Finite Element Method: Iso-Parametric Formulation

[so—Parametric Formulation

Out lines

® [t makes formulations for computer program simple

® [t allows to create elements with a shape of a straight line or a curved
surface.

Make 1t possible to choose a variety of factors.

® We will derive the stiffness matrix of simple beam elements and
rectangular elements using an iso—parametric formulation.

® Numerical integration: We will calculate the stiffness matrix of
rectangular elements that i1s made using an iso—parametric formulation.

® Finally, we will consider several higher-order elements and shape
functions.
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Finite Element Method: Iso-Parametric Formulation

1 Iso_parametric formulation: Stiffness matrix of a beam element

The term of iso—parametric formulation comes from the usage of shape functions [N] which is
used to determine an element shape for approximation of deformation.

® [f a deformation function is Y=da; +a,S  use a node X =4, +A,S on a beam element.

® [t is formulated using the natural (or intrinsic) coordinate system, s, defined by
geometry of elements. A transformation mapping is used for the element formulation
between natural coordinate system, s, and global coordinate system, X.

Step 1: Determination of element type

1 L 2 1 L 2
(a) (b)

Fig. 1: Linear beam element at node x in (a) natural coordinate system, S, (b) global

coordinate system, X.
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Finite Element Method: Iso-Parametric Formulation

Relation between s and x coordinate systems: (when s and X coordinate systems are parallel)

L

X=X+ 55 X. indicates center of element

X can be expressed as a function of X; and X,

x:%[(l_s)xl +(1+s)x, ] =[N, Nz]{xl}

Then shape functions are
| Y 1+s
N, =——
2 2

Fig. 2: Shape functions in natural coordinate system
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Finite Element Method: Iso-Parametric Formulation

1
Step 2: Determination of deformation function {uy = [V, NZ]{ }

u,

uUand x are called iso—parameter because they are defined by the same shape function at
the same node.

Step 3: Definition of strain—displacement and stress—strain relations

Calculation of element matrix [B]:

) )
du du dx du _\ ds 2 2 4

- By chain rule s = e ds = dx (CIIX)

1 1
- Therefore, {e} =[Blid} [B]= |:_z z:|
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Finite Element Method: Iso-Parametric Formulation

Step 4: Calculation of element stiffness matrix

L
Felement stiffness matrix: [k]= [ [B]"[D][B]Adx

L 1
- In general, matrix [B] is a function of s: Jof(x)dx = J_lf(s)‘l‘ds
where J is Jacobian.
dx L
In case of 1-D, :ZL::Z. In case of simple beam element : ‘—J::;igzzzz

Ratio of element’s length between global and natural coordinate systems

- Stiffness matrix in a natural coordinate system:

L - _£1 -1
[k]:EL[B] E[B]Ads= ; L 1}
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Finite Element Method: Iso-Parametric Formulation

2 Rectangular plane stress element

Characteristics of rectangular element:
- It 1s easy to input data, and 1t 1s simple to calculate stress.
- Physical boundary conditions are not well approximated at the edge of rectangle.

Step 1: Determination of element type — using natural coordinate (x,y)

o~
Y
A

S

dy=1 "1

!
¢ > X, U Vs
!
¢

(11.2.1)

Four node rectangular element and nodal
displacement
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Finite Element Method: Iso-Parametric Formulation

Step 2: Determination of deformation function - element deformation functions, # and V, are
linear along the rectangular corner

(w3 = =X~ + (B +x) =)

b h b—x)(h
u(x,y)=a,+a,x+a,y+a,xy +(O+x)(h+ y)u, +(b—x)h+ y)u,]

v(x,y)=as+a,x+a, y+a,xy v(x,y)zﬁ[(b—x)(h—y)vl +(b+x)(h—-y)v,
+b+x)h+y)v;+(D—=x)(h+y)v,]

[T e [N 0 N0 N, 0 N, 0]
Rt N Sl S e I T VAT S VAR VAR S VA

where shape functions are

O GAnt () RV A0 )
4bh 4bh

JOGEE(UE0% BV Gt (29),
4bh 4bh
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Finite Element Method: Iso-Parametric Formulation

