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Partial Differential Equations (PDEs)

D/ [4m i\
2
¥
7
13

v
V.
\;’n
). o \



ABSTRACT OF CHAP. 12

» PDEs in Chap. 12 are models of various physical and

B.D. Youn

geometrical problems (the solutions) depend on two or
more variables, usually on time t and one or several space
variables.

= We concentrate on the most important PDEs of applied mathematics,
the wave equations governing the vibrating string (Sec. 12.2) and
vibrating membrane (Sec. 12.7), the heat equation (12.5), and
Laplace equation (Secs. 12.5 and 12.10).

"= We derive these PDEs from physics and consider methods for
solving initial and boundary value problems, that is, methods of
obtaining solutions satisfying conditions that are given by the
physical situation.
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CHAP. 121

BASIC CONCEPTS
Classes of the PDEs.
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EXAMPLES OF PDE

A PDE is an equation involving one or more partial derivatives of a function.

One-D Wave equation Two-D Wave Equation

at o’ o’ w3y
One-D Heat equation Two-D Poisson equation

du z@ 0°u 0°u

ot - ox* B + e —f(x, y)
Two-D Laplace equation Three-D Laplace Equation

2 2
a—bzt+a—2t=0 Ou  u Fu
ox dy ox® dy’ 97’

Here ¢ 1s a positive constant. 7 1s time. x. y. = are Cartesian coordinates. and dimension is the number of
these coordinates in the equation.
)
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Fundamental Theorem

A solution of a PDE in some region R of the space of the independent variables 1s a function that has all
the partial derivatives appearing in the PDE 1n some domain D (definition in Sec. 9.6) containing R. and
satisfies the PDE everywhere in R.

In general. the totality of solutions of a PDE 1s very large. For example. the functions

(7) u=x2—y* u=e"cosy, p=sinxcoshy, wm=In(x*+p"

which are entirely different from each other. are solutions of (3) . as you may verify. We shall see later
that the unique solution of a PDE corresponding to a given physical problem will be obtained by the use
of additional conditions arising from the problem. For instance. this may be the condition that the
solution # assume given values on the boundary of the region R (“boundary conditions™). Or. when

time 7 is one of the variables. # (or u, = cu/ct or both) may be prescribed at 7 = 0 (“initial conditions™).

THEOREM 1

Fundamental Theorem on Superposition

If u, and u, are solutions of a homogeneous linear PDE in some region R, then
U=l | Calds

with any constants ¢, and ¢, is also a solution of that PDE in the region R.

e’, =
Y
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EXAMPLE OF WAVE EQUATION

» Problem, as a solution to the wave equation

2 2
0°u _ ,0°U = )

u(t,x) = sin 9¢-sin +x

aa_b; = (9 cos 97)(sin 1x)
3% = —81 sin 9¢-sin +x
3_22 = sin 97-(1 cos 1x)
% = sin 9¢ (—% cos %X)

—81 sin 9¢-sin Lx = ¢*(—<) sin 97-sin 1x is identically true,

if ¢* = (16)(81) — ¢ = 36
. _____________________________________________________________________________________________________________________________________________|]
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EXAMPLE OF HEAT EQUATION

2
ou , 07U
ot 0x
u = e cos 3x
du
—4
5 = —4e¢™" cos 3x
t
ou
-4 .
™ = —3¢ " sin 3x
X
2
a U 4t
? = —9€ COS 3X
X
—4 —4 2
—4e™ cos 3x = —9¢™ cos 3x - ¢
4
Then ¢* = —
9
EP 9
Y. ¥
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EXAMPLE OF LAPLACE EQUATION

0’u 0’u

— + — =0

ox’ dy’

u =e siny

du = e siny

ox

d’u L.

FYel = e siny

a_u = e cosy

dy

0°u . .

W = —e siny

e* siny —e siny =0
0=0

o
%@
(R ==
4(«
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HOMEWORK IN 12.1

» HW1. Problems 1, 3, 5
» HW?2. Problems 14, 15
» HW3. Problems 18, 19
» HW4. Problem 23
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CHAP. 12.2
MODELING: VIBRATING STRING,
WAVE EQUATION

Modeling the wave equation.

B.D. Youn Engineering Mathematics Il CHAPTER 12 10



VIBRATING STRING AND THE WAVE EQUATION

Deflected string at fixed time t

A\

General assumptions for vibrating string problem:

A\

mass per unit length is constant; string is perfectly elastic and no resistance
to bending.

