
9/20/2007

Approaches to Middleware
406.306 Management Information Systems

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Engineering

Seoul National University

mailto:jonghun@snu.ac.kr

1

What is Middleware?

 connectivity software that is designed to help manage the
complexity and heterogeneity inherent in distributed systems

 specifically, a layer of enabling SW services that allow application
elements to interoperate across network links, despite differences in
underlying comm. protocols, system architectures, OSs, DBs, and
other application services

 builds a bridge between different systems by enabling
communication and transfer of data

 applied to manage disparate applications both within one
organizations and between various independent organizations

 customized software vs. standard package

Application Application

Middleware

Network OS Network OS

2

Advantages of Middleware

 Locate applications transparently across the network

 transparency w.r.t. location, concurrency, replication, and failure

 Shield software developers from low-level details

 Provide a consistent set of higher level network oriented abstractions

 Leverage previous developments and reuse them

 Provide a wide array of services

 Scale up in capacity without losing function

3

basic messaging models

 Synchronous invocation

 request / response

 blocking, tightly coupled

 Asynchronous invocation

 send and forget

 nonblocking, loosely coupled

 communication by sending messages that consist of header, properties, and

payload (body)

 Asynchronous invocation with immediate acknowledgment

 the invoked application would return an ack right away if the request is

considered valid and then continue with its main computation

 the calling computation would register a callback or poll in order to receive the

ultimate result

 Execution is best effort, at most once

 More than once is OK for idempotent operations, not otherwise

 Analogies in real-life: calling a travel agent

4

Application #1

PUT message

Message Queue

Subsystem #1

Application system #1

Application #2

GET message

Message Queue

Subsystem #2

Application system #2

Queue

Queue-based messaging system

Store and Forward

 messages are placed on a message queue by the sending application

and retrieved by the receiving application as needed

 typical of many-to-one messaging paradigm

5

Application #1
Application #1

Application #2
Application #2

Application #3
Application #3

Topic

Publish-subscribe

messaging system

<Publisher/Subscriber>

<Publisher/Subscriber>

<Publisher/Subscriber>

Application #1
Application #1

Application #2
Application #2

Application #3
Application #3

Application #2
Application #2

Application #3
Application #3

Topic

Publish-subscribe

messaging system

<Publisher/Subscriber>

<Publisher/Subscriber>

<Publisher/Subscriber>

Publish and Subscribe

 application that produces information publishes it and all other

applications that need this type of information, subscribe to it

 typical of many-to-many messaging paradigm

6

Implications of Asynchronous Communication

 No longer a single thread of execution

 improve performance

 Results arrive via a callback

 enables the caller to perform other tasks and be notified when the result

is available

 Asynchronous applications can execute in any order

 caller must be able to determine which result came from which client

application and combine the results together

7

Middleware extensions

 To allow existing platforms to interact through the Internet, conventional
middleware platforms were simply extended to support the Internet as one more
access channel

 requires the ability to invoke services residing in a different company

 Example: B2B transactions

 RMI, RPC, CORBA’s Inter-ORB protocol (GIOP)

client

server
(resource
manager)

middleware

client

server
(resource
manager)

middleware
w
id

e
 a

re
a
 n

e
tw

or
k
 (
I
nt

e
rn

e
t)

remote-middleware
protocol

WAN communication
protocol

remote-middleware
protocol

WAN communication
protocol

8

Middleware extensions

 Problems

 Firewalls

 No direct communication between the systems to be integrated is generally possible

 Parties outside the firewall are not trusted

 Agreement on the interface definitions and data formats

 Directory server

 Tunneling

 Protocols which would be blocked by the firewall are hidden under protocols

that are accepted by the firewall

 A call in one protocol that cannot get through the firewall is encapsulated

within a call of another protocol that can get through the firewall

 requires an intermediary conversion into HTML or XML document, sending

the document using HTTP, and extracting the message from the document once

it reaches the recipient

 e.g., tunneling through HTTP or SSH, SOAP tunneling of RPC over HTTP

9

Tunneling

client

w
id
e
 a

re
a
 n

e
tw

or
k
 (
I
nt

e
rn

e
t)Web

server
client

Web
server

fi
re

w
al

l

fi
re

w
al

l

HTTP tunnel

server
(resource manager)

server
(resource manager)

middleware
remote-middleware

protocol

WAN communication
protocol

middleware
remote-middleware

protocol

WAN communication
protocol

10

Middleware elements

Communication Protocol

Middleware Protocol

Programming Interface (Access)