Step 3: Definition of strain—-displacement and stress—-strain relationships

Element strain in a 2-D stress state:

o
rgx\ gx
%
let=1¢, =3 > - =[B]{d}
s ou Ov
_+_
|0y Ox|

where

—(h—-y) 0 (h—y) 0 (h+y) 0 —(h+y) O
[B]l=—| 0 —(b-x) 0 —(b+x) 0 (B+x) 0  (b-x)
—(b=x) =(h—y) —=(b+x) (h—y) (D+x) (h+y) (b-x) —(h+y)]
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Finite Element Method: Iso-Parametric Formulation

Step 4: Calculation of element stiffness matrix and element equation

hoeb o
Element stiffness matrix: [k]:J._hJ._b[B] [D][B]t dxdy

Element force matrix: {f}:JII[N]T{X}dV+{P}+”[N]T{T}d5
Element equation: {f}=[/€]{d}

Step 5,6, and 7

Step 5, 6, and 7 are constitution of global stiffness matrix, determinant of
unknown deformation, calculation of stress. However, stress 1n each element
varies 1n all directions of x and vy.
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3 Iso—parametric formulation: stiffness matrix of a plane element

A process of iso—parametric formulation is same in all elements

Step 1: Determination of element type

It is possible to numerically integrate the rectangular element defined in natural
coordinate system S—7 .

Transformation equation: X=Xc+bS y=yc+ht

*t
Edger = 1
t
1 1 AY,V | S=l 3
' 2 (x3, ¥3)
4 3 (X4,y4) /’ ,1
1 I (S EE by L
Ed ] ! s
ge |\——d———|—
> = T e - |__ _[+~—Edges =1
|
| - 1
! 31,3 2y
1 2 Edger = —1
» X. U
(a) (b)

Fig. 4: (a) A linear rectangular element in a coordinate system, s—t¢ , (b) A rectangular
element in a coordinate system, X—) , The size and shape of the rectangular
element are defined by coordinates of four nodes.
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Finite Element Method: Iso-Parametric Formulation

Transformation equation between a local coordinate system, S—7¢ , and a global coordinate
system, X—Yy:
|
X = Z[(I_S)(l_t)xl +(1+s)(1-1)x,
X=a, +a,s+at+ayst +(1+s)A+1)x; +(1=s)(A1+1)x,]
1
y=as+ags+at+ast T Y= Z[(l—s)(l—t)y1 +(1+s)(1-1)y,
+(A+s)1+)y, +(A=s5)(1+1)y,]

In a matrix form:

)
N N, = (l—s)4(l—t)
2 (1+s)(1—1)
x}_[Nl 0 N, 0 N, 0O N, o}y2 N, = A
{y L0 N 0 N, 0 N O N4<x3> N_(1+S)(1+t)
Y3 ’ 4
X, N, = (1-s)(1+1)
(V4 ) 4
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Finite Element Method: Iso-Parametric Formulation

1. Shape function 1s linear.

2. Any point 1in rectangular element (S, f) can be mapped to the quadrilateral element
point (X, ¥) in Fig. 4(b).

3. Note that for all values of § and ¢, N+ N,+N;+N,=1,

4. N.(i=1, 2, 3, 4) is 1 for node i, and 0 for the other nodes.

Two general conditions of shape functions:

L DN =1 (i=12,...,n)
i=1

2. N, =1 for node i, N, =0 for the other nodes.
Additional conditions:
3. Continuity of deformation —— Lagrangian Interpolation

4. Continuity of slope —— Hermitian Interpolation

Mechanics and Design t} SNU School of Mechanical and Aerospace Engineering




Finite Element Method: Iso-Parametric Formulation

Fig. 5: C(Change of shape functions in a linear rectangular element
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Finite Element Method: Iso-Parametric Formulation

Step 2: Determination of deformation

Deformation functions 1n the element are defined by shape functions that are used to
define element shape.