» tension in string is sufficiently large so that gravitational forces may be
neglected.

» string oscillates in a plane; every particle of string moves vertically only;
and, deflection and slope at every point are small in terms of absolute value.

£,
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DERIVATION OF WAVE EQUATION

Deflected string at fixed time t

T,, T, = tension 1in string at point P and Q
T, cos =T, cos B =T, a constant (as string does not move in horizontal

dir.)

Vertical components of tension:
—T,sina and T, sin 3

Y

WV
V .
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DERIVATION OF WAVE EQUATION (Cont.)

Let Ax = length i) 0 = mass/unit length, and Ax has mass pAx

Newton's Law: F = mass X acceleration

. : .. 0u .
If u 1s the vertical position, F = acceleration
4
: : 0’u
T, sin f — T, sin a = (,OAx)F
4
T, sin T sin Ax 0°u .
, snfpo_ T = tan B — tan @ = £ — (equation 2)
T, cos f T cos « T ot
L .. : ou
At P(x is distance from origin), tan « is slope = Ew
x X
o ou
Likewise at Q, tan ff = —
ax x + Ax
B.D. Youn Engineering Mathematics Il CHAPTER 12 13 %@%ﬁ
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DERIVATION OF WAVE EQUATION (Cont.)

2
Substituting and + Ax: Bu au RB—Z
Ax| ox A ax T ot
82
as Ax — 0, L.H.S. becomes —
ox”
2 2
Letc® = Z so that 8_ = ¢* 8_
D’ ot’ ox’

This 1s the 1-D Wave equation
fF7Tor pl 27
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CHAP. 123

SOLUTION BY SEPARATING
VARIABLES. USE OF FOURIER
SERIES

Solving the PDEs using separating variables and
Fourier series and interpreting the solution.

B.D. Youn Engineering Mathematics Il CHAPTER 12 15
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Solution by Separating Variables

one-dimensional wave equation

2 -
(1) SU _aru et =

for the unknown deflection u(x, 7) of the string.

Since the string 1s fastened at the ends x =0 and x = L (see Sec. 12.2). we have the two boundary
conditions

(2) (@) nu(0,£)=0, (&) w(l,t)=10 forallz .

—

Furthermore. the form of the motion of the string will depend on its initial deflection (deflection at time ¢
= 0). call it flix). and on its initial velocity (velocity at ¢ = 0). call it g(x). We thus have the two initial

conditions
(3) (@) u(x,0)=7(x), (B) wg(x, 0) =g(x) O==xz=L)

where u = cu/ct. We now have to find a solution of the PDE (1) satisfving the conditions (2) and (3) .

Y
WV
V
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Solution by Separating Variables

Step 1. By the “method of separating variables” or product method. setting u(x. 1) = F(x)G(z), we
obtain from (1) two ODEs. one for F(x) and the other one for G(z).

Step 2. We determine solutions of these ODEs that satisfy the boundary conditions (2) .

Step 3. Finally. using Fourier series. we compose the solutions gained in Step 2 to obtain a solution of
(1) satisfying both (2) and (3) . that is, the solution of our model of the vibrating string.

Step 1. Two ODEs from the Wave Equation (1)

(4) u(x, t) =F(x)G()
Tu _py Lh_plc WM FG=F'G
e’ ox*
Dividing by ¢*FG and simplifying gives
é !
= =k.
G F
(5) Fl'—kF =0 (6) G—c*kG=0.
QUEDD
Ay
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Solution by Separating Variables

Step 2. Satisfying the Boundary Conditions (2)

u = FG satisfies the boundary conditions (2) .
(7) u(0,£) =F(0)G(£) =0, u(L, ) =F{(L1G(t) =0 for all £ .

We first solve (5) . If G =0, then u = FG =0, which is of no interest. Hence G # 0 and then by (7) .
(8) (@) F(0)=0, (5) F(L)=0
We show that & must be negative. For k£ = 0 the general solution of (5) is F = ax + b. and from (8) we

obtain @ = b =0, so that F = 0 and = FG = 0. which is of no interest. For positive & = 1* a general
solution of (5) 1s

F=A" 4 Be ™™
and from (8) we obtain F = 0 as before (verify!). Hence we are left with the possibility of choosing
negative, say. k= —p~. Then (5) becomes F"+ p>F = 0 and has as a general solution
F(x)=Acospx + Ssmpx .

