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ABSTRACT OF CHAP. 8

�Linear algebra in Chaps. 7 and 8 discusses the theory and 

application of vectors and matrices, mainly related to 

linear systems of equations, eigenvalue problems, and 

linear transformation.

�Chapter 8 concerns the solutions of vector equations

Ax = λx

where A is a given square matrix and vector x and scalar λ.

� Eigenvalue problems are of greatest practical interest 

to the engineer, physicist, and mathematician.

� Eigenvectors are transformed to themselves multiplied 

with a characteristic constant (eigenvalues).
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CHAP. 8.1

EIGENVALUES, EIGENVECTORS
Eigenvalues and eigenvectors imply characteristic 

values and vectors of a matrix A.
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SOME DEFINITIONS

Let A be an n × n matrix and consider

Ax = λx                                               (1)

λ, such that (1) has solution x ≠ 0 is an eigenvalue or 

characteristic value of A.

x are eigenvectors or characteristic vectors of A.

� The spectrum of A is the set of eigenvalues of A;

� max| λ | is the spectral radius of A.

� The set of eigenvectors corresponding to λ (including 0) is 

the eigenspace of A for λ.
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SOME DEFINITIONS (cont)

Homogeneous linear system in x1, x2

→ Cramer's theorem

D(λ) = det(A-λI) = 0

D(λ) is the characteristic determinant, and

D(λ) = 0 is the characteristic equation
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EXAMPLE 1
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EXAMPLE 1
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THEOREMS
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EXAMPLE 2
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EXAMPLE 2
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MULTIPLICITY

The algebraic multiplicity is the order Mλ of λ in the 

characteristic polynomial.

The geometric multiplicity (mλ) of λ is the number of 

linearly independent vectors corresponding to λ.  
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Example 3
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Example 4
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HOMEWORK IN 8.1

� HW1. Problem 6

� HW2. Problem 10

� HW3. Problem 30
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CHAP. 8.2

SOME APPLICATIONS OF 

EIGENVALUE PROBLEMS
Range of applications of matrix eigenvalue problems.
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EXAMPLE 1
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EXAMPLE 1
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EXAMPLE 2 – Markov Process

The eigenvalue problem can be used to identify the limit state of the process, 

in which the state vector x is reproduced under the multiplication by the 

stochastic matrix A governing the process, that is, Ax=x.

the limit state of the process
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EXAMPLE 4
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EXAMPLE 4
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EXAMPLE 4
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HOMEWORK IN 8.2

� HW1. Problem 8

� HW2. Problem 19
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CHAP. 8.3

SYMMETRIC, SKEW-SYMMETRIC, AND 

ORTHOGONAL MATRICES
Three classes of real square matrices frequently 

occurring in engineering applications.
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SOME DEFINITIONS
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SOME DEFINITIONS
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ORTHOGONAL TRANSFORMATIONS
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RELATED THEOREMS
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RELATED THEOREMS
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RELATED THEOREMS
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HOMEWORK IN 8.3

� HW1. Problem 10

� HW2. Problem 12

� HW3. Problem 14
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CHAP. 8.4

EIGENBASES. DIAGONALIZATION. 

QUADRATIC FORMS
General properties of eigenvectors.
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BASIS OF EIGENVECTORS
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BASIS OF EIGENVECTORS
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DIAGONALIZATION
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DIAGONALIZATION
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DIAGONALIZATION

Example: Diagonalize
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QUADRATIC FORMS
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QUADRATIC FORMS
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HOMEWORK IN 8.4

� HW1. Problem 3

� HW2. Problem 7

� HW3. Problem 17

� HW4. Problem 22
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CHAP. 8.5

COMPLEX MATRICES AND FORMS.
Encountered in some applications in quantum 

mechanics and wave propagations.
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Definitions:

A square matrix  A = [ajk] is

•

•

•

COMPLEX MATRICES:  

HERMITIAN, SKEW-HERMITIAN, UNITARY
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•

•

•

•

•

COMPLEX MATRICES:  HERMITIAN, 

SKEW-HERMITIAN, UNITARY (cont)

orthogonal   AAA  ,nitaryu and real ismatrix  a If

symmetric-skew   AAA  real ismatrix  hermitian-skew a If
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EIGENVALUES

Theorem:

• The eigenvalues of a Hermitian matrix are real.

• The eigenvalues of a skew-Hermitian matrix are 

pure imaginary or 0.

• The eigenvalues of a unitary matrix have absolute 

value of "1".
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EIGENVALUES (cont)

Proof:  Let λ be an eigenvalue of A, x be a corresponding 

eigenvector.

Ax = λλλλx

(a)  Assume A is Hermitian
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EIGENVALUES (cont)
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EIGENVALUES (cont)
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(b) If A is skew-Hermitian

(c) If A is unitary
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EIGENVALUES (cont)

( )

( )

1

xxAxAx

AxAxAxxA

xx

xx

xxAxxA

2

T1T

TTT

T2

T

TT

=λ

==

=

λ=

λλ=

λλ=

−

Multiplying:



48B.D. Youn Engineering Mathematics II CHAPTER 8

QUADRATIC FORM (cont)

If A is Hermitian or skew-Hermitian; the form is called Hermitian

or skew-Hermitian form.

Theorem: 

For every choice of x, the value of an Hermitian form is real,

and the value of a skew-Hermitian form is pure imaginary or 0.

Inner Product: 

baba T=⋅
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Length or Norm

Theorem: 

A unitary transformation, y = Ax, A unitary, preserves the 

value of the inner product and the norm.

Proof: 

QUADRATIC FORM (cont)
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Theorem: 

A square matrix is unitary iff its column vectors (row vectors) 

form a unitary system, i.e., 

Proof: 

Theorem: 

The determinant of a unitary matrix has absolute value 1. 

Proof:

QUADRATIC FORM (cont)
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HOMEWORK IN 8.5

� HW1. Problem 5

� HW2. Problem 9

� HW3. Problem 14


