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Linear Algebra: Matrix Eigenvalue
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ABSTRACT OF CHAP. 8

» Linear algebra in Chaps. 7 and 8 discusses the theory and
application of vectors and matrices, mainly related to
linear systems of equations, eigenvalue problems, and
linear transformation.

» Chapter 8 concerns the solutions of vector equations
Ax = Ax
where A is a given square matrix and vector x and scalar A.

= Eigenvalue problems are of greatest practical interest
to the engineer, physicist, and mathematician.

= Eigenvectors are transformed to themselves multiplied
with a characteristic constant (eigenvalues).
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CHAP. 8.1
EIGENVALUES, EIGENVECTORS

Eigenvalues and eigenvectors imply characteristic
values and vectors of a matrix A.
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SOME DEFINITIONS

Let A be an n X n matrix and consider
Ax = Ax (1)

A, such that (1) has solution x # 0 is an eigenvalue or
characteristic value of A.

X are eigenvectors or characteristic vectors of A.
" The spectrum of A is the set of eigenvalues of A;

= maxl| A11is the spectral radius of A.

= The set of eigenvectors corresponding to A (including 0) is
the eigenspace of A for A.

4%
.-‘E‘?g
s

4

%

LSS
NESS
R

B.D. Youn Engineering Mathematics Il CHAPTER 8 4



SOME DEFINITIONS (cont)

Homogeneous linear system 1in x, x,
|+ Cramer's theorem
D(A) = det(A-AI) =0
D(A) is the characteristic determinant, and

D(A) = 0 is the characteristic equation
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EXAMPLE 1

EXAMPLE 1 Determination of Eigenvalues and Eigenvectors

-5 2
A=
72 -]

Solution:

———————————————————————————————————————

B.D. Youn

(a) Eigenvalues. These must be determined first. Equation (1) s

=5 2 [l %1 X
‘q.\: = - )‘1 5
Transferring the terms on the right to the left. we get

—5);'1 | 232:)\.?51

in components,
P 2| = 2x, = Axs.

(2*%)

This can be written i matrix notation
(3%) (A=M)x=0
because (1) 15 Ax — Ax = Ax — AIx = (A — AI)x = 0. which gives (3*) . We see that this is a
homogeneous linear system. By Cramer's theorem in Sec. 7.7 it has a nontrivial solution x # 0 (an
eigenvector of A we are looking for) if and only if its coefficient determinant is zero. that is.
—-5=A 2

2 h— 2 - JI\
We call D(A) the characteristic determinant or. if expanded. the characteristic polynomial. and D(A)
= 0 the characteristic equation of A. The solutions of this quadratic equation are A; =—1 and A, = —6.
These are the eigenvalues of A.

(4%) D) = det (A= AID = (=5=AN(=2=N=4=A"4+T\+6=0.

Engineering Mathematics Il CHAPTER 8
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EXAMPLE 1
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(b,) Eigenvector of A corresponding to 4. This vector is obtained from (2*) with A =, =—1. that is.
—4x, 4 2x,=0
2x 1— A= 0.
A solution 1s x, = 2x,. as we see from either of the two equations, so that we need only one of them.

This determines an eigenvector corresponding to A, = —1 up to a scalar multiple. If we choose x| = 1. we
obtain the eigenvector

xlzm. Check: .au-l:[‘; _ﬂm=[:;]=(—1)x1=,\1x1.

(b,) Eigenvector of A corresponding to ).,. For A= h, = —6. equation (2*) becomes
X1 2x 2= 0
2%y +4x,=10.

A solution is x, = —x,/2 with arbitrary x,. If we choose x; = 2. we get x, =—1. Thus an cigenvector of A
corresponding to A, =—61s

xgz{_?] Checlk: .i‘sxgz[_g _2}[_?}:[—12]:{_6)x2:/\3X3.



THEOREMS

THEOREM 1
Eigenvalues

The eigenvalues of a square matrix A are the roots of the characteristic equation (4) of A.

Hence an n * n matrix has at least one eigenvalue and at most n numerically different eigenvalues.

THEOREM 2

Eigenvectors, Eigenspace

If w and X are eigenvectors of a matrix A corresponding to the same eigenvalue A, so are w + X
(provided X # —w) and kx for any k# 0.