Y

WV
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Solution by Separating Variables

From this and (8) we have
F(0y=A=0 andthen F(L)=Bsmpl =0

We must take B # 0 since otherwise F = 0. Hence sin pL = 0. Thus

(9) pLl =am, sothat p= % (» mteger) .
Setting B = 1. we thus obtain infinitely many solutions F(x)=F (). where
(10) F {I)—sm"zx n=12 )

We now solve (6) with k= _pz = —(rm.-"L)E resulting from (9) . that 1s.

(11%) G+ AMG=0 where ;\,.,:cp:cz—”_

A general solution 1s
Gy (£) = Bycos At + By sin\,f .
Hence solutions of (1) satisfying (2) are u (x. 1) = F, (x)G, (1) = G, ()F, (x). written out

(11) 1y(%, £) = (Bycosyt + By sin\,t) sm}jz—"-‘x (n=1,2,).

These functions are called the eigenfunctions. or characteristic functions. and the values A= cnn/L are
called the eigenvalues. or characteristic values. of the vibrating string. The set {A,. A,. - } 1s called the

spectrum.
ERNSD
)
Vv
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Solution by Separating Variables

Discussion of Eigenfunctions. We see that each »  represents a harmonic motion having the frequency
A /21 = cn/2L cycles per unit time. This motion is called the nth normal mode of the string. The first

normal mode is known as the fimdamental mode (n = 1). and the others are known as overtones;
musically they give the octave. octave plus fifth. etc. Since in (11)

sn BT g g =L 2L oa=1;
L n’ on »

the nth normal mode has » — 1 nodes, that 1s. points of the string that do not move (in addition to the
fixed endpoints): see Fig. 284.

Y ol (R . TR T dh. T ik "R . " 4 G
0 L © Nl O “Negtt B B Rk N

n=1 n=2 n=3 n=4

Fig. 284. Normal modes of the vibrating string

Fig. 285. Second normal mode for various values of £
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Solution by Separating Variables

Step 3. Solution of the Entire Problem. Fourier Series

The eigenfunctions (11) satisfy the wave equation (1) and the boundary conditions (2) (string fixed at

the ends). A single »_ will generally not satisfy the initial conditions (3) .
- -
nT

(12) u(x, 8) = 2 unlx, )= 2. (B,cosh\,i B,,':sm}.,ﬂz)sin?x _
n=1 n=1
Satisfving Initial Condition (3a) (Given Initial Displacement). From (12) and (3a) we obtain
(13) u(z, 0) = 3 Bysin“Fx = f (x) .
n=1 L

2 [* x
(14) B,,,z—/ F(x)sin 2 gx, n=1,2,

LS, L

Satisfyving Initial Condition (3b) (Given Initial Velocity). Similarly, by differentiating (12) with
respect to r and using (3b) . we obtain

"?” = I:Z (= By ysin\yt + Byycoshyt) sin 22X ]
It |e—g n=1 L =g
= 3 B\, sinZE — g(x).
n=1 L
2 [* -
(15) B,* = .::}z-—_/ g(x)sm%dx, n=1,2,
Tk |]

SLETND
gx»’

&(L:'
T
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Physical Interpretation

Let us consider when the initial velocity g(x) be identically zero.

- . NTX
u(t,x) = Y B, cosA, sin —
n=l

. cnit

"L

Z%ZBH sin{%(x—ct)}+%§8n sin{%(x+ct)}

Ir - "
u(t,x) = E[f (x—ct)+f (x+ct)}

The first term represents a wave that
1s traveling to the right as 7 increases.
The second 1s a wave that is traveling
to the left as 7 increases.

B.D. Youn
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Fig. 287. Interpretation of (17)

CHAPTER 12 22



EXAMPLE 1

EXAMPLE 1 Vibrating String if the Initial Deflection is Triangular

Find the solution of the wave equation (1) corresponding to the triangular initial deflection

i—kx f 0=x<= %
fx)= ok e
T(L-?Z) Jf E-:._J.";_L

and initial velocity zero. (Figure 288 shows f{x) = u(x. 0) at the top.)
Solution:

Since g(x) =0, we have B_* = 01in (12) , and from Example 4 in Sec. 11.3 we see that the B, are given
by (5). Sec. 11.3. Thus (12) takes the form

