Finite Element Method: Beam Element
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¢ Beam: A long thin structure that is subject to the vertical loads. A beam shows more

evident bending deformation than the torsion and/or axial deformation.

¢ Bending strain is measured by the lateral deflection and the rotation —> Lateral deflection
and rotation determine the number of DoF (Degree of Freedom).
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Finite Element Method: Beam Element

¢ Sign convention

1. Positive bending moment: Anti—clock wise rotation.
2. Positive load: )A/—direction.

3. Positive displacement: )A/—direction.
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Finite Element Method: Beam Element

. w(X)
w(X)
M
} M +aMm
= N 2 — v/
1 v V+ dv
¢ The governing equation
—wdx—dV =0 or w=—dlf
dx
Vdx—dM =0 or V= dj\{
dx
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Finite Element Method: Beam Element
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¢ Relation between beam curvature (k) and bending moment

pol_M v _ M
p EI or dz*  El
d*

¢ Curvature for small slope (0 = dv/dx): k = P

£ Radius of the deflection curve, V: Lateral displacement function along the )A/—axis direction

E: Stiffness coefficient, I: Moment of inertia along the Z-axis
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Finite Element Method: Beam Element

Solving the equation with M,

d (EI dzﬁ] — w(E)

dx? dx?
When EI is constant, and force and moment are only applied at nodes,

4 ~
%Y~ o
dx
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Finite Element Method: Beam Element

Step 1: To select beam element type

Step 2: To select displacement function

Assumption of lateral displacement

Ay A A3 A2 ~
v(X)=ax +a,Xx" +ax+a,

— Complete 3-order displacement function i1s suitable, because it has four degree of
freedom (one lateral displacement and one small rotation at each node)

- The function is proper, because it satisfies the fundamental differential equation of

a beam.

- The function satisfies continuity of both displacement and slope at each node.

A

Representing v with functions of dly, dzy, ¢, &

dv(0)  ~
;;) = ¢1:: a,

V(L) = &'zy =a L+a, I’ +a,L+a,

dv(L)
dx

= ;52 = 3a1L2 +2a,L+a,
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Finite Element Method: Beam Element

Representing it in matrix form, V= [N]{d}
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[N]=[N, N, N, N,]
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N, = %(2&3 -3%°L+L) N, = %(32314—232%2 +5 L)
L[ s ae L rar s
N, = E(—2x3 +3%°L) N, = E(ﬁL—szz)

where Nl, Nz, N3, N4I shape functions of the beam element
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Finite Element Method: Beam Element

Step 3: To define strain—displacement relation and stress—strain relation

Assume that the equation of strain-displacement relation is valid

du R ~dv A d*v
h=-9— 8x(x,y)=—ydA2
X

&, (x,y) :g ’ d)’e

Basic assumption: Cross—section of the beam sustains its shape after deformation by bending,

and generally rotates by degree of (dﬁ/d)?)_
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Bending moment-lateral displacement relation and shear force-lateral displacement relation

2 A A
dv A d*v
A2
X dx

m(x) = EI
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Finite Element Method: Beam Element

Step 4: To derive an element stiffness matrix and governing equations by direct

method

¢ Element stiffness matrix and governing equations

stiffness

6d,,+21°, )

~6L4,)

6Ld,,+21°¢,~6Ld,, +41¢,)

A d’v(0) EI
fio=V = EI=— 5 == (12d +6Lg,~12d,, +6L¢2)
. . d’v(0) _ El 2
iy = =it = = El——= = ~=(6Ld,, + 41§, -
dx
. . d*W(L) EI 5 . 5
fo, =V = —EI% = 5 (-12d,,-6Lg, +12d,,
. d¥(L) _ EI
m, =m=El——— T (
- Matrix Form
(/. (12 6L -12 6L [d,
m | EI| 6L 4L —6L 2L ||,
< . = — A
Sl L|-12 —6L 12 -6L||d,,
i, | | 6L 21 6L 4L || ¢4,
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Finite Element Method: Beam Element

Step 5: To constitute a global stiffness matrix using boundary conditions

<
—

1000 Ib-ft
——— X @ 2 r ) @ 3
-— L ' L /“l

1000 1b
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Assemble example

Assume EI of the beam element is constant.