Hence the eigenvectors corresponding to one and the same eigenvalue \ of A. together with 0. form
a vector space (cf. Sec. 7.4). called the eigenspace of A corresponding to that A.

PROOF

Aw = Aw and Ax = AX imply A(W + X) = Aw + AX = Aw + Ax = Mw + X) and A(kw) = K(Aw) = k(Aw) = A

(kw): hence A(kw + € x) = Akw + € X).
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EXAMPLE 2

EXAMPLE 2 Multiple Eigenvalues

Find the eigenvalues and eigenvectors of

-2 2 =3
A= 2 1 =6
-1 =2 0

Solution:

For our matrix. the characteristic determinant gives the characteristic equation

A=A 2IA+45=0.
The roots (eigenvalues of A) are A, = 5. A, = &, =—3. To find eigenvectors. we apply the Gauss

elimination (Sec. 7.3) to the system (A — AI)x = 0. first with A = 5 and then with A =—3. For A= 5 the
characteristic matrix is

7 2 -3 -1 2 =3
A-M=A-351= 2 =4 —61. It row-reduces to 0 —2?—4 —2—8
-1 =2 =5 0 0 0
Hence it has rank 2. Choosing x, =—1 we have x, =2 from _ 24, _48. _ yandthen x, =1 from
h = 7 2 ? 3
—7x + 2x, — 3x3 = 0. Hence an eigenvector of A coresponding toA=51s . — 1 2 _1 ]T.
D 52N
Y
B.D. Youn Engineering Mathematics Il CHAPTER 8 9 g‘,. @v



EXAMPLE 2

For A = —3 the characteristic matrix

1 2 =3 1 2 =3
A=MNM=A4+3I= 2 4 -6 row-reduces 00 0
-1 =2 3

0 0 0
Hence it has rank 1. From x;+2x, = 3x; =0 we have x, = —2x, + 3x5. Choosing x, =1, x ;=0 and x, =

0. x; = 1. we obtain two linearly independent eigenvectors of A corresponding to A =—3 [as they must
exist by (5), Sec. 7.5, with rank =1 and »n = 3].

—2 3
Xy = 1 and X;=|0
0 1
DULEIND
)
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MULTIPLICITY

The algebraic multiplicity is the order M ; of A in the

characteristic polynomial.

The geometric multiplicity (mA) of A is the number of

linearly independent vectors corresponding to A.

ZMK =1

my, <M
7»12 A

Ay, =M, —m, (defectof A)

B.D. Youn Engineering Mathematics Il CHAPTER 8
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Example 3

EXAMPLE 3 Algebraic Multiplicity, Geometric Multiplicity. Positive
Defect

The characteristic equation of the matrix

-A 1

=\ =0,
0 =X .

01 _
_—"s—[U U} 15 det(.%—,llj—‘

Hence A = 0 1s an eigenvalue of algebraic multiplicity M, = 2. But its geometric multiplicity 1s only mj =

1. since eigenvectors result from —0x; +x, = 0, henee x, = 0. in the form [ x D]T- Hence for A =0 the

defect 1s Ag= 1.

Similarly. the characteristic equation of the matrix

A:[B 2} is det(_-a—m:F‘"‘ ¢ |l=@=n?=0.

0 3 0 d=A

Hence A = 3 1s an eigenvalue of algebraic multiplicity M, = 2. but 1ts geometric multiplieity 1s only m,; =

1. since eigenvectors result from Ox; + 2x, = 0 i the form [ x U]T'

B.D. Youn Engineering Mathematics Il CHAPTER 8 12 ¥ s



Example 4

EXAMPLE 4 Real Matrices with Complex Eigenvalues and
Eigenvectors

Since real polynomials may have complex roots (which then occur in conjugate pairs). a real matrix may
have complex eigenvalues and eigenvectors. For instance, the characteristic equation of the skew-
- W

symmetric matrix
0 1 .
A = d t ..A. — x\II —
[—10} s deA=AD=1_ )

It gives the eigenvalues A =i( = |'II 1) 4, =—i. Eigenvectors are obtained from —ix; +x, =0 and ix,

+x, = 0, respectively, and we can choose x; =1 to get

=\ 41=0.

