ENGINEERING MATHEMATICS II

010.141

Byeng Dong Youn (윤병동)

CHAP. 8 Linear Algebra: Matrix Eigenvalue Problem

ABSTRACT OF CHAP. 8

Linear algebra in Chaps. 7 and 8 discusses the theory and application of vectors and matrices, mainly related to linear systems of equations, eigenvalue problems, and linear transformation.

> Chapter 8 concerns the solutions of vector equations

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

where A is a given square matrix and vector x and scalar λ .

- Eigenvalue problems are of greatest practical interest to the engineer, physicist, and mathematician.
- Eigenvectors are transformed to themselves multiplied with a characteristic constant (eigenvalues).

CHAP. 8.1 EIGENVALUES, EIGENVECTORS

Eigenvalues and eigenvectors imply characteristic values and vectors of a matrix **A**.

SOME DEFINITIONS

Let A be an $\mathbf{n} \times \mathbf{n}$ matrix and consider

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{1}$$

 λ , such that (1) has solution $\mathbf{x} \neq 0$ is an **eigenvalue** or characteristic value of **A**.

x are **eigenvectors** or characteristic vectors of **A**.

- The **spectrum** of A is the set of eigenvalues of A;
- max $|\lambda|$ is the **spectral radius** of **A**.
- The set of eigenvectors corresponding to λ (including 0) is the **eigenspace** of **A** for λ .

SOME DEFINITIONS (cont)

Homogeneous linear system in x_1, x_2 $| \rightarrow$ Cramer's theorem

 $D(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = 0$

 $D(\lambda)$ is the characteristic determinant, and

 $D(\lambda) = 0$ is the characteristic equation

EXAMPLE 1 Determination of Eigenvalues and Eigenvectors

$$\mathbf{A} = \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix}$$

Solution:

(a) Eigenvalues. These must be determined first. Equation (1) is

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1\\ x_2 \end{bmatrix}; \quad \text{in components,} \quad \begin{array}{c} -5x_1 + 2x_2 = \lambda x_1\\ 2x_1 - 2x_2 = \lambda x_2 \end{bmatrix}$$

Transferring the terms on the right to the left, we get

(2*)
$$\begin{array}{rrrr} (-5-\lambda)x_1 + & 2x_2 &= 0\\ & 2x_1 &+ (-2-\lambda)x_2 &= 0. \end{array}$$

This can be written in matrix notation

$$(\mathbf{3}^*) \qquad \qquad (\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

because (1) is $Ax - \lambda x = Ax - \lambda Ix = (A - \lambda I)x = 0$, which gives (3*). We see that this is a *homogeneous* linear system. By Cramer's theorem in Sec. 7.7 it has a nontrivial solution $x \neq 0$ (an eigenvector of A we are looking for) if and only if its coefficient determinant is zero, that is,

(4*)
$$D(\lambda) = \det (\mathbf{A} - \lambda \mathbf{I}) \begin{vmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = (-5 - \lambda)(-2 - \lambda) - 4 = \lambda^2 + 7\lambda + 6 = 0.$$

We call $D(\lambda)$ the characteristic determinant or, if expanded, the characteristic polynomial, and $D(\lambda) = 0$ the characteristic equation of **A**. The solutions of this quadratic equation are $\lambda_1 = -1$ and $\lambda_2 = -6$. These are the eigenvalues of **A**.

CHAPTER 8

(b₁) *Eigenvector of* A *corresponding to* λ_1 . This vector is obtained from (2*) with $\lambda = \lambda_1 = -1$, that is,

$$-4x_1 + 2x_2 = 0$$

$$2x_1 - x_2 = 0$$

A solution is $x_2 = 2x_1$, as we see from either of the two equations, so that we need only one of them. This determines an eigenvector corresponding to $\lambda_1 = -1$ up to a scalar multiple. If we choose $x_1 = 1$, we obtain the eigenvector

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}. \quad \text{Check:} \quad \mathbf{A}\mathbf{x}_1 = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix} = (-1)\mathbf{x}_1 = \lambda_1 \mathbf{x}_1.$$

(b₂) *Eigenvector of* A *corresponding to* λ_2 . For $\lambda = \lambda_2 = -6$, equation (2*) becomes

$$x_1 + 2x_2 = 0 2x_1 + 4x_2 = 0$$

A solution is $x_2 = -x_1/2$ with arbitrary x_1 . If we choose $x_1 = 2$, we get $x_2 = -1$. Thus an eigenvector of **A** corresponding to $\lambda_2 = -6$ is

$$\mathbf{x}_2 = \begin{bmatrix} 2\\-1 \end{bmatrix}. \quad \text{Check:} \quad \mathbf{A}\mathbf{x}_2 = \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2\\-1 \end{bmatrix} = \begin{bmatrix} -12\\ 6 \end{bmatrix} = (-6)\mathbf{x}_2 = \lambda_2 \mathbf{x}_2.$$

THEOREMS

THEOREM 1

Eigenvalues

The eigenvalues of a square matrix \mathbf{A} are the roots of the characteristic equation (4) of \mathbf{A} .

Hence an $n \times n$ matrix has at least one eigenvalue and at most n numerically different eigenvalues.