v

] [N, 0 N, 0 N, 0 N, 0T7|v
= J
O NN 0O N, 0 N, 0 N,

Step 3: Strain-displacement and stress—-strain relationships

The derivative of deformation # and Vv about X and ) should be executed using a chain rule of
derivation because the deformation function is expressed with § and .
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Finite Element Method: Iso-Parametric Formulation

8f:8f 8x+5f oy
Os Ox 0s Oy Os
Reference: chain rule of f of of ox +8f oy
ot Ox ot Oy ot

Calculating (Of /0x)and (0f /0y) using Cramer’s lure (Appendix. B).

g P ox  aof ox
O _lias os| & _1llas os |J|:as Os
Ox |l|@ oy |l|@ af where —|ox oy (%)
ot ot ot ot ot Ot
Element strain:
IR
&, ox
£ =4&, 1= 0 @ {u}zgd
— oy ||v
7s) a0 20
| 0y Ox |

A formulation to obtain B 1is required.
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Finite Element Method: Iso-Parametric Formulation

Using the equation (%) in previous page (use u or v instead of f):

"oy 80 oy () .
(& ] ot s ds ot
)L 0 ox o) ax d() |[u
g u‘ Os Ot Ot Os ||v
7o) T|exo) axo) aya) oy a()
| Os Ot Ot Os Ot Os Os Ot
[y 80 oy &) ) 1
ot Os Os Ot
ol 0 ox 8()  ox 8()
g =D"'Nd h —|J Os Ot Ot Os
o= T T P 80 axa) dya() dy a0
| Os Ot ot Os Ot Os Os Ot |

Thus,
B=D N

(3x8) (3x2) (2_>< 8)
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Finite Element Method: Iso-Parametric Formulation

Step 4: Derivation of element stiffness matrix and equation
Stiffness matrix in a coordinate system, S§—17:

k1= [[[BY (DI Bltdixdy
4
Converge the integral region from xX-) to S§—1:

[k]= jll j_ll[B] [DI[Bl|\dsd

0 -t t—-s s-—1
t—1 0 s+1 —s—t
s—t —s—1 0 t+1
l-s s+t —t-1 0

1 T
J = — X

Determinent M is

T e
where {Xc} =[x, x, x5 x,] : V3
oy

‘l‘ is a function of S, 7 in natural coordinate system, and X;,X,,...,), in the
known global coordinate system.
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Finite Element Method: Iso-Parametric Formulation

1
Calculation of B: E(S»f):m[§1 B, B; B,]
where
a(Ni,s)_b(Ni,t) 0
B, = 0 C(Ni,t)_d(Ni,s) i=1 2 3 4
o(N,)=d(N,,) a(N,,)=b(N,,) -
and
1
Z[yl(S D+y,(-1=95)+py;(1+5)+y,(1-5)]
1
b= Z[yl(t D+y,(I=)+y;(1+ ) + y,(=1-1)]
c= %[xl(t D+x,(1-1)+x;(1+¢) +x,(-1-1)]
d= %[xl(s D+x,(=1=s)+x;(1+5)+x,(1-5)]

1
For example, Ny, = Z(t -1 Ny, = Z(S -1 (etc.)
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Finite Element Method: Iso-Parametric Formulation

Uﬁ=fiﬁmfan4ﬂwm
(8x1) (8x2) (2x1)

Element body force matrix:

Element surface force matrix: Length is L, an edge =1 (See. Fig. 4(b))

7
o= [N i [l Jll[

(4x1)  (4x2) (2x]) f“

For N, =0 and N, =0 alongtheedge =1, the nodal force is zero at nodes 1 and 2.
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Finite Element Method: Iso-Parametric Formulation

4 Gaussian Quadrature (Numerical integration)

One node Gaussian quadrature

1= [ ydx =y (D= (-1}
=2y

N\

M

If function Y 1is straight line,
1t has exact solution. -

A

1 n
General equation: I= Lydx :Z Wy,
i=1

® (aussian quadrature using 7 nodes(Gaussian point) can exactly calculate polynomial
equation which has integral term under 27 —1 order.