H
THEOREM 3
Eigenvalues of the Transpose
The n-'anspose_iJ of a square matrix A has the same eigenvalues as A.
S
B.D. Youn
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HOMEWORK IN 8.1

» HW1. Problem 6
» HW?2. Problem 10
» HW3. Problem 30

Engineering Mathematics Il CHAPTER 8
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CHAP. 8.2
SOME APPLICATIONS OF
EIGENVALUE PROBLEMS

Range of applications of matrix eigenvalue problems.

B.D. Youn Engineering Mathematics Il CHAPTER 8 15
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EXAMPLE 1

EXAMPLE 1 Stretching of an Elastic Membrane

An elastic membrane in the x;x,-plane with boundary cirele 2 | x2 — 1 (Fig. 158) 1s stretched so that a

point P: (x,. X,) goes over into the point Q: (y,. y,) given by

o efleeli

Find the principal directions. that 1s. the directions of the position vector x of P for which the direction

of the position vector y of Q is the same or exactly opposite. What shape does the boundary circle take
under this deformation?

. ¥1=">5x; + 3x,
in components,
Ya=23x;4 5x,.

% E

Y
% iy -V
4 .

Fig. 158. Undeformed and deformed membrane in Example 1

Engineering Mathematics Il
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EXAMPLE 1

The characteristic equation 1s
5—-A 3
3 5=A

Its solutions are A, = 8 and A, = 2. These are the eigenvalues of our problem. For . =2, = 8, our system

(3) =(5=M)*=9=0

(2) becomes

—BII f 3..'{2:0,
3;’:1—3?:2:0.

oolution x, = x,, x; arbitrary,

for mstance, x; =x,=1.

For 1., =2, our system (2) becomes

3I1 | 31’2=D,
3..'-'f1 | BIQZO.

sSolution x, = —x,, x; arbitrary,

for mstance, x;, =1, 2, = = 1.

We thus obtain as eigenvectors of A, for instance, [1 1 ]T corresponding to A and [ _1 ]T

corresponding to A, (or a nonzero scalar multiple of these). These vectors make 45° and 135° angles
with the positive x-direction. They give the principal directions, the answer to our problem. The

eigenvalues show that in the principal directions the membrane is stretched by factors 8 and 2,
respectively; see Fig. 158.

Y
. . A )
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EXAMPLE 2 — Markov Process

Suppose that the 2004 state of land use in a city of 60 mi? of built-up area is

i Commercially Used 22% T Industrially Used 20%  E: Eesidentially Used 55%

FromC Froml FromR

)7 0.1 0 ] To C
A=102 (.9 (.2 Tol
[ 0.1 0 0.8 To R

The eigenvalue problem can be used to identify the limit state of the process,

in which the state vector x is reproduced under the multiplication by the
stochastic matrix A governing the process, that is, Ax=x.

03 01 0] the limit state of the process
A-I= 02 =01 0.2 -
.
01 0 —0.2 x=[2 6 1]
B.D. Youn Engineering Mathematics Il CHAPTER 8 18 %‘,a



EXAMPLE 4

EXAMPLE 4 Vibrating System of Two Masses on Two Springs (Fig.
159)

y'= =5y 4 2y,

I
=1 : yia=ay1—ay;
"y,
g (Net change in
= Spring Iength
(:,r ='D) --"" _.}'2 .}'1 1)
. I ‘\-'”_ Yo _%"_[—5 2:|[u]"rlj|
b/ S T n | T YT :
< [:tl,l v, 2 =2||Y2
System in
static System in
equilibrium motion

Fig. 159, Masses on springs in Example 4
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EXAMPLE 4

EXAMPLE 4 Vibrating System of Two Masses on Two Springs (Fig.
159)

We try a vector solution of the form
(8) y —xa“f

This 1s suggested by a mechanical system of a single mass on a spring (Sec. 2.4), whose motion 1s given
by exponential functions (and sines and cosines). Substitution into (7) gives

wixe! = Axe™? |
Dividing by ¢”! and writing w? =\, we see that our mechanical system leads to the eigenvalue problem
) Ax=MAx  where A=u’
From Example 1 in Sec. 8.1 we see that A has the eigenvalues A; = —1 and 2, = —6. Consequently,

w=y —1= tiandy — 6= LiyH, respectively. Corresponding eigenvectors are

(10) x1=|:ﬂ and x;:[_?]_

From (8) we thus obtain the four complex solutions [see (10) , Sec. 2.2]

i3
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EXAMPLE 4

X, ”f:xl(cc}sﬁ -+ ising),

X8 lz‘ﬁf:x;(ms ﬁt J.z'sinu,/g.t).