THEOREM 2

Eigenvectors, Eigenspace

If w and x are eigenvectors of a matrix A corresponding to the same eigenvalue λ , so are w + x (provided $x \neq -w$) and kx for any $k \neq 0$.

Hence the eigenvectors corresponding to one and the same eigenvalue λ of **A**, together with **0**, form a vector space (cf. Sec. 7.4), called the **eigenspace** of **A** corresponding to that λ .

PROOF

 $\mathbf{A}\mathbf{w} = \lambda \mathbf{w} \text{ and } \mathbf{A}\mathbf{x} = \lambda \mathbf{x} \text{ imply } \mathbf{A}(\mathbf{w} + \mathbf{x}) = \mathbf{A}\mathbf{w} + \mathbf{A}\mathbf{x} = \lambda \mathbf{w} + \lambda \mathbf{x} = \lambda(\mathbf{w} + \mathbf{x}) \text{ and } \mathbf{A}(k\mathbf{w}) = k(\mathbf{A}\mathbf{w}) = k(\lambda \mathbf{w}) = \lambda$ (*k***w**); hence $\mathbf{A}(k\mathbf{w} + \ell \mathbf{x}) = \lambda(k\mathbf{w} + \ell \mathbf{x})$.

EXAMPLE 2 Multiple Eigenvalues

Find the eigenvalues and eigenvectors of

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

Solution:

For our matrix, the characteristic determinant gives the characteristic equation

$$-\lambda^3 - \lambda^2 + 21\lambda + 45 = 0.$$

The roots (eigenvalues of **A**) are $\lambda_1 = 5$, $\lambda_2 = \lambda_3 = -3$. To find eigenvectors, we apply the Gauss elimination (Sec. 7.3) to the system $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$, first with $\lambda = 5$ and then with $\lambda = -3$. For $\lambda = 5$ the characteristic matrix is

$$\mathbf{A} - \lambda \mathbf{I} = \mathbf{A} - 5\mathbf{I} = \begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix}. \quad \text{It row-reduces to} \quad \begin{vmatrix} -7 & 2 & -3 \\ 0 & -\frac{24}{7} & -\frac{48}{7} \\ 0 & 0 & 0 \end{vmatrix}.$$

Hence it has rank 2. Choosing $x_3 = -1$ we have $x_2 = 2$ from $-\frac{24}{7}x_2 - \frac{48}{7}x_3 = 0$ and then $x_1 = 1$ from $-7x_1 + 2x_2 - 3x_3 = 0$. Hence an eigenvector of **A** corresponding to $\lambda = 5$ is $x_1 = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}^T$.

CHAPTER 8

For $\lambda = -3$ the characteristic matrix

$$\mathbf{A} - \lambda \mathbf{I} = \mathbf{A} + 3\mathbf{I} = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \quad \text{row-reduces} \quad \begin{bmatrix} 1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Hence it has rank 1. From $x_1 + 2x_2 - 3x_3 = 0$ we have $x_1 = -2x_2 + 3x_3$. Choosing $x_2 = 1$, $x_3 = 0$ and $x_2 = 0$, $x_3 = 1$, we obtain two linearly independent eigenvectors of **A** corresponding to $\lambda = -3$ [as they must exist by (5), Sec. 7.5, with rank = 1 and n = 3],

$$\mathbf{x}_2 = \begin{bmatrix} -2\\1\\0 \end{bmatrix} \qquad \text{and} \qquad \mathbf{x}_3 = \begin{bmatrix} 3\\0\\1 \end{bmatrix}$$

MULTIPLICITY

The **algebraic multiplicity** is the order M_{λ} of λ in the **characteristic polynomial**.

The **geometric multiplicity** $(m\lambda)$ of λ is the number of linearly independent vectors corresponding to λ .

$$\begin{split} &\sum M_{\lambda} = n \\ &m_{\lambda} \stackrel{\leq}{_{12}} M_{\lambda} \\ &\Delta_{\lambda} = M_{\lambda} - m_{\lambda} \quad (\text{defect of } \lambda) \end{split}$$

Example 3

EXAMPLE 3 Algebraic Multiplicity, Geometric Multiplicity. Positive Defect

The characteristic equation of the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{is} \quad \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & 1 \\ 0 & -\lambda \end{vmatrix} = \lambda^2 = 0$$

Hence $\lambda = 0$ is an eigenvalue of algebraic multiplicity $M_0 = 2$. But its geometric multiplicity is only $m_0 = 1$, since eigenvectors result from $-0x_1 + x_2 = 0$, hence $x_2 = 0$, in the form $\begin{bmatrix} x_1 & 0 \end{bmatrix}^T$. Hence for $\lambda = 0$ the defect is $\Delta_0 = 1$.

Similarly, the characteristic equation of the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix} \quad \text{is} \quad \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & 2 \\ 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 = 0.$$

Hence $\lambda = 3$ is an eigenvalue of algebraic multiplicity $M_3 = 2$, but its geometric multiplicity is only $m_3 = 1$, since eigenvectors result from $0x_1 + 2x_2 = 0$ in the form $\begin{bmatrix} x_1 & 0 \end{bmatrix}^T$.