_8k[1 x  ome, 130 3re,
u(x,f)= Iz|:125111Lx|:1:)s£,: 3 SIN-“7-xCos =7 £ ]
ulx, 0)
0 L 8] L
1 - — ] L
2l **s sy gl F ) F
l‘,-r i "‘-m:l t m Libe
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EXAMPLE 1

B.D. Youn

Engineering Mathematics Il

N t = 2L/6e

| = L2

| t = 3L/5¢

\—/' t = 4L/5c

| t=Llc
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HOMEWORK IN 12.3

» HW1. Problem 1
» HW2. Problems 11, 12
» HW3. Problems 15, 16

B.D. Youn
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CHAP. 12.5
HEAT EQUATION: SOLUTION BY
FOURIER SERIES

Also called the diffusion equation.
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HEAT EQUATION

From prior work the heat equation is:

ou k I
— =c*V?u, ct=— 0 R
at Gp Fig. 291. Bar under consideration
In one dimension (laterally insulated): 5
du , 0 U
— = T —
ot ox’

Some boundary conditions at each end:

uw@O,) =u(l,t)=0,
for all ¢

Initial Condition:
u(x, 0) = f(x),

specified 0<x<L

)
R
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HEAT EQUATION

Step 1. Two ODEs from the Heat Equation (1) . Substitution of a product u(x. 1) = F(x)G(7) mnto (1)
gives F(F = cAF" (F with G = dGide and F"' = d*Fldx*. To separate the variables. we divide by ¢2FG,
obtaining
C.F Fl

4 g _£_

The left side depends only on f and the right side only on x, so that both sides must equal a constant & (as
m Sec. 12.3). You may show that for # =0 or & > 0 the only solution # = FG satisfying (2) 1s u = 0. For
negative k= —p> we have from (4)

. "
G'EGG N FT -7
Multiplication by the denominators gives immediately the two ODEs
(5) F'' 4 p*F =0
and
(6) G+ c*pia=0

Step 2. Satisfving the Boundary Conditions (2) . We first solve (5) . A general solution 1s
(7) Fix)=Acospx + Bsmpx .
From the boundary conditions (2) it follows that

w(0,8) =F(0)F&) =0 and  u(l,¢)=F(L)G({) =0.

CHAPTER 12 28
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HEAT EQUATION

Setting B = 1. we thus obtain the following solutions of (5) satisfying (2) :

Foix)=snZE n=1,2, ..

L

(As in Sec. 12.3. we need not consider negative integral values of n.)

All this was literally the same as in Sec. 12.3. From now on it differs since (6) differs from (6) in Sec.
12.3. We now solve (6) . For p =nn/L, as just obtained. (6) becomes

G 4 MG=0 where Ay = CE—“T :
It has the general solution
2
Gyy(t) = Bye 7, n=12
where Bn 1s a constant. Hence the functions
. ATX -\t
(8) Bu(X, L) =H,(x)F(L) = Bysin=""¢ ° (=1, 2, )

L

are solutions of the heat equation (1) . satisfving (2) . These are the eigenfunctions of the problem.
corresponding fo the eigenvalues A = cnm/L.

B.D. Youn Engineering Mathematics Il CHAPTER 12 29
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HEAT EQUATION

Step 3. Solution of the Entire Problem. Fourier series. So far we have solutions (8) satisfying the
boundary conditions (2) . To obtain a solution that also satisfies the initial condition (3) . we consider a
series of these eigenfunctions.

- . . : )
)= 2 =Y B,sinBTX ,~An"t . — ERT Y
% .= Znte.0= EnE {1
From this and (3) we have
q“- oy
u(x, 0) = 3 BpsinZTE = £ (x)

n=l1
Hence for (9) to satisty (3) . the B 's must be the coefficients of the Fourier sine series, as given by (4)

i Sec. 11.3: thus

L
(10) B, — %/0 1 (x)sin 22X dx

The solution of our problem can be established. assuming that f{x) is piecewise continuous (see Sec. 6.1)
on the interval 0 = x = [ and has one-sided derivatives (see Sec. 11.1) at all interior points of that
mterval: that 1s. under these assumptions the series (9) with coefficients (10) is the solution of our
physical problem. A proof requires knowledge of uniform convergence and will be given at a later
occasion (Probs. 19. 20 in Problem Set 15.5).

Because of the exponential factor. all the terms in (9) approach zero as f approaches infinity. The rate of
decay increases with 7.