By addition and subtraction (see Sec. 2.2) we get the four real solutions

X COsf, Xp5Mf, X,CO08 ﬁﬁ, X, 510 Jgﬁ :
A general solution 1s obtained by taking a linear combination of these,

v =x(a,cosé bysing) + xq(a,cos ﬁ.ﬁ I ngjIllf/gﬁ:l
with arbitrary constants a, b, a,, b, (to which values can be assigned by prescribing initial

displacement and initial velocity of each of the two masses). By (10) , the components of y are
Y1 = apcost - bysiné + 2agcos y"Ef. | Ebgsmﬁf
Yo = 2a,cost 4 2bsmni —a,cos ﬁi —E:lgsinﬁ.if _

These functions describe harmonic oscillations of the two masses. Physically, this had to be expected
because we have neglected damping.

B.D. Youn
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HOMEWORK IN 8.2

B.D. Youn

» HW1. Problem 8
» HW2. Problem 19

Engineering Mathematics Il CHAPTER 8
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CHAP. 8.3
SYMMETRIC, SKEW-SYMMETRIC, AND
ORTHOGONAL MATRICES

Three classes of real square matrices frequently
occurring in engineering applications.

D EEIND
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SOME DEFINITIONS

DEFINITIONS

Symmetric, Skew-Symmetric, and Orthogonal Matrices

A real square matrix A = [aﬂ\_] 1s called

symmetric if transposition leaves it unchanged,

(1) AT= A, thus  ap; =aji,
skew-symmetric if transposition gives the negative of A,

2) AT=—a thus  ag; = — k.
orthogonal if transposition gives the inverse of A,

(3) Al=A"1

Any real square matrix A may be written as the sum of a symmetric matrix R and a skew-symumetric
matrix S. where

@) R:%(A tATY  and S :%(A—AT) |

B.D. Youn Engineering Mathematics Il CHAPTER 8 24 vﬁg'ﬂx"
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SOME DEFINITIONS

EXAMPLE 2 Illustration of Formula (4)

g 5 2 8.0 3.5 3.5 015 =15
A=12 3 =8|=R+8=|35 30 =204+ =15 0 =60
5 4 3 35 =20 2.0 1.5 6.0 0
THEOREM 1

Eigenvalues of Symmetric and Skew-Symmetric Matrices

a. The eigenvalues of a symmetric matrix are real.

b. The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

B.D. Youn Engineering Mathematics Il CHAPTER 8
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ORTHOGONAL TRANSFORMATIONS

Orthogonal Transformations and Orthogonal Matrices

Orthogonal transformations are transformations
(5) y=Ax  where A 15 an orthogonal matrs.

With each vector x in R” such a transformation assigns a vector y in R”. For instance, the plane rotation
through an angle €

Y1 cost)  — smnd || &)
(6) y= =1 .
Vi snfl  cosf || Xz
1s an orthogonal transformation. It can be shown that any orthogonal transformation in the plane or in

three-dimensional space 1s a rotation (possibly combined with a reflection in a straight line or a plane,
respectively).

I mImI—— éh"

V |
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RELATED THEOREMS

THEOREM 2

Invariance of Inner Product

An orthogonal transformation preserves the value of the inner product of vectors a and b in R”,

defined by

(7) a-b= aTb = [a; - ay]

That is, for any a and b in R", orthogonal n < n matrix A, and u= Aa, v=Ab we haveu*v=a*b.

Hence the transformation also preserves the length or norm of any vector a in R” given by

(8) ||z|||:|,ia-a:l|;'aTa_
THEOREM 3

Orthonormality of Column and Row Vectors

A real square matrix is orthogonal if and only if its column vectors a, -, a, (and also its row
vectors) form an orthonormal system, that is,
T 0 i j=k
Ay A=A, Af = .
B.D. Youn Engineering Mathematics Il CHAPTER 8 27



RELATED THEOREMS

PROOF

a. Let A be orthogonal. Then o —14 _ ;—'\TA — 1. In terms of column vectors a,-.a,

R Tar alag - alan
(11) I—A'A—ATA—| : |[apa,] =

T
an ApAp apAy o ApAy

The last equality implies (10) , by the definition of the » x » unit matrix I. From (3) 1t follows that
the iverse of an orthogonal matrix 1s orthogonal (see CAS Experiment 20). Now the column

vectors of A7 = AT) are the row vectors of A. Hence the row vectors of A also form an
orthonormal system.

b. Conversely, if the column vectors of A satisfy (10) , the off-diagonal entries in (11) must be 0 and
the diagonal entries 1. Hence ATA= I,as(11) shows. Similarly, A AT —1. This implies

AT— A7 because also A7'A = AA "' =T and the inverse is unique. Hence A 1s orthogonal.