CHAPTER 8

Example 4

EXAMPLE 4 Real Matrices with Complex Eigenvalues and Eigenvectors

Since real polynomials may have complex roots (which then occur in conjugate pairs), a real matrix may have complex eigenvalues and eigenvectors. For instance, the characteristic equation of the skew-symmetric matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \text{is} \quad \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = \lambda^2 + 1 = 0.$$

It gives the eigenvalues $\lambda_1 = i(=\sqrt{-1})$, $\lambda_2 = -i$. Eigenvectors are obtained from $-ix_1 + x_2 = 0$ and $ix_1 + x_2 = 0$, respectively, and we can choose $x_1 = 1$ to get

$\begin{bmatrix} 1\\i \end{bmatrix}$ and	$\begin{bmatrix} 1\\ -i \end{bmatrix}$
--	--

THEOREM 3

Eigenvalues of the Transpose

The transpose \mathbf{A}^{T} *of a square matrix* \mathbf{A} *has the same eigenvalues as* \mathbf{A} *.*

HOMEWORK IN 8.1

- ➢ HW1. Problem 6
- ➢ HW2. Problem 10
- ➢ HW3. Problem 30

CHAP. 8.2 SOME APPLICATIONS OF EIGENVALUE PROBLEMS

Range of applications of matrix eigenvalue problems.

EXAMPLE 1 Stretching of an Elastic Membrane

An elastic membrane in the x_1x_2 -plane with boundary circle $x_1^2 + x_2^2 = 1$ (Fig. 158) is stretched so that a point *P*: (x_1, x_2) goes over into the point *Q*: (y_1, y_2) given by

(1)
$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \mathbf{A}\mathbf{x} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \quad \text{in components,} \quad \begin{array}{l} y_1 = 5x_1 + 3x_2 \\ y_2 = 3x_1 + 5x_2 \\ \end{array}$$

Find the **principal directions**, that is, the directions of the position vector \mathbf{x} of P for which the direction of the position vector \mathbf{y} of Q is the same or exactly opposite. What shape does the boundary circle take under this deformation?

Fig. 158. Undeformed and deformed membrane in Example 1

The characteristic equation is

(3)
$$\begin{vmatrix} 5-\lambda & 3\\ 3 & 5-\lambda \end{vmatrix} = (5-\lambda)^2 - 9 = 0.$$

Its solutions are $\lambda_1 = 8$ and $\lambda_2 = 2$. These are the eigenvalues of our problem. For $\lambda = \lambda_1 = 8$, our system (2) becomes

$$\begin{array}{c|c} -3x_1 + 3x_2 = 0, & \text{Solution } x_2 = x_1, & x_1 \text{ arbitrary,} \\ 3x_1 - 3x_2 = 0, & \text{for instance, } x_1 = x_2 = 1. \end{array}$$

For $\lambda_2 = 2$, our system (2) becomes

$$3x_1 + 3x_2 = 0, \text{ Solution } x_2 = -x_1, \quad x_1 \text{ arbitrary,} \\ 3x_1 + 3x_2 = 0, \text{ for instance, } x_1 = 1, x_2 = -1.$$

We thus obtain as eigenvectors of **A**, for instance, $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ corresponding to λ_1 and $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$ corresponding to λ_2 (or a nonzero scalar multiple of these). These vectors make 45° and 135° angles with the positive x_1 -direction. They give the principal directions, the answer to our problem. The eigenvalues show that in the principal directions the membrane is stretched by factors 8 and 2, respectively; see Fig. 158.

EXAMPLE 2 – Markov Process

Suppose that the 2004 state of land use in a city of 60 mi² of built-up area is C: Commercially Used 25% I: Industrially Used 20% R: Residentially Used 55%

> From C From I From R $\mathbf{A} = \begin{bmatrix} 0.7 & 0.1 & 0 \\ 0.2 & 0.9 & 0.2 \\ 0.1 & 0 & 0.8 \end{bmatrix} \quad \text{To R}$

The eigenvalue problem can be used to identify the limit state of the process, in which the state vector \mathbf{x} is reproduced under the multiplication by the stochastic matrix \mathbf{A} governing the process, that is, $\mathbf{A}\mathbf{x}=\mathbf{x}$.

$$\mathbf{A} - \mathbf{I} = \begin{bmatrix} -0.3 & 0.1 & 0 \\ 0.2 & -0.1 & 0.2 \\ 0.1 & 0 & -0.2 \end{bmatrix} \longrightarrow \text{ the limit state of the process} \\ \mathbf{x} = \begin{bmatrix} 2 & 6 & 1 \end{bmatrix}^{\mathsf{T}}$$

Fig. 159. Masses on springs in Example 4

EXAMPLE 4 Vibrating System of Two Masses on Two Springs (Fig. 159)

We try a vector solution of the form

(8)
$$\mathbf{y} - \mathbf{x} e^{\omega t}$$

This is suggested by a mechanical system of a single mass on a spring (Sec. 2.4), whose motion is given by exponential functions (and sines and cosines). Substitution into (7) gives

$$\omega^2 \mathbf{x} e^{\omega t} = \mathbf{A} \mathbf{x} e^{\omega t}$$

Dividing by $e^{\omega t}$ and writing $\omega^2 = \lambda$, we see that our mechanical system leads to the eigenvalue problem (9) $A\mathbf{x} = \lambda \mathbf{x}$ where $\lambda = \omega^2$.