1000 /b 1o0ad and 1000 Ib— ft moment are applied at the center of the beam.
Assume load and moment were only applied at nodes.

Left end of the beam is fixed and right end is pin—connected.

The beam is divided into two elements (nodes 1, 2, and 3 as shown above figure).

Mechanics and Design

t} SNU School of Mechanical and Aerospace Engineering



Finite Element Method: Beam Element

dy, ¢ dy b dy, ¢ dy, ¢35
12 6L -12 6L 12 6L -12 6L

qo _ EI 6L 4 -6L 2L co _ EIj 6L 4 6L 2L

- L'|-12 -6L 12 -6L - L'|-12 -6L 12 -6L
6L 2I° -6L 4L | | 6L 2I' —6L 4L |

F,) (12 6L ~12 6L 0o 01 (d,

M, 6L 4L —6L 20 0 0 b,

JBy | _EI-12 -6L 12412 —6L+6L 12 6L | |d, |

M,| [|6L 20 -6L+6L 4L'+4' -6L 2I b,

F,, 0 0 -12 —6L 12 —-6L| |d,,

(M, | 0 0 6L 22 —6L AL | | ¢, ]
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Finite Element Method: Beam Element

Boundary conditions and constrains at the node 1(fixed) and node 3(pin-connected) are

~1000 o 24 0 6L |(d,,

2 2
1000 =0 0 8L 2I’3 ¢, (5.2 5)
0 6L 20L° 4L’ || ¢4,
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Finite Element Method: Beam Element

Example: Beam analysis using direct stiffness method

P

————— L =1= L -
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Cantilever beam supported by roller at the center
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Finite Element Method: Beam Element

Load P is applied at node 1.
Length: 2L ,Stiffness: EI

Constrains: (1) Roller at node 2, (2) Fixed at node 3.

- Global stiffness matrix

_dly # dy, # ds, #3
12 6L -12 6L 0 0
41 —6L 20 0 0
EI 12+12 —-6L+6L -12 6L
K=— 2 2 2
L 4L +4L —-6L 2L
12 -6L
Symmetry 41
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Finite Element Method: Beam Element

(F, ) (12 6L -12 6L 0 0 1(d,)
M, 6L 4L° -6L 2’ 0 0 || g,
|| _EI-12 6L 24 0 12 6L d,,
M,| L[’|6L 2L) 0 8L -6L 2L ||¢,
E, 0 0 -12 —-6L 12 —6L||d;,
(M, | i 0 6L 2L° -6L 4L |4, |
Boundary conditions d,, =0 d;, =0 ¢, =0
~P 12 6L 6L |[d,
0 =E—3I 6L 4L 20| ¢,

L 2 2
0 6L 2I* 41 || 4,

_TPL _3pr _prr
@ = Y 7= 4k

12E1I
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Finite Element Method: Beam Element

¢ Substituting the obtained values to the final equation,

) [ 7pPL)
F, 12 6L 12 6L 0 0 || 55
M, 6L 4L -6L 2L 0 0 || 3P
E,| _EI|-12 -6L 24 0 -12 6L 4651
M,| 6L 2L 0 8L -6L 2L’|| pr2
18 0 0 -12 -6L 12 -6L|| 4afgl
M, 0o o 6L 212 -6L 4’| ©
0
F,=-P M, =0 F,==P
M, =0 F,=-=P M;=—PL

Ey = — P Force at node 1

Fzy, F3y, M, : Reacting forces and moment at nodes

M], M2 . Zero
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Finite Element Method: Beam Element

¢ Calculating local nodal loads

Force at the element 1.

A A A

When i = kd
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Shear moment curve
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Finite Element Method: Beam Element

Homework: Distributed load

¢ Equivalent force

w(lb/ft)

T 1 1]

B - i
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