Engineering Mathematics Il CHAPTER 12 30
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EXAMPLE 1

EXAMPLE 1 Sinusoidal Initial Temperature

Find the temperature #(x. ) in a laterally insulated copper bar 80 cm long if the initial temperature is 100
sin (mx/80) °C and the ends are kept at 0°C. How long will it take for the maximum temperature in the

bar to drop to 50°C? First guess. then calculate. Phyvsical data for copper: density 8.92 gm/cm?. specific
heat 0.092 cal/(gm “C). thermal conductivity 0.95 cal/(cm sec °C).

Solution:

The nitial condition gives

=
— 5 s RITX — — P
u(x, 0) n_Z,IB,,sm—SU Fix) 1005111—80 )
Hence, by inspection or from (9) we get B, =100, B, =B, == 0. In (9) we need }blz = c2n?/12, where

¢2 = K/(op) = 0.95/(0.092 - 8.92) = 1.158 [em?/sec]. Hence we obtain
A =1.158-9.870/80* =0.001785[sec '] .

The solution (9) 1s
u(x, £) = 100sin TX o~ 00178

g0

Also. 100e 00017857 = 50 when 1 = (In 0.5)/(—0.001785) = 388 [sec] = 6.5 [min]. Does your guess, or at
least its order of magnitude. agree with this result?

Engineering Mathematics Il CHAPTER 12 31
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EXAMPLE 2

EXAMPLE 2 Speed of Decay

Solve the problem in Example 1 when the initial temperature 1s 100 sin (31x/80) °C and the other data
are as before.

_ . 3mx  —0.01607f
w(x, £) = 100sin 20 ¢ :

Hence the maximum temperature drops to 50°C in 7= (In 0.5)/(—0.01607) = 43 [seconds]. which 1s much
faster (9 times as fast as in Example 1: why?).

Had we chosen a bigger ». the decay would have been still faster. and in a sum or series of such terms.
each term has 1ts own rate of decay. and terms with large » are practically 0 after a very short time. Our

x f O0=x=L/2,
j(x)_{L—x £ Li2<x<l

[/

t=0

=

4 .?‘i}&
(2erl ¥
b
e

Ny

LS
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EXAMPLE 3

EXAMPLE 3 “Triangular” Initial Temperature in a Bar

Find the temperature in a laterally insulated bar of length L whose ends are kept at temperature 0.
assuming that the initial temperature 1s

ﬂx}:{ x if De=x<L/2

L—=x f Li2Z=x<=1L

(The uppermost part of Fig. 292 shows this function for the special L = x.)

Solution:

2 Li HTX L . ATX
B”:L(/D xSy dxi/l.h (L—x)sin 7 dx).

Integration gives B, =0 if 77 is even,

By, = ’-‘;{2 (n=1,59, ) and B, = — 'Ez (n=3,711-.

T o

(see also Example 4 in Sec. 11.3 with &£ = L/2). Hence the solution 1s

_ _ _ Y
.= enF e - (F 1] Jaofrem [ - (o] -

i

Figure 292 shows that the temperature decreases with increasing 7. because of the heat loss due to the
cooling of the ends.

__________________________________________________________________________________________________________________________________________________|
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EXAMPLE 4

EXAMPLE 4 Bar with Insulated Ends.
Find a solution formula of (1) . (3) with (2) replaced by the condition that both ends of the bar are

msulated.

Solution:

(2%) 1, (0, £) =10, y(L,8)=10 forall £ .
Since u(x, 1) = F(x)G(7). this gives # (0. 1) = F'(0)G(7) = 0 and u (L. 1) = F'(L)G(7) = 0. Differentiating
(7) . we have F'(x) = —Ap s px + Bp cos px. so that

Fl{OY=Bp=0 andthen F'(L)= —Apsinpl=0.
The second of these conditions gives p=p =nn/L,(n=0, 1,2, ). From this and (7) with 4 =1 and B
=0we get F,(x) =cos (nuy/L), (n=0, 1,2, -+ ). With G, as before, this yields the eigenfunctions

— 2
(11) s (X, £) = F oy (x) Gle) :AHWS%EM (r=0,1,-)

corresponding to the eigenvalues A = enn/L. The latter are as before, but we now have the additional

=
?

b

(2eel

LS

¢

(SLE=
T
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HOMEWORK IN 12.5

B.D. Youn

» HW1. Problems 5,7
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CHAP. 12.6

HEAT EQUATION: SOLUTION BY
FOURIER INTEGRALS AND
TRANSFORMS

Extension to bars of infinite length.