From Example 1 in Sec. 8.1 we see that A has the eigenvalues $\lambda_1 = -1$ and $\lambda_2 = -6$. Consequently, $\omega = \sqrt{-1} = \pm i$ and $\sqrt{-6} = \pm i\sqrt{6}$, respectively. Corresponding eigenvectors are

(10)
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

From (8) we thus obtain the four complex solutions [see (10), Sec. 2.2]

 $x_1 e^{\pm it} = x_1(\cos t \pm i\sin t),$ $x_2 e^{\pm i\sqrt{6}t} = x_2(\cos\sqrt{6}t \pm i\sin\sqrt{6}t).$

By addition and subtraction (see Sec. 2.2) we get the four real solutions

$$\mathbf{x}_1 \cos t$$
, $\mathbf{x}_1 \sin t$, $\mathbf{x}_2 \cos \sqrt{6t}$, $\mathbf{x}_2 \sin \sqrt{6t}$.

A general solution is obtained by taking a linear combination of these,

$$y = x_1(a_1 \cos t + b_1 \sin t) + x_2(a_2 \cos \sqrt{6t} + b_2 \sin \sqrt{6t})$$

with arbitrary constants a_1 , b_1 , a_2 , b_2 (to which values can be assigned by prescribing initial displacement and initial velocity of each of the two masses). By (10), the components of **y** are

$$y_1 = a_1 \cos t + b_1 \sin t + 2a_2 \cos \sqrt{6t} + 2b_2 \sin \sqrt{6t}$$
$$y_2 = 2a_1 \cos t + 2b_1 \sin t - a_2 \cos \sqrt{6t} - b_2 \sin \sqrt{6t}.$$

These functions describe harmonic oscillations of the two masses. Physically, this had to be expected because we have neglected damping.

HOMEWORK IN 8.2

➢ HW1. Problem 8

➢ HW2. Problem 19

CHAP. 8.3 SYMMETRIC, SKEW-SYMMETRIC, AND ORTHOGONAL MATRICES

Three classes of real square matrices frequently occurring in engineering applications.

SOME DEFINITIONS

DEFINITIONS

Symmetric, Skew-Symmetric, and Orthogonal Matrices

A *real* square matrix $\mathbf{A} = [a_{jk}]$ is called

symmetric if transposition leaves it unchanged,

(1) $\mathbf{A}^{\mathsf{T}} = \mathbf{A},$ thus $a_{kj} = a_{jk},$

skew-symmetric if transposition gives the negative of A,

(2) $\mathbf{A}^{\mathsf{T}} = -\mathbf{A}, \qquad \text{thus} \quad a_{kj} = -a_{jk},$

orthogonal if transposition gives the inverse of A,

$$\mathbf{A}^{\mathsf{T}} = \mathbf{A}^{-1}$$

Any real square matrix \mathbf{A} may be written as the sum of a symmetric matrix \mathbf{R} and a skew-symmetric matrix \mathbf{S} , where

(4)
$$\mathbf{R} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^{\mathsf{T}})$$
 and $\mathbf{S} = \frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathsf{T}})$.

SOME DEFINITIONS

EXAMPLE 2 Illustration of Formula (4)

$$\mathbf{A} = \begin{bmatrix} 9 & 5 & 2 \\ 2 & 3 & -8 \\ 5 & 4 & 3 \end{bmatrix} = \mathbf{R} + \mathbf{S} = \begin{bmatrix} 9.0 & 3.5 & 3.5 \\ 3.5 & 3.0 & -2.0 \\ 3.5 & -2.0 & 3.0 \end{bmatrix} + \begin{bmatrix} 0 & 1.5 & -1.5 \\ -1.5 & 0 & -6.0 \\ 1.5 & 6.0 & 0 \end{bmatrix}$$

THEOREM 1

Eigenvalues of Symmetric and Skew-Symmetric Matrices

- **a.** The eigenvalues of a symmetric matrix are real.
- **b.** The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

ORTHOGONAL TRANSFORMATIONS

Orthogonal Transformations and Orthogonal Matrices

Orthogonal transformations are transformations

(5) y = Ax where A is an orthogonal matrix.

With each vector \mathbf{x} in \mathbb{R}^n such a transformation assigns a vector \mathbf{y} in \mathbb{R}^n . For instance, the plane rotation through an angle θ

(6)
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

is an orthogonal transformation. It can be shown that any orthogonal transformation in the plane or in three-dimensional space is a **rotation** (possibly combined with a reflection in a straight line or a plane, respectively).

RELATED THEOREMS

THEOREM 2

Invariance of Inner Product

An orthogonal transformation preserves the value of the **inner product** of vectors **a** and **b** in \mathbb{R}^n , defined by

(7)
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^{\mathsf{T}} \mathbf{b} = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}.$$

That is, for any **a** and **b** in \mathbb{R}^n , orthogonal $n \times n$ matrix **A**, and $\mathbf{u} = \mathbf{A}\mathbf{a}$, $\mathbf{v} = \mathbf{A}\mathbf{b}$ we have $\mathbf{u} \cdot \mathbf{v} = \mathbf{a} \cdot \mathbf{b}$.