When function f(X) is not a polynomial, Gaussian quadrature is inaccurate. However, the more

Gaussian points are used, the more accurate solution is. In general, the ratio of two polynomials is not a
polynomial.
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Finite Element Method: Iso-Parametric Formulation

® Table 1 Gaussian points for integration from -1 to +1

Number Locations, x, Associated
of Points Weights, W,
1 x, = 0.000... 2.000
2 x;,x, =1057735026918962 1.000
3 X, X3 =10.77459666924148 5/9=0555...
x, = 0.000... 8/9=0.888...
Y
: x; = +0.5773 ...
I = —
= ¥, n X 0.5773. ..
| |
< I I > X
-1 Xy X 1

Fig. 7: Gaussian quadrature with two extraction points
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Finite Element Method: Iso-Parametric Formulation

2-D problem: Integrate about second coordinate after integrate about first coordinate.

1=[ [ fis.ydsds = jll[z W f(sl.,t)}
= ZW{Z Wif(s,-,r,.)} =22 W1 (s, 1))

For 2x2: I=VVIVVIf(Sl,t])+VVIVV;f(Sl,tz)+W;VVlf(S2,t1)+W;VV2f(S2,t2)

= -05773...(=1) At 5=05773...(i=2)
where the sample four points \\ /
are located at s :3 s t)r
S; s tl:i05773 J _2__2.______2’_3 . t=05773(]=2)
12 | 4

—+1/3 | |
And the all weight factors [ { >
are 1.000 . Thus, the two { I
summation marks can Dbe ' :
) . (53, 1) (52, 11)
interpreted as one summation — - +__ t=-05773...(j=1)
mark for four points of the ! |3
rectangle. » | I
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Finite Element Method: Iso-Parametric Formulation

3-D problem: [:lejjlJj]f(sataz)detdZZZZZk:VKWjka(Snthk)
i

1 n
NOTE: If the integration limit 1is J‘Of(x)dxzzi:lVVif(xi), the weight factor W, and the

location X; are different from that of the integration limit which is between —1 and 1 (See
table 2).

Table 2. Gaussian points of the four node gaussian integration (integration from 0 to 1)

Locations, x, Associated Weights, W,
0.0693185 0.1739274
0.3300095 0.3260725
0.6699905 0.3260725
0.9305682 0.1739274

Mechanics and Design t} SNU School of Mechanical and Aerospace Engineering
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Example 1: Calculate the integration of SInzXusing numerical integration.
1 .
]=JO sinsox dx

Using table 2, the following can be obtained.
4
I= Z W, sin 7x,

i=1

= W, sin 7x, + W, sin zx, + W, sin zx, + W, sin 7zx,

= 0.1739sin 7(0.0694) +0.3261sin 7(0.3300)
0.3261sin 77(0.6700) + 0.1739 sin 7£(0.9306)

=0.6366

Use four decimal places. The exact value of direct integration is 0.6366. Note that location

X; and weight factor W, are different from that in table 2 if we use the 3-points Gaussian
integration.
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5 Calculation of stiffness matrix by Gaussian integration

Element stiffness matrix in 2-D:
k= [[ B' (x,y) DB(x,y)t dx dy
A

- Ill J_llﬁr(s, 1) DB(s,1)|J|t dsdt

. T . . . .
The 1ntegral term B Qﬁu‘ , which 1s a function of (s,1) , 1s calculated by the
numerical integration.

k=B (s,,t,)DB(s;,1,)|J (5.1, |t W,
+B"(5,,1) DB(sy, 1,)| (55, 1) (WL,
Using four-points Gaussian integration, +§T(S3,t3)Q§(S3,t3)u(S3, t3)‘tW3W;
+§T(S4at4)Q£(S4:t4)u(S4a t4)‘tVV4VV4

where 8, =t,=—05773,s,=—05773,1, = 05773,s, = 05773, t, = —05773,
s, =1, =05773, W, =W, =W, =W4=1000 .
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Finite Element Method: Iso-Parametric Formulation

Read in four Gauss points and weight functions

S.0= 205773 .. Wi, W,_; = 1., 1.
Y
Zero k'
\
DOi=1,4 -

Y
Lets = Si,t= t['