Similarly when the row vectors of A form an orthonormal system, by what has been said at the
end of part (a).

B.D. Youn Engineering Mathematics Il CHAPTER 8 28 yﬁ, E



RELATED THEOREMS

THEOREM 4

Determinant of an Orthogonal Matrix

The determinant of an orthogonal matrix has the value +1 or —1.

PROOF

From det AB = det A det B (Sec. 7.8, Theorem 4) and det A' = det A (Sec. 7.7, Theorem 2d), we get for
an orthogonal matrix

1= detT = det(AA ") = det(AAT) = det Adet AT = (det A)?

THEOREM 5

Eigenvalues of an Orthogonal Matrix

The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs and have
absolute valie 1.

PROOF

The first part of the statement holds for any real matrix A because its characteristic polynomial has real

coefficients, so that its zeros (the eigenvalues of A) must be as indicated. The claim that |A| = 1 will be
proved i Sec. 8.5.

B.D. Youn
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HOMEWORKIIN 8.3

» HW1. Problem 10
» HW2. Problem 12
» HW3. Problem 14

Engineering Mathematics Il CHAPTER 8
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CHAP. 8.4

EIGENBASES. DIAGONALIZATION.
QUADRATIC FORMS

General properties of eigenvectors.

B.D. Youn Engineering Mathematics Il CHAPTER 8 31



BASIS OF EIGENVECTORS

THEOREM 1

Basis of Eigenvectors

If an n * n matvix A has n distinct eigenvalues, then A has a basis of eigenvectors X, . X, for R".

PROOF

All we have to show is that x,, -, x, are linearly independent. Suppose they are not. Let r be the largest
integer such that {x,. -, x } is a linearly independent set. Then » < » and the set {x,. . X . X, } is
linearly dependent. Thus there are scalars ¢,. -, ¢, ;. not all zero, such that
(2) e1Xy b Cpp Xy =0
(see Sec. 7.4). Multiplying both sides by A and using ij = }jxj. we obtain
{3) ::'1;\1:\'1 foouee o -:',-+1x\,-_|_1![_,.+1 = ﬂ .
To get rid of the last term. we subtract A, times (2) from this, obtaining

lﬂ'1|:)\1 —}\,._|_1]I1 f e C',-()'Lr _‘“\:"-|—1)xi" =0.
Here c;(hy = A1) = 0. c (A, —A_ ) =0since {x,. . x,} is linearly independent. Hence ¢, = - =c,
= 0. since all the eigenvalues are distinct. But with this, (2) reduces to ¢, ;X ; = 0. hence ¢, =0, since

X, 70 (an eigenvector!). This contradicts the fact that not all scalars in (2) are zero. Hence the
conclusion of the theorem must hold.

B.D. Youn Engineering Mathematics Il CHAPTER 8 32 %



BASIS OF EIGENVECTORS

EXAMPLE 1 Eigenbasis. Nondistinct Eigenvalues. Nonexistence

35 1 -1
A, =2.(See Example 1 in Sec. 8.2.)

The matrix A {5 3] has a basis of eigenvectors [1] [ 1} corresponding to the eigenvalues A, = 8.

THEOREM 2

Symmetric Matrices

A symmetric matrix has an orthonormal basis of eigenvectors for R".

EXAMPLE 2 Orthonormal Basis of Eigenvectors

The first matrix in Example 1 1s symmetric, and an orthonormal basis of eigenvectors is

(1742 nﬁf_[u.ﬁ —H'ET—.