Hence the transformation also preserves the length or norm of any vector **a** in \mathbb{R}^n given by

(8)
$$||\mathbf{a}|| = \sqrt{\mathbf{a} \cdot \mathbf{a}} = \sqrt{\mathbf{a}^{\mathsf{T}} \mathbf{a}}$$

THEOREM 3

Orthonormality of Column and Row Vectors

A real square matrix is orthogonal if and only if its column vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ (and also its row vectors) form an **orthonormal system**, that is,

(10)
$$\mathbf{a}_j \cdot \mathbf{a}_k = \mathbf{a}_j^\mathsf{T} \mathbf{a}_k = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$$

RELATED THEOREMS

PROOF

a. Let **A** be orthogonal. Then $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I}$, in terms of column vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$,

(11)
$$\mathbf{I} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1}^{\mathsf{T}} \\ \vdots \\ \mathbf{a}_{n}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{1}\cdots\mathbf{a}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1}^{\mathsf{T}}\mathbf{a}_{1} & \mathbf{a}_{1}^{\mathsf{T}}\mathbf{a}_{2} & \cdots & \mathbf{a}_{1}^{\mathsf{T}}\mathbf{a}_{n} \\ \vdots & \vdots & \cdots & \vdots \\ \mathbf{a}_{n}^{\mathsf{T}}\mathbf{a}_{1} & \mathbf{a}_{n}^{\mathsf{T}}\mathbf{a}_{2} & \cdots & \mathbf{a}_{n}^{\mathsf{T}}\mathbf{a}_{n} \end{bmatrix}$$

The last equality implies (10), by the definition of the $n \times n$ unit matrix **I**. From (3) it follows that the inverse of an orthogonal matrix is orthogonal (see CAS Experiment 20). Now the column vectors of $\mathbf{A}^{-1}(=\mathbf{A}^{\mathsf{T}})$ are the row vectors of \mathbf{A} . Hence the row vectors of \mathbf{A} also form an orthonormal system.

b. Conversely, if the column vectors of **A** satisfy (10), the off-diagonal entries in (11) must be 0 and the diagonal entries 1. Hence $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I}$, as (11) shows. Similarly, $\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{I}$. This implies $\mathbf{A}^{\mathsf{T}} = \mathbf{A}^{-1}$ because also $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ and the inverse is unique. Hence **A** is orthogonal. Similarly when the row vectors of **A** form an orthonormal system, by what has been said at the end of part (**a**).

RELATED THEOREMS

THEOREM 4

Determinant of an Orthogonal Matrix

The determinant of an orthogonal matrix has the value +1 or -1.

PROOF

From det AB = det A det B (Sec. 7.8, Theorem 4) and det $A^{\dagger} = det A$ (Sec. 7.7, Theorem 2d), we get for an orthogonal matrix

$$1 = \det \mathbf{I} = \det(\mathbf{A}\mathbf{A}^{-1}) = \det(\mathbf{A}\mathbf{A}^{\mathsf{T}}) = \det \mathbf{A}\det \mathbf{A}^{\mathsf{T}} = (\det \mathbf{A})^2.$$

THEOREM 5

Eigenvalues of an Orthogonal Matrix

The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs and have absolute value 1.

PROOF

The first part of the statement holds for any real matrix **A** because its characteristic polynomial has real coefficients, so that its zeros (the eigenvalues of **A**) must be as indicated. The claim that $|\lambda| = 1$ will be proved in Sec. 8.5.

HOMEWORK IN 8.3

- ➢ HW1. Problem 10
- ➢ HW2. Problem 12
- ➢ HW3. Problem 14

CHAP. 8.4 EIGENBASES. DIAGONALIZATION. QUADRATIC FORMS

General properties of eigenvectors.

BASIS OF EIGENVECTORS

THEOREM 1

Basis of Eigenvectors

If an $n \times n$ matrix **A** has n distinct eigenvalues, then **A** has a basis of eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ for \mathbb{R}^n .

PROOF

All we have to show is that $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly independent. Suppose they are not. Let *r* be the largest integer such that $\{\mathbf{x}_1, \dots, \mathbf{x}_r\}$ is a linearly independent set. Then r < n and the set $\{\mathbf{x}_1, \dots, \mathbf{x}_r, \mathbf{x}_{r+1}\}$ is linearly dependent. Thus there are scalars c_1, \dots, c_{r+1} , not all zero, such that

(2) $c_1 \mathbf{x}_1 + \dots + c_{r+1} \mathbf{x}_{r+1} = \mathbf{0}$

(see Sec. 7.4). Multiplying both sides by **A** and using $\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$, we obtain

(3)
$$c_1\lambda_1\mathbf{x}_1 + \dots + c_{r+1}\lambda_{r+1}\mathbf{x}_{r+1} = \mathbf{0}$$