Y
Compute |J (s, t)|, B(s, t),D

Y
Compute k = B DB |J |1

Y
KO = kO + KWW,

. .. (e) . . . .
Fig. 9. Flow chart for obtaining k' using Gaussian integration
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Example 2
Calculate the stiffness matrix of
Ay (3, 4) G, 4) rectangular element using four—-point Gaussian
4 3 integration.
E=30x106psi, v=0.25,
1 2 The unit of length in global coordinate

system is inch, and =1 in

3,2 6,2

> X

Fig. 10: Quadrilateral elements for calculation of stiffness

Using 4-points rule:

(s,,2,)=(~05733, = 0.5773) W =10
(5,.1,)=(~05733, 05773) W, =10
(s3,4,)=(05733,-05773) .  W,=10
(s,.1,)=(05733, 05773) W, =10
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Finite Element Method: Iso-Parametric Formulation

Calculation of stiffness matrix:

k=B"(-05773,—0.5733) DB(~05773,— 05773)
x|J(~0.5773,~ 0.5773)|(1)(1.000)(1.000)
+ B (-05773,05773)DB(-0573,05773)
x|J(~0.5773,0.5773)|(1)(1.000)(1.000)
+ B"(05773,-05773) DB(0.573,~0.5773)
x|J(0.5773,~0.5773)|(1)(1.000)(1.000)
+ B (05773,05773)DB(0.573,05773)
x|J(0.5773,0.5773)|(1)(1.000)(1.000)

We need to calculate ‘l‘ and B at Gaussian points
(s,,t,)=(=05733, -05773), (s,,t,)=(—0.5733, 0.5773) ,
(85,2,)=(05733, —05773), (s,,2,)=(0.5733, 0.5773) .
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Finite Element Method: Iso-Parametric Formulation

Calculation of u‘ :

1
J(-0.5773,-0.5773)| = §[3 55 3]

0 1-(-05773)  -05773—-(-05773) -05773-1
-05773-1 0 ~05773+1 -05773-(-05773)
X
-05773-(-05773) -05773-1 0 ~05773+1
| 1-(-05773)  -05773+(-05773) -05773-1 0 .
2
2
xy ¢ = 1000
4
\4z
/(—05733,- 0.5733)| = 1.000
- /(0.5733,— 05733)| = 1.000
Similarly,

/(05733,0.5733)| = 1.000

General ly Mi 1 and it changes within the element.
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Finite Element Method: Iso-Parametric Formulation

Calculation of B:

1
B(-05733,~05733) = B, B, B, B
B ’ ) \1(—0.5733,—0.5733)\[—‘ B 5 B

an —le,t 0
B, = 0 cN,, _le,s
cN,,—dN,, aN,, —le’,

Calculation of B, :

where

a =[G =D+ 1 1=9) + (14 5) 4 3,(01-9)]
= %[2(—0.5773 ~1)+2(-1-05773))

+4(1+ (~05773)) + 4(1— (—— 05773))]
=1.00

The same calculation can be used to obtain b,c,d .
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Also,

N, = %(z‘ ~1)= %(—0.5773 ~1)=-03943

N, = %(s ~1)= %(—0.5773 —1)=-0.3943

Similarly, B,, B;, B, can be calculated at (—0.5773,-05773) . And calculate B

repeatedly at other Gaussian points.

Generally a computer program is used to calculate B and k.
Final form of B is.

-0.1057 0 0.1057 0 0  -01057 0 03943
B=1-01057 -0.1057 -03743 01057 0.3943 0 -0.3943 0
0 0.3943 0 0.1057 03943 03943 01057 -0.3943
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Finite Element Method: Iso-Parametric Formulation

p 1 v 0 32 8 0
D=——|v 1 0 |=|8 32 0|x10°psi
Matrix D : I1-v 1—v
00 — 0 0 12

Finally, the stiffness matrix K:

(1466 500 -866 -99 733 -500 133 99
500 1466 99 133 =500 -733 -99 866
-866 99 1466 -500 133 -99 733 500
-99 133 500 1466 99 866 500 733
=733 =500 133 99 1466 500 -866 99
=500 -733 -99 -866 500 1466 99 133
133 99 -733 500 -866 99 1466 -500
99 866 500 733 -99 133 500 1466
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Finite Element Method: Iso-Parametric Formulation

6 Higher order shape function

® Higher order shape function can be obtained by adding additional nodes to the each
side of the linear element.