Data Format

Naming / Directory Services

Persistence Services

Security

Administration

Server Process

Control

11

Middleware as infrastructure

 Middleware is a very complex software system

 Requires basic infrastructure such as

 IDL

 IDL compiler

 Libraries

 Run-time support

 Authentication

 Addressing

 Naming

 Low level protocol used

 Multi-threading

 Logging

 Transactions

 Asynchronous messaging

 and many more

12

Types of middleware

 Remote Procedure Calls (RPCs)

 provides the infrastructure necessary to transform procedure calls into
remote procedure calls in a transparent manner

 Message oriented middleware

 provides transactional access the queues, persistent queues, and a # of
primitives for reading and writing to local and remote queues

 e.g., WebSphere MQ Family (IBM), MSMQ (Microsoft)

 Data-access middleware

 Transaction-oriented middleware

 can be seen as RPC with transactional capabilities

 Object Request Brokers (ORBs)

 supports the invocation of remote objects, thereby leading to object
brokers

 e.g., RMI / Jini (Sun), CORBA (OMG)

13

Remote Procedure Calls

 RPC is the middleware mechanism used to invoke a procedure that is

located on a remote system, and the results are returned

 With this type of middleware the application elements communicate

with each other synchronously, meaning they use a request/wait-for-

reply model of communication

 simplest type of middleware

 work well for smaller, simple applications where communication is

primarily point-to-point

 do not scale well to large, mission-critical applications

 e.g., opening a remote folder at windows

14

Remote Procedure Calls

Client

Application

code

Stub code

RPC run-time

library

Remote

procedure code
Server

Application

code

Stub code

RPC run-time

library

Remote

procedure

Network

Client

Application

code

Stub code

RPC run-time

library

Remote

procedure code
Client

Application

code

Stub code

RPC run-time

library

Remote

procedure code
Server

Application

code

Stub code

RPC run-time

library

Remote

procedure
Server

Application

code

Stub code

RPC run-time

library

Remote

procedure

Network

15

RPC as a programming abstraction

Remote Procedure Call

sockets

TCP, UDP

Internet Protocol (IP)

Remote Procedure Call:
hides communication details behind
a procedure call and helps bridge
heterogeneous platforms
sockets:
operating system level interface to the
underlying communication protocols

TCP, UDP:
User Datagram Protocol (UDP) transports
data packets without guarantees
Transmission Control Protocol (TCP)
verifies correct delivery of data streams

Internet Protocol (IP):
moves a packet of data from one node
to another

16

RPC: How RPC works

 IDL: provides an abstract representation of the procedure in terms of
what parameters it takes as input and what parameters it returns as a
response

IDL
sources

interface
headers

IDL compiler

IDLclient
code

client stub

language specific
call interface

server
code

server stub

language specific
call interface

client process server process
development
environment

17

RPC: How RPC works

 Client stubs:

 A piece of code to be compiled and linked with the client

 carry out binding, marshaling, serializing, communicating with the
server, getting a response, forwarding the response

 proxy for the actual procedure implemented at the server

 Server stubs:

 similar to the client stub except that it implements the server side of
invocation

 receiving the invocation from the client stub, deserializing and
unmarshaling the call, invoking the actual procedure, forwarding the
results to the client stub

 Code templates and references:

 IDL compiler generates necessary header files and templates with the
basic code

18

Basic functioning of RPC

communication
module

client

procedure call

client stub
bind
marshal
serialize
send

client
process

communication
module

server

procedure

server stub

unmarshal
deserialize
receive

server
process

dispatcher
(select
stub)