To get rid of the last term, we subtract λ_{r+1} times (2) from this, obtaining

 $c_1(\lambda_1 - \lambda_{r+1})\mathbf{x}_1 + \dots + c_r(\lambda_r - \lambda_{r+1})\mathbf{x}_r = 0.$

Here $c_1(\lambda_1 - \lambda_{r+1}) = 0, \dots, c_r(\lambda_r - \lambda_{r+1}) = 0$ since $\{x_1, \dots, x_r\}$ is linearly independent. Hence $c_1 = \dots = c_r$ = 0, since all the eigenvalues are distinct. But with this, (2) reduces to $c_{r+1}\mathbf{x}_{r+1} = \mathbf{0}$, hence $c_{r+1} = 0$, since $\mathbf{x}_{r+1} \neq \mathbf{0}$ (an eigenvector!). This contradicts the fact that not all scalars in (2) are zero. Hence the conclusion of the theorem must hold.

CHAPTER 8

BASIS OF EIGENVECTORS

EXAMPLE 1 Eigenbasis. Nondistinct Eigenvalues. Nonexistence

The matrix
$$\mathbf{A} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$
 has a basis of eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ corresponding to the eigenvalues $\lambda_1 = 8$, $\lambda_2 = 2$. (See Example 1 in Sec. 8.2.)

THEOREM 2

Symmetric Matrices

A symmetric matrix has an orthonormal basis of eigenvectors for \mathbb{R}^{n} .

EXAMPLE 2 Orthonormal Basis of Eigenvectors

The first matrix in Example 1 is symmetric, and an orthonormal basis of eigenvectors is $\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}^T$, $\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}^T$.

DIAGONALIZATION

Eigenbases also play a role in reducing a matrix **A** to a diagonal matrix whose entries are the eigenvalues of **A**. This is done by a "similarity transformation," which is defined as follows (and will

DEFINITION Similar Matrices. Similarity Transformation

An $n \times n$ matrix $\hat{\mathbf{A}}$ is called **similar** to an $n \times n$ matrix \mathbf{A} if

 $\widehat{\mathbf{A}} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$

for some (nonsingular!) $n \times n$ matrix **P**. This transformation, which gives $\hat{\mathbf{A}}$ from **A**, is called a **similarity transformation**.

THEOREM 3

Eigenvalues and Eigenvectors of Similar Matrices

If $\hat{\mathbf{A}}$ is similar to \mathbf{A} , then $\hat{\mathbf{A}}$ has the same eigenvalues as \mathbf{A} .

Furthermore, if **x** is an eigenvector of **A**, then $\mathbf{y} = \mathbf{P}^{-1}\mathbf{x}$ is an eigenvector of $\hat{\mathbf{A}}$ corresponding to the same eigenvalue.

DIAGONALIZATION

PROOF From $Ax = \lambda x$ (λ an eigenvalue, $x \neq 0$) we get $P^{-1}Ax = \lambda P^{-1}x$. Now $I = PP^{-1}$. By this *"identity trick"* the previous equation gives

 $\mathbf{P}^{-1}\!\mathbf{A}\mathbf{x} = \mathbf{P}^{-1}\!\mathbf{A}\mathbf{I}\mathbf{x} = \mathbf{P}^{-1}\!\mathbf{A}\mathbf{P}\mathbf{P}^{-1}\mathbf{x} = \hat{\mathbf{A}}\left(\mathbf{P}^{-1}\mathbf{x}\right) = \lambda\mathbf{P}^{-1}\mathbf{x} \ .$

Hence λ is an eigenvalue of $\hat{\mathbf{A}}$ and $\mathbf{P}^{-1}\mathbf{x}$ a corresponding eigenvector. Indeed, $\mathbf{P}^{-1}\mathbf{x} = \mathbf{0}$ would give $\mathbf{x} = \mathbf{I}\mathbf{x} = \mathbf{P}\mathbf{P}^{-1}\mathbf{x} = \mathbf{P}\mathbf{0} = \mathbf{0}$, contradicting $\mathbf{x} \neq \mathbf{0}$.

THEOREM 4

Diagonalization of a Matrix

If an $n \times n$ matrix **A** has a basis of eigenvectors, then

 $\mathbf{D} = \mathbf{X}^{-1} \mathbf{A} \mathbf{X}$

is diagonal, with the eigenvalues of \mathbf{A} as the entries on the main diagonal. Here \mathbf{X} is the matrix with these eigenvectors as column vectors. Also,

(5*)
$$D^m = X^{-1}A^m X$$
 $(m = 2, 3, ...).$

DIAGONALIZATION

Example: Diagonalize

$$\mathbf{A} = \begin{bmatrix} 7.3 & 0.2 & -3.7 \\ -11.5 & 1.0 & 5.5 \\ 17.7 & 1.8 & -9.3 \end{bmatrix} \qquad \begin{array}{c} \lambda_1 = 3, \lambda_2 = -4, \lambda_3 = 0 \\ \begin{bmatrix} -1 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$$

$$\mathbf{D} = \mathbf{X}^{-1} \mathbf{A} \mathbf{X} = \begin{bmatrix} -0.7 & 0.2 & 0.3 \\ -1.3 & -0.2 & 0.7 \\ 0.8 & 0.2 & -0.2 \end{bmatrix} \begin{bmatrix} -3 & -4 & 0 \\ 9 & 4 & 0 \\ -3 & -12 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