B.D. Youn Engineering Mathematics Il CHAPTER 12 36



INTRODUCTION

Our discussion of the heat equation

i 2 Oy
=

) ot ax?

in the last section extends to bars of infinite length. which are good models of very long bars or wires
(such as a wire of length. say. 300 ft). Then the role of Fourier series in the solution process will be
taken by Fourier integrals (Sec. 11.7).

we do not have boundary conditions. but only the initial condition

@) u(x,0)=7F(x) (=0 <x<0c)
(3) Fl'y p?F =0 [see (5) . Sec. 12.5]
and
4) G4 etp*E=0 [see (6) . Sec. 12.5]
Solutions are
2.2
F(x)=Acospx + Bsmnpx and F(t)=e ° P t,
respectively. where 4 and B are any constants. Hence a solution of (1) 1s
212
(5) u(x, t, p)=FGF = (Acospx + Bsinpx)e ° ¥ r

. . g .
Here we had to choose the separation constant £ negative. k = —p=, because positive values of &k would
lead to an increasing exponential function in (5) . which has no physical meaning.

QUEDP
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USE OF FOURIER INTEGRALS

Any series of functions (5) . found m the usual manner by taking p as multiples of a fixed number,
would lead to a function that is periodic in x when 7 = 0. However, since f{x) in (2) 1s not assumed to be
periodic. it 1s natural to use Fourier integrals instead of Fourier series. Also. 4 and B in (5) are arbitrary
and we may regard them as functions of p. writing 4 = 4(p) and B = B(p). Now. since the heat equation
(1) 1s linear and homogeneous. the function

(6) ui(x, t) :fﬁ‘IJI(I,-E;}-:)JP:/1 [A(p)cospx B(p)smpx]e_"zpzfdp
0 ]

Determination of A(p) and B(p) from the Initial Condition. From (6) and (2) we get
(7) u(x,0) =f [A(p)cospx + B(p)smpx]dp = f(x) .
0

This gives A(p) and B(p) in terms of f{x): indeed. from (4) in Sec. 11.7 we have

8) A(p) = %fi f(V)cospvdv,  B(p) = %f\ F (V) sinpvdy

According to (1*) . Sec. 11.9. our ;mu‘ier integral (7) with these 4(p) ;;1(1 B(p) can be written
u(x, 0) = %/ﬂl [[1 F(vicos(px —pv)dv}dp :

Similarly. (6) in this section becomes

2u(x, £)=%Al[/_l _;"(v)n::os{px—pv}e_czpzrdv}dp.
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USE OF FOURIER INTEGRALS

Assuming that we may reverse the order of integration. we obtain

©) ur =1 [ f(v)[ f e P o5 (- pv}dp]dv |
-/ :

. . . . . e 2 !|' - 2
Using the inner integral and variable transformation / e rosPhsds=1—»p —b
2
0

~ .2
{12) H(I,ﬁ):L/ f(}i’ { ZCZI'E)E de.
oy .
il
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EXAMPLE1

EXAMPLE 1 Temperature in an Infinite Bar fx)
Uﬁ}
Find the temperature in the infinite bar if the initial temperature is (Fig. 295)
Ug=const f |x]=<1 i : —
@=L ‘
|.1‘| SRR FTg. 295, Initial temperature in Example 1

Solution:

From (11) we have

1 2
:;(x,t:):—yﬂ— exp{—@}dv.
2eywt J—1 4t

If we introduce the above variable of integration z. then the integration over v from —1 to 1 corresponds
to the integration over z from { = 1 —=x / (Er: ﬁ }to(l —-x)/ (2: V'E } and
17 1-0)/(2c P 2
- — _1 -
(13) uix, £) V'?/jﬁﬁx)!'@ﬂ'ﬁ) e dz (t=0).

We mention that this integral is not an elementary function, but can be expressed in terms of the error
function, whose values have been tabulated. (Table A4 in App. 5 contains a few values: larger tables are
listed in Ref. [GR1] in App. 1. See also CAS Project 10, p. 568.) Figure 296 shows u(x, 7) for Uy = 100°

8l Y
C. =1 cm~/sec. and several values of r.

4%
/i

"

o

I
Sl
>

)

PILS
%‘g__. 2