19

Binding in RPC

 Binding is the process whereby the client creates a local handle to a given server in

order to invoke a remote procedure

 Static binding

 the client stub is hardcoded to already contain the handle of the server where

the procedure resides

 simple, efficient, but tightly coupled (e.g., server failure, server location change)

 Dynamic binding

 enables clients to use a specialized service to locate appropriate servers

 when the client invokes a remote procedure, the client stub asks the directory

server for a suitable server to execute that procedure

 adds a layer of indirection to gain flexibility at the cost of performance

20

Dynamic binding

communication
module

client

procedure call

client stub
bind
marshal
serialize
2. find
5. send

client
process

communication
module

server

procedure

server stub
0. register
unmarshal
deserialize
7. receive

server
process

dispatcher
(select
stub)

3. query for server
implementing
the procedure

4. address of server

6. invoke procedure

name and directory service (binder)

1. register
server and
procedure

21

Remote Method Invocation

 2 separate programs, server and client

 provides a simple and direct model for distributed computation with

Java objects on the basis of the RPC mechanism

 server application creates some remote objects, makes references to

them accessible, and waits for clients to invoke methods on these

remote objects

 Client  Stub

 Server  Skeleton

22

The Java RMI

Transport Layer

Client Server

Java Client

Stub Skeleton

Remote Object

Object Reference RMI Registry

Remote Reference Layer

Transport Layer

Client Server

Java Client

Stub Skeleton

Remote Object

Object Reference RMI Registry

Client Server

Java Client

Stub Skeleton

Remote Object

Object Reference RMI Registry

Remote Reference Layer

23

Local

Object

Application

Object

Remote

Object

Client

Remote

Object

Server

Java RMI

 Foundation for J2EE, Jini, and other Java based distributed-object

technologies

 RMI enables cross-JVM, cross-machine method calls

 advantages over RPC: e.g., task server

 http://java.sun.com/products/jdk/rmi/

http://java.sun.com/products/jdk/rmi/

24

More on Java RMI

 More interesting compute engine implementation based on RMI can

be found at http://java.sun.com/docs/books/tutorial/rmi/index.html

 RMI activation framework

http://java.sun.com/docs/books/tutorial/rmi/index.html

25

Message-Oriented Middleware (MOM)

 Message Oriented Middleware (MOM) is the back-bone
infrastructure that is responsible for relaying data from one
application to another by putting it in a uniform message format.

 similar to email system

 loosely coupled

 Features that make the MOM particularly attractive when
integrating applications :

 applications need to automatically or periodically pass data to each
other

 integration nature is event driven

 Prioritization of requests

 Load balancing

 Persistent messaging

 disadvantage: overloading due to the temporary storage

26

MOM

ClientClient ServerServerClientClient

MOMMOM MOMMOM MOMMOM

Application logicApplication logic
MessageMessage

notificationnotification

MessageMessage

publicationpublication

MOM Message BrokerMOM Message Broker

ClientClient ServerServerClientClient

MOMMOM MOMMOM MOMMOM

Application logicApplication logic
MessageMessage

notificationnotification

MessageMessage

publicationpublication

ClientClient ServerServerClientClient

MOMMOM MOMMOM MOMMOM

Application logicApplication logic
MessageMessage

notificationnotification

MessageMessage

publicationpublication

MOM Message BrokerMOM Message Broker

27

Sender

Sender

Receiver

Receiver

Message-oriented middleware

 Today most large integration efforts are done using MOM

 Example: IBM WebSphere MQ, Microsoft’s MSMQ, WebMethods Enterprise

 More robust to failures w.r.t. RPC or object brokers

 Provides persistent communication between processes through intermediate-term
storage capacity for messages

 Does not require either the sender or receiver to be active during message
transmission

 Loosely-coupled, asynchronous

 The sender and receiver are completely independent

 Transactional queues

 guarantees exactly once semantics

28

Message-based interoperability

 refers to an interaction paradigm where clients and service providers
communicate by exchanging messages

 Message: a structured data set, typically characterized by a type and
a set of <name, value> pairs that constitute the message parameters

 Most product use XML types

Message-Oriented Middleware (MOM) Message-Oriented Middleware (MOM)

client application quotation tool

Message : quoteRequest {
QuoteReferenceNumber: 325
Customer: Acme,INC
Item:#115 (Ball-point pen, blue)
Quantity: 1200
RequestedDeliveryDate: Mar 16,2003
DeliveryAddress: Palo Alto, CA
}

client application quotation tool

Message: quote {
QuoteReferenceNumber: 325
ExpectedDeliveryDate: Mar 12, 2003
Price:1200$
}

29

Message queues

 considerably simplifies the development of interoperable applications and provides support

for managing errors or system failures

 messages sent by MOM clients are placed into a queue, typically identified by a name, and

possibly bound to a specific intended recipient

 whenever the recipient is ready to process a new message, it invokes the suitable MOM

function to retrieve the first message in the queue

 queued message may have an associated expiration or retrieval

MOM Core

client application quotation tool

inbound
queue

Message-Oriented
Middleware (MOM)

queued
messages

30

Interacting with a message queueing system

 Queueing systems provide an API that can be invoked to send

messages or to wait for and receive messages

 Sending a message is typically a nonblocking operation

 Receiving a message is instead often a blocking operation, where the

receiving object “listens” for messages and process them as they

arrive, typically by activating a new dedicated thread, while the

“main” thread goes back to listen for the next message

 Recipients can also retrieve messages in a nonblocking fashion by

providing a callback function that is invoked by the MOM each time

a message arrives

 JMS: an industry standard API for interacting with MOMs

 Open source: JORAM, JBossMQ

31

Integration Brokers

 an application-to-application middleware service that is capable of

one-to-many, many-to-one, and many-to-many message distribution

 a software hub that records and manages the contracts between

publishers and subscribers of messages

 The integration broker transforms application specific messages into

commonly understood messages, e.g., between different XML

schemas using eXtensible Stylesheet Language Transformations

(XSLT)

32

Features of Integration Brokers

 Message transformation

 Business rules processing

 Routing services

 Directory services

 Adapter services

 Repository services

 Events and alerts

33

more on integration brokers

 Traditional RPC-based and MOM systems create point-to-point links between

applications

 MOM

 did not provide support for defining sophisticated logic for routing messages

 did not help developers to cope with the heterogeneity

 Message brokers address this limitation by acting as a broker among system

entities, thereby creating a “hub and spoke” communication infrastructure for

integrating applications

 provides routing, filtering, and processing logic for the messages as they move

across the system

 provides adapters that mask heterogeneity

 Commercial products

 ActiveSoftware -> acquired by WebMethods

 IBM WebSphere MQ

 Tibco ActiveEnterprise

 BEA WebLogic Integration

34

The need for integration brokers

 Example: Many different systems will need to process PO

 Inventory management applications to check availability

 ERP systems to manage payments

 Shipping applications to arrange for delivery of goods

 With RPC or message-based interoperability, applications need to be

changed if they need to interoperate with a new system

dispatcher
inventory

management
ERP shipping

message-oriented middleware

month-end
closing

new PO new PO new PO new PO

35

Extending basic MOM

 MOM

 The responsibility for defining the receiver of a message lies with the sender -> becomes a
complex problem as the # of senders and recipients grows

 integration brokers

 factors the message routing logic out of the senders and placing it into the middleware

 Users can define application logic that identifies, for each message, the queues to which it should
be delivered

 It is up to the message broker to identify the recipients by executing user-defined rules

message broker core

sender receiver

message broker

with message brokers,
custom message routing
logic can be defined at
the message broker
level or at the queue
level

in basic MOM it is the
sender who specifies
the identity of the
receivers

36

Extending basic MOM

 Routing logic can be based on the sender’s identity, on the message
type, or on the message content

 integration brokers can decouple senders and receivers

 Senders do not specify and are not aware of which applications will
receive the messages they send

 Receivers may or may not be aware of which applications are capable of
sending messages to them

 Associating processing logic with queues

 enables the content transformation rules: e.g., pound vs. kg

 Problems

 makes difficult to debug and maintain

 with many logics, the overall latency and throughput is degraded

 inability to handle large messages

37

Publish / subscribe interaction model

 Applications that send messages simply publish the messages to the middleware

system that handles the interaction

 If an application is interested in receiving messages of a given type, then it must

subscribe with the middleware

 Whenever a publisher sends a message of a given type, the middleware retrieves

the list of all applications that subscribed to messages of that type, and delivers a

copy of the message to each of them

dispatcher
(publisher)

inventory
management
(subscriber)

ERP
(subscriber)

shipping
(subscriber)

message broker

month-end
closing

(subscriber)

new PO new PO new PO new PO new PO

38

Publish / subscribe interaction model

 Subscribers have two main ways to define the messages they are

interested in receiving

 message type: e.g., newPO, SupplyChain.newPO, SupplyChain.*

 parameter-based: e.g., type=“new PO” AND customer=“ACME Co.”

AND quantity > 1200

 Virtually every message broker today supports the publish /

subscribe interaction paradigm

39

Data-access Middleware

 Command Line Interfaces (CLIs):a common API that can manage
access to different types of relational databases via a well-defined
common interface

 e.g., JDBC

 Native database middleware to access a particular database using
only native mechanisms rather than a single multi-database API

 Database gateways (also known as SQL gateways) provide access to
data that reside in different types of platforms

40

Transaction Oriented Middleware

 Transaction Processing Monitors provide the distributed client/server
environment the capacity to efficiently and reliably develop, execute
and manage transaction applications

 supports ACID properties

 TP monitor

 provides the distributed client/server environment with capacity to
efficiently and reliably develop, execute, and manage transaction
applications

 invented to run applications that server large numbers of clients

 more intrusive than MOM: demand more modification of the
applications themselves

 application server

 offer an integrated development environment that allows enterprises to
connect and manage front-office and back-office applications and
combine them with web-enabled functionality

 normally based on 3-tier model

41

TP monitors: History

 TP monitors predate client/server architecture

 IBM’s CICS developed at the end of 1960s: still in use

 Originally designed to allow mainframes to support the efficient

multiplexing of resources among as many concurrent users as

possible

 Almost all commercial TP monitors became 3-tier systems

 TP-lite monitors: provide the core functionality of a TP monitor as

an additional layer embedded in DBMS

 Examples

 CICS: 1-tier

 BEA’s Tuxedo: originally 2-tier queue-based system

 Microsoft’s MTS

42

TP monitor

 provides transactional guarantees over all the resources that it

controls

 provides concurrency control and recovery across processes

 intimately associated with application servers and provide some of

the same kinds of functionality, such as hosting applications,

managing threads and processes, and pooling connections to DBs

43

Architecture of a TP monitor

client
application

program flow

registered
programs

router

resources

tr
an

sa
ct

io
n

m
an

ag
em

e
nt

communication
manager

interface
(API, presentation,

authentication)

T
P

se
rv

ic
es

resource

wrapper

resource

wrapper

resource

wrapper

TP
monitor

44

Application servers

 The increasing use of the web as a channel to access information systems forced
middleware platforms to provide support for web access

 Difference from the conventional middleware: the incorporation of the web as a key access
channel to the services implemented using the middleware

 BEA WebLogic, IBM WebSphere, Sun ONE, MS .NET, Oracle AS, JBoss, Sybase
EAServer

 Increased flexibility, but cannot match the performance of TP monitors

 Web servers may or may not be included in a vendor’s offering

connection to resource mgmt
layer

presentation layer

resource management layer

application logic layer

client

Web
server

w
id
e
 a

re
a
 n

e
tw

or
k
 (
I
nt

e
rn

e
t)

fi
re

w
a
ll HTTP

browse
r

other protocols

other servers
(email, SOAP,..)

45

Objectives of application servers

 Execution of business logic

 provides a platform of services to share and execute business logic components

(e.g. EJB, servlets)

 High performance

 connection pooling, multithreading, caching

 Scalability

 clustering service, horizontal scalability

 High availability

 eliminates single points of failure

 Security management

 Transaction management

 Systems management

 promotes a distributed component-based computing model, supports SNMP to

start, stop, and monitor business components

 Development tools and services

46

AS support for the presentation layer

 Clients: web browsers, applications, devices, e-mail programs, web

services clients

Web serverE-mail serverservers for other connections
(e.g., WAP)

presentation layer

Servlets JSPs

multidevice content delivery

personalization logic

connection to resource mgmt
layer

resource management layer

application logic layer

se
rv

ic
e
s

(l
oa

d
 b

a
la
nc

in
g,

po

ol
in
g,

 c
a
ch

in
g,

…
)

XML
support

Web services
support

a
d
m
in
is
tr

a
ti
on

(m
a
na

ge
m
e
nt

 a
nd

se

cu
ri
ty

)

client

47

Distributed Object Middleware

 Distributed objects are a development of RPCs that provide an

additional layer of interoperability that abstracts the procedure call

from the underlying platform and language

 examples

 ORBs

 EJB component model

48

Object request brokers

 a distributed-object middleware technology that manages

communication and data exchange between objects

 extends the RPC paradigm to the OO world and provide a number of

services that simplify the development of distributed OO

applications

 appeared at the beginning of the 1990s as the natural evolution of

RPC to cope with object orientation

 CORBA: the best known example of object broker

 developed in the early 1990s by OMG

 offers a standardized specification of an object broker rather than a

concrete implementation

 enjoyed tremendous popularity in the mid- and late- 1990s

 can perform dynamic service selection and invocation -> rarely used

 DCOM, COM+, .NET, J2EE

49

CORBA

 Common Object Request Broker Architecture

 OMG (Object Management Group)

 A nonprofit organization with over 800 members primarily from

industry

 Quite popular in UNIX-based systems

 Specifications

 http://www.omg.org

 Implementations

 Orbix: http://www.iona.com (commercial)

 VisiBroker-RT: http://www.borland.com (commercial)

 MICO: http://www.mico.org (free)

http://www.omg.org/
http://www.iona.com/
http://www.borland.com/
http://www.mico.org/

50

CORBA architecture

Object Request Broker

user-defined
objects

naming transactions events lifecycle properties

concurrency collectionsecuritytrader externalizationquery

relationships time

startup

licensing

persistence

CORBAservices

distributed
documents

information
management

CORBA facilities

systems
management

task
management

financials supply chain …

horizontal facilities:

vertical facilities:

51

Communication in CORBA

 Object invocation models

 synchronous, asynchronous

 Event and notification services

 pull, push

 Messaging

 callback, polling

 Interoperability

 GIOP (General Inter-ORB), IIOP (Internet Inter-ORB)

52

Mechanisms for object invocation

 Object referencing

 Simple referencing Transparent?

 network address + endpoint + object id

 Location server Scalable?

 Implementation handle: a proxy implementation that clients can

dynamically download, install, and instantiate when binding to an object

 Static vs. dynamic invocation

 Static invocation

 The interfaces of an object need to be known when the client application is

being developed: e.g. fobject.append(int)

 Dynamic invocation

 Composes a method invocation at runtime: e.g. invoke(fobject, id(append),

int)

53

How CORBA works

Object Request Broker

application object
(client)

application object
(service provider)

stub skeleton

IDL of service
provider

IDL compiler
(server side)

interface repository

IDL compiler
(client side)

application object
(client)

Dynamic Invocation Interface

interface Purchasing {
float getQuote (in long productId);
float purchaseGoods (in long productId, in long

quantity)
}

54

Common Object Services

Service Description

Collection Facilities for grouping objects into lists, queue, sets, etc.

Query Facilities for querying collections of objects in a declarative manner

Concurrency Facilities to allow concurrent access to shared objects

Transaction Flat and nested transactions on method calls over multiple objects

Event Facilities for asynchronous communication through events

Notification Advanced facilities for event-based asynchronous communication

Externalization Facilities for marshaling and unmarshaling of objects

Life cycle Facilities for creation, deletion, copying, and moving of objects

Licensing Facilities for attaching a license to an object

Naming Facilities for systemwide name of objects

Property Facilities for associating (attribute, value) pairs with objects

Trading Facilities to publish and find the services on object has to offer

Persistence Facilities for persistently storing objects

Relationship Facilities for expressing relationships between objects

Security Mechanisms for secure channels, authorization, and auditing

Time Provides the current time within specified error margins

55

Applications of object-oriented middleware

 Fundamental difference from socket-based messaging

 The ability to exchange objects

 Distributed computing

 More flexible than RPC

 Remote computing, edge-based distributed computing

 Examples

 Application integration via wrapping

56

The Enterprise Java Beans

 Enterprise Java Beans (EJB) is a server component model for the

development and deployment of enterprise-level Java applications

based on a distributed object architecture

 EJB Components include:

 Session Beans

 Entity Beans

 Message-Driven Beans

57

EJBs

58

J2EE

 provides a component-based approach to the design, development,
assembly, and deployment of enterprise applications

 consists of 3 fundamental parts

 components

 a self-contained functional SW unit that is assembled into a J2EE application
with its related classes and files and communicates with other components

 client-tier, web-tier, business-tier, EIS-tier components

 containers

 standardized runtime env. that provide application components with specific
J2EE system-level services, such as life-cycle management, security,
deployment, and runtime services

 web container, EJB container

 connectors

 defines a portable service API that provides access to DB, transaction,
naming, directory, and messaging services, and legacy applications

 JAAS, JAXP, JDBC, JNDI, JTA, JMS, JCA

59

J2EE Technology

EJB Server

Entity Bean

Session

Bean

J2EE

Connector

Relational

DBMS

Legacy

System

CORBA Client

Java Applet in

Browser

Java

Applications

(Swing, AWT)

Web Browser

Servlet JSP

RMI, IIOP

XML, HTML, HTTP (SSL)

RMI

RMI

RMI

Java Message

Service

Java Naming and

Directory

Interface

Operating System (Windows,

Linux, Mac, Solaris…)

60

J2EE specifications

support for communication
and presentation

Servlets
JavaServer Pages

(JSP)

Enterprise Java
Beans (EJB)

Java DataBase
Connectivity (JDBC)

Java Naming and
Directory Interface

(JNDI)

support for the
application integration

Java 2 Connector
Architecture (J2CA)

Java Message
Service (JMS)

Java transaction API
(JTA)

Java API for XML
Processing (JAXP)

JavaMail

Java Authentication and Authorization Service
(JAAS)

support for access to
resource managers

61

J2EE

 The support for application logic concentrates on three main
specifications: EJB, JNDI, JMS

application logic layer

presentation layer

se
rv

ic
e
s

(l
oa

d
 b

a
la
nc

in
g,

 p
oo

li
ng

,
ca

ch
in
g,

 t
ra

ns
a
ct

io
n,

pe

rs
is
te

nc
e
,…

)

a
d
m
in
is
tr

a
ti
on

(m
a
na

ge
m
e
nt

 a
nd

se

cu
ri
ty

)

EJB EJB

JDBC

EJB

JNDI

J2CA resource
adapter

J2CA resource
adapter

other
adapters

DBMS
applications

enterprise
system 1

enterprise
system 2

enterprise
system n

EJB container

JMS

62

J2EE

 EJB

 where the bulk of the application logic resides

 a server-side component that delivers application-specific functionality such as
responding to a request for a quote or processing a purchase order

 defines 3 different types of beans, based on how they interact with other
components and on how they manage state and persistence

 Session beans

 handle a session with a client

 e.g., online shopping cart

 Entity beans

 have a state, stored in a DB or in another persistent storage

 Message-driven beans

 cater to asynchronous interaction with clients, unlike session or entity beans,
which instead interoperate in an RPC-like fashion

 act as clients to JMS message bus

63

J2EE

 EJB container

 provides the environment in which the beans run

 provides a number of services: transactions, persistence, security

 JNDI

 defines an interface for directory services, without mandating any
implementation

 clients can bind to servers based on the object name

 JDBC

 an API that enables developers to access almost any tabular data source
by executing SQL commands from a Java program

 J2CA

 defines how to build resource adapters