QUADRATIC FORMS

Quadratic Forms. Transformation to Principal Axes

By definition, a quadratic form Q in the components x_1, \dots, x_n of a vector **x** is a sum of n^2 terms,

(7)

$$Q = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} x_{j} x_{k}$$

$$= a_{11} x_{1}^{2} + a_{12} x_{1} x_{2} + \dots + a_{1n} x_{1} x_{n}$$

$$+ a_{21} x_{2} x_{1} + a_{22} x_{2}^{2} + \dots + a_{2n} x_{2} x_{n}$$

$$+ \dots + a_{n1} x_{n} x_{1} + a_{n2} x_{n} x_{2} + \dots + a_{nn} x_{n}^{2}.$$

 $A = [a_{ik}]$ is called the **coefficient matrix** of the form. We may assume that A is *symmetric*,

EXAMPLE 5 Quadratic Form. Symmetric Coefficient Matrix

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3x_1^2 + 4x_1x_2 + 6x_2x_1 + 2x_2^2 = 3x_1^2 + 10x_1x_2 + 2x_2^2.$$

Here 4 + 6 = 10 = 5 + 5. From the corresponding *symmetric* matrix $\mathbf{C} = [c_{jk}]$, where $c_{jk} = \frac{1}{2}(a_{jk} + a_{kj})$, thus $c_{11} = 3$, $c_{12} = c_{21} = 5$, $c_{22} = 2$, we get the same result; indeed, $\mathbf{x}^{\mathsf{T}}\mathbf{C}\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3x_1^2 + 5x_1x_2 + 5x_2x_1 + 2x_2^2 = 3x_1^2 + 10x_1x_2 + 2x_2^2$.

QUADRATIC FORMS

By Theorem 2 the *symmetric* coefficient matrix A of (7) has an orthonormal basis of eigenvectors. Hence if we take these as column vectors, we obtain a matrix X that is orthogonal, so that $X^{-1} = X^{T}$. From (5) we thus have $A = XDX^{-1} = XDX^{T}$. Substitution into (7) gives

(8)
$$Q = \mathbf{x}^{\mathsf{T}} \mathbf{X} \mathbf{D} \mathbf{X}^{\mathsf{T}} \mathbf{x}$$
.
If we set $\mathbf{X}^{\mathsf{T}} \mathbf{x} = \mathbf{y}$, then, since $\mathbf{X}^{\mathsf{T}} = \mathbf{X}^{-1}$, we get
(9) $\mathbf{x} = \mathbf{X}\mathbf{y}$.
Furthermore, in (8) we have $\mathbf{x}^{\mathsf{T}} \mathbf{X} = (\mathbf{X}^{\mathsf{T}} \mathbf{x})^{\mathsf{T}} = \mathbf{y}^{\mathsf{T}}$ and $\mathbf{X}^{\mathsf{T}} \mathbf{x} = \mathbf{y}$, so that Q becomes simply

(10)
$$Q = \mathbf{y}^{\mathsf{T}} \mathbf{D} \mathbf{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

THEOREM 5

Principal Axes Theorem

The substitution (9) transforms a quadratic form

$$Q = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} x_j x_k \qquad (a_{kj} = a_{jk})$$

to the principal axes form or **canonical form** (10), where $\lambda_1, \dots, \lambda_n$ are the (not necessarily distinct) eigenvalues of the (symmetric!) matrix **A**, and **X** is an orthogonal matrix with corresponding eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$, respectively, as column vectors.

HOMEWORK IN 8.4

- ➢ HW1. Problem 3
- ➢ HW2. Problem 7
- ▶ HW3. Problem 17
- ➢ HW4. Problem 22

CHAP. 8.5 COMPLEX MATRICES AND FORMS.

Encountered in some applications in quantum mechanics and wave propagations.

COMPLEX MATRICES: HERMITIAN, SKEW-HERMITIAN, UNITARY

Definitions:

A square matrix $A = [a_{jk}]$ is

- Hermitian if $\overline{A}^{T} = A$ Symmetric
- Skew Hermitian if $\overline{A}^{T} = -A$ \blacksquare Skew-symmetric

CHAPTER 8

• Unitary if $\overline{A}^{T} = A^{-1}$ Orthogonal

COMPLEX MATRICES: HERMITIAN, SKEW-HERMITIAN, UNITARY (cont)

- If A is hermitian $a_{jj} = \overline{a}_{jj} \rightarrow \text{diagonal elements are real}$
- If A is skew hermitian $a_{jj} = -\overline{a}_{jj} \rightarrow \text{diagonal elements are pure imaginary}$
- If a hermitian matrix is real $\overline{A}^T = A^T = A \rightarrow$ symmetric
- If a skew hermitian matrix is real $\overline{A}^T = A^T = -A \rightarrow \text{skew}$ symmetric
- If a matrix is real and unitary, $\overline{A}^{T} = A^{T} = A^{-1} \rightarrow$ orthogonal

EIGENVALUES

Theorem:

- The eigenvalues of a Hermitian matrix are **real**.
- The eigenvalues of a skew-Hermitian matrix are **pure imaginary or 0**.
- The eigenvalues of a unitary matrix have **absolute** value of "1".