Y

. . A )
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DIAGONALIZATION

Eigenbases also play a role in reducing a matrix A to a diagonal matrix whose entries are the
eigenvalues of A. This is done by a “similarity transformation.” which 1s defined as follows (and will

DEFINITION Similar Matrices. Similarity Transformation

An n * nmatrix A is called similar to an » * » matrix A if
(4) A=P AP

for some (nonsingular!) 7 » » matrix P. This transformation, which gives A from A. is called a
similarity transformation.

THEOREM 3

Eigenvalues and Eigenvectors of Similar Matrices
If A is similar to A. then A has the same eigenvalues as A.

Furthermore, if X is an eigenvector of A. then y = P™IX is an eigenvector of A corresponding to the
same eigenvalie.

o
B.D. Youn

A

N : B
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DIAGONALIZATION

PROOF FromAx = Ax (A an eigenvalue, x # 0) we get P"!Ax = \P~!x. Now I = PP !. By this “identity trick”
the previous equation gives

P'Ax =P 'AIx = P'APP 'x = A(P )= AP 'x.
Hence ) is an eigenvalue of A and P~'x a corresponding eigenvector. Indeed. P~'x = 0 would give x =
Ix = PP~ Ix = P0 = 0. contradicting x # 0.

THEOREM 4

Diagonalization of a Matrix

If an n * n matrix A has a basis of eigenvectors, then

(5) D=X"'AY

is diagonal, with the eigenvalues of A as the entries on the main diagonal. Here X is the matrix with
these eigenvectors as column vectors. Also,

(5%) D™ =X"A™X (m=2,3, ).
D EEND
)
B.D. Youn Engineering Mathematics Il CHAPTER 8 35 g‘n, @v



DIAGONALIZATION

Example: Diagonalize
73 02 —=37] A =3,k =4k =0
A=|—-115 10 55 - ‘
177 18 =93 =1 [ 1] [2
3 —1(. |1
=1 | 3] |4
07 02 03[ =3 =4 0] [3 00
D=X'AX=| —-13 —02 07 9 4 0|=[0 =4 0
08 02 -02||-3 —-12 0 |0 00
B.D. Youn Engineering Mathematics Il CHAPTER 8 36




QUADRATIC FORMS

Quadratic Forms. Transformation to Principal Axes

L . . . 2
By definition. a quadratic form QO in the components x,. -, x, of a vector X 1s a sum of #~ terms

T M M
O=xAx= L L a;px;xp

2
{?) =dadnt | 12X 11X f= oee 21X 135
2
| dapXal i gk f= wee o ok aXng
|. e ap——
p
b @mX Xy + dpaXpXa + b @iy

A= [a;.k] 1s called the coefficient matrix of the form. We may assume that A is symmetric.

EXAMPLE 5 Quadratic Form. Symmetric Coefficient Matrix

x
x Ax = [%1 Iz]E :][;{j:hf b4z 0%y + 6x9x ) + 2x5 = 32} 4 10z x5 + 223 .

Here 4 + 6 =10=15 + 5. From the corresponding symmerric matrix C = [‘}k]' where i = (a, +a }g.).
thus e¢,, = 3. ¢y, = ¢y, = 5. ¢5, = 2. we get the same result: indeed,

x
xCx = [%1 Iz][g g][xﬂzlrf b 5705 + Sxaxy + 2x3 = 3x} 4 10x,x, + 263

B.D. Youn
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QUADRATIC FORMS

By Theorem 2 the symmetric coefficient matrix A of (7) has an orthonormal basis of eigenvectors.
Hence if we take these as column vectors, we obtain a matrix X that is orthogonal, so that ¥ ! = T

From (5) we thus have A — XDX ! = }(‘D}(T. Substitution into (7) gives
(8) 0 = x"XDXx.
If we set X 'x = y. then. since XT — X1, we get

©) x=Xvy.

) T .
Furthermore. in (8) we have Ty — {xTx) — :,-T and X 'x = v. so that O becomes simply
(10) 0=y Dy =y + Ay + 4 A\l

THEOREM 5

Principal Axes Theorem

The substitution (9) transforms a quadratic form

T M e

O=x Ax= El kEI AR X (@p; = i)
-il_ =

to the principal axes form or canonical form (10) . where L. . b are the (not necessarily distinct)

eigemvalues of the (symmetric!) matrix A, and X is an orthogonal matrix with corresponding
eigenvectors X,. --. X, . respectively, as column vectors.