® [t has higher order strain distribution in element, and it converges to the exact
solution rapidly with few elements.

®

[t can more accurately approximate the irregular boundary shape.

Fig. 11: 2" order iso-parametric element
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Finite Element Method: Iso-Parametric Formulation

Second order iso—parametric element:

X=a +ta,s+a;t+a,st+ a5S2 + a6t2 + a7s2t + agsl‘2

_ 2 2 2 2
y=a,+ta,st+a,t+a,st+a;,s +a,t +a,St+a st

For the corner node (i =1, 2, 3, 4)

N, =%(1—s)(1—t)(—s—t— 1)
N, :i(l+s)(1—t)(s—t— 1)
N, =%(1+S)(1+t)(s+t—l)

N, =%(1—s)(1+ H(=s+t-1)

N, = i(l + 55 )(1+1t,)(ss, +tt, = 1)

ss=-1,1,1,-1 fori=12,3,4

or !

t.=-1,-1, 1,1 fori=1,2,3,4
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Finite Element Method: Iso-Parametric Formulation

For the middle node (i =5, 6, 7, 8),
1
N =5(1—t)(1+s)(1—s)

N, = %(1+S)(1+ H(1—1)
N, = %(1+ H(1+s)(1-s)

N, = %(1 — )1+ )(1-1)

or

Ni=%(1—s2)(1+ttl.) t =—11 fori=5,1

Nizé(l—ssi)(l—tz) s, ==1L1 fori=35,7

When edge shape and displacement are function of s* (if ¢ is constant) or > (if S is
constant), it satisfies the general shape function conditions.
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Finite Element Method: Iso-Parametric Formulation

Deformation function:

{u}_[NIONZOMOM0N50N60N70N80u2

v/ {0 N O N O N 0N 0N 0N 0N 0 Nl

rule is generally recommended.
(Bathe and Wilson[7])

Vs
Strain matrix: e=Bd=D'Nd
= t = (.7745...
§ 0.7745 e 1 i ° 2" order iso-parameter with 8 nodes
| | For the calculation of B and k
71 8 9 3 or the calculation of b and K,
'-—°'+I"'"—— "‘“‘+‘“" r= 0‘7745“" 9-points Gaussian rule is used
! { (3% 3 rule). There is large difference
4 1 5 # 6 s between 2X2 and 3X3 rule, and 3X3
| >
i
|

____+.__---Q-——-—-+——- t =—0.7745 ...
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]

3" order iso-parametric element:

> X

Shape function of a 3™ order element is based on incomplete 4™ order polynomial
(see reference [3]).

X=a, +a,s+at+a,st+ ass2 + a6t2 + a7s2t + agsl‘2

+ a953 + a10t3 + ans3t + aust3

v also has same polynomial equation.

Mechanics and Design t} SNU School of Mechanical and Aerospace Engineering



Finite Element Method: Iso-Parametric Formulation

1
For the corner nodes (I =1, 2, 3, 4): N, :§(1+Ssi)(l+tti)[9(sz+t2)_10]
s, =-1L1,1,-1 fori=1234
where t=—1,-1, 1,1 fori=1,2,3,4
9 )
For the nodes (i =7, 8, 11, 12) when s==1: Ni=3—2(1+SS,~)(1+9tt,-)(1—t )
1
where s, =%l L= ig

9
For the nodes (i =5, 6, 9, 10) when f==1: Ni=3—2(1+ﬁ,-)(1+9SS,-)(1—82)

W | =

where t, =11, & =%

When the shape function of coordinates has lower order than that of deformation, it is called
Subparametric formulation (For example, Xis linear, # is 2"* order function). The opposite way is
called Superparametric formulation.
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