= d x
H

  (10.114)
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10.9 Energy theorems

However,      has a difference3M̂

dummy load method…..bending moment acting in the structure subjected to a 

unit dummy load

unit load method …. “any statically admissible” bending moment distribution in  

equilibrium with unit load

not necessarily the actual bending moment distribution acting in the 

structure subjected to the unit load

more versatile can results in a significant simplification of the procedure

3M is identical for unit

Dummy load method
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