———————————————————————————————————————
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HOMEWORK IN 8.4

» HWI1. Problem 3
» HW?2. Problem 7
» HW3. Problem 17
» HW4. Problem 22
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CHAP. 8.5
COMPLEX MATRICES AND FORMS.

Encountered in some applications in quantum
mechanics and wave propagations.

B.D. Youn Engineering Mathematics Il CHAPTER 8 40
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COMPLEX MATRICES:
HERMITIAN, SKEW-HERMITIAN, UNITARY

Definitions:

A square matrix A = [ajk] 18

*  Hermitian if A=A Symmetric
*  Skew —Hermitianif A' =-A » Skew-symmetric
*  Unitaryif Al =A" Orthogonal

. ________________________________________________________________________________________________________________________________________________________|] ;éd‘:;\l
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COMPLEX MATRICES: HERMITIAN,

SKEW-HERMITIAN, UNITARY (cont)

If Aishermitiana;; =a; — diagonal elements are real

® If Aisskew -hermitiana;; =—a;; — diagonal elements are pure imaginary

J) J]

If a hermitian matrix isreal A =AT = A — symmetric
* If a skew - hermitian matrix isreal AT = Al =—A — skew - symmetric

® If a matrix is real and unitary, Al=AT=A"T5 orthogonal
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EIGENVALUES

B.D. Youn

Theorem:

e The eigenvalues of a Hermitian matrix are real.

e The eigenvalues of a skew-Hermitian matrix are
pure imaginary or 0.

e The eigenvalues of a unitary matrix have absolute
value of "'1".

Kl
Eod L
O,

%
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NED
W
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EIGENVALUES (cont)

Proof: Let A be an eigenvalue of A, x be a corresponding

eigenvector.
AX = AX

(a) Assume A 1s Hermitian

X Ax=Xx"Ax=Ax"x

Fr=[X, % - %]

=xX + -+ XX

2
xn

Y

# 0 since x #0
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EIGENVALUES (cont)

B.D. Youn

—T
X AXx
A= T

X X

Ais realif X ' Axis real

_ 8 T
XTAX = (XTAX)
%/_J

number

—xIATX

—x'AX = (XTAXJ

Hermitian: A  =A or A=A"

Engineering Mathematics Il CHAPTER 8
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EIGENVALUES (cont)

(b) If A 1s skew-Hermitian

X L Ax :
A= — since we made no use of propertry.
X" X

XL AX = (KTAX)T
=x'A'X
= —xAX= —(XTAXj
Al =-A
(¢) If A1s unitary
Ax=Ax and (KK)T = (E )T =Ax!

G
P4

(Rere}
V.

VLSS
NED
Wl

n
2
%)
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EIGENVALUES (cont)

Multiplying:
(A%)" Ax =2 x"Ax

(K X)T Ax=x" ATAx

= _TA_IAX —X1x

A=
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QUADRATIC FORM (cont)

If A 1s Hermitian or skew-Hermitian; the form is called Hermitian
or skew-Hermitian form.

Theorem:

For every choice of x, the value of an Hermitian form is real,
and the value of a skew-Hermitian form is pure imaginary or 0.

Inner Product:

=T
a-b=a'b
DLEING®
Fals%
- Y
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QUADRATIC FORM (cont)

Length or Norm

Hauzw/a-a =4/ a - :\/51a1+52a2+---+5n a,

2 2
= a4,

Theorem:

A unitary transformation, y = AXx, A unitary, preserves the
value of the inner product and the norm.

Proof:
u-v=u'v=(Aa) (Ab)=(Aa) (Ab)=aT ATAb
—a' A'Ab=a'b=a-b

y
i

¢
()

P
EX%

|| ES S5
W

L/
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ANy
P
v,
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QUADRATIC FORM (cont)
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Theorem:

A square matrix 1s unitary iff 1ts column vectors (row vectors)
form a unitary system, 1.e.,

Proof: 1 j=k

Theorem:

The determinant of a unitary matrix has absolute value 1.

Proof:
I=det(a-A™)=det(A AT)=detA det(AT)=det A- det ()

=detA-detA=\detA\2

A%
4
‘ iy
%

Tty
s 2
s
-,
e

!
(



B.D. Youn

HOMEWORK IN 8.5

» HWI1. Problem 5
» HW?2. Problem 9
» HW3. Problem 14
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