Proof: Let λ be an eigenvalue of **A**, x be a corresponding eigenvector.

$$\mathbf{A}\mathbf{x} = \mathbf{\lambda}\mathbf{x}$$

(a) Assume A is Hermitian

$$\overline{x}^T A x = \overline{x}^T \lambda x = \lambda \overline{x}^T x$$

$$\overline{x}^T x = \begin{bmatrix} \overline{x}_1 & \overline{x}_2 & \cdots & \overline{x}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= \overline{x}_1 x_1 + \cdots + \overline{x}_n x_n$$

$$= |x_1|^2 + \cdots + |x_n|^2$$

$$\neq 0 \quad \text{since } x \neq 0$$

CHAPTER 8

$$\lambda = \frac{\overline{x}^{\mathrm{T}} A x}{\overline{x}^{\mathrm{T}} x}$$

$$\lambda \text{ is real if } \overline{x}^{T} Ax \text{ is real}$$
$$\overline{\overline{x}^{T} Ax} = (\overline{x}^{T} Ax)^{T}$$
$$= x^{T} A^{T} \overline{x}$$
$$= x^{T} \overline{A} \overline{x} = (\overline{\overline{x}^{T} Ax})^{T}$$

Hermitian:
$$\overline{A}^{T} = A$$
 or $\overline{A} = A^{T}$

CHAPTER 8

(b) If A is skew-Hermitian

 $\lambda = \frac{\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{x}} \quad \text{since we made no use of propertry.}$ $\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \left(\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x} \right)^{\mathrm{T}}$ $= \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \overline{\mathbf{x}}$ $= -\mathbf{x}^{\mathrm{T}} \overline{\mathbf{A}} \, \overline{\mathbf{x}} = -\left(\overline{\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}\right)$ $\overline{\mathbf{A}}^{\mathrm{T}} = -\mathbf{A}$ (c) If A is unitary Ax = λx and $(\overline{A} \overline{x})^{T} = (\overline{\lambda x})^{T} = \overline{\lambda} \overline{x}^{T}$

Multiplying:

$$(\overline{A} \,\overline{x})^{\mathrm{T}} A x = \overline{\lambda} \,\overline{x}^{\mathrm{T}} \lambda x$$

= $\overline{\lambda} \,\lambda \,\overline{x}^{\mathrm{T}} x$
= $|\lambda|^2 \,\overline{x}^{\mathrm{T}} x$

$$(\overline{A} \,\overline{x})^{T} Ax = \overline{x}^{T} \,\overline{A}^{T} Ax$$

= $\overline{x}^{T} A^{-1} Ax = \overline{x}^{T} x$

$$\left|\lambda\right|^2 = 1$$

47

B.D. Youn

QUADRATIC FORM (cont)

If A is Hermitian or skew-Hermitian; the form is called **Hermitian** or **skew-Hermitian form**.

Theorem:

For every choice of x, the value of an **Hermitian form** is **real**, and the value of a **skew-Hermitian** form is **pure imaginary** or **0**.

Inner Product:

$$\mathbf{a} \cdot \mathbf{b} = \overline{\mathbf{a}}^{\mathrm{T}} \mathbf{b}$$

QUADRATIC FORM (cont)

Length or Norm

$$|\mathbf{a}|| = \sqrt{\mathbf{a} \cdot \mathbf{a}} = \sqrt{\overline{\mathbf{a}}^{\mathrm{T}} \cdot \mathbf{a}} = \sqrt{\overline{\mathbf{a}}_{1} \mathbf{a}_{1} + \overline{\mathbf{a}}_{2} \mathbf{a}_{2} + \dots + \overline{\mathbf{a}}_{n} \mathbf{a}_{n} }$$
$$= \sqrt{|\mathbf{a}_{1}|^{2} + \dots + |\mathbf{a}_{n}|^{2}}$$

Theorem:

A unitary transformation, y = Ax, A unitary, preserves the value of the inner product and the norm.

Proof:

$$u \cdot v = \overline{u}^{T} v = (\overline{A a})^{T} (Ab) = (\overline{A a})^{T} (Ab) = \overline{a}^{T} \overline{A}^{T} Ab$$
$$= \overline{a}^{T} A^{-1} Ab = \overline{a}^{T} b = a \cdot b$$

QUADRATIC FORM (cont)

Theorem:

A square matrix is unitary iff its column vectors (row vectors) form a unitary system, i.e.,

Proof:

$$a_j \cdot a_k = a_j^T a_k = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$$

Theorem:

The determinant of a unitary matrix has absolute value 1.

Proof:

$$1 = \det \left(A \cdot A^{-1} \right) = \det \left(A \cdot \overline{A}^{T} \right) = \det A \cdot \det \left(\overline{A}^{T} \right) = \det A \cdot \det \left(\overline{A} \right)$$

$$= \det A \cdot \overline{\det A} = |\det A|^{2}$$

HOMEWORK IN 8.5

- ➢ HW1. Problem 5
- ➢ HW2. Problem 9
- ➢ HW3. Problem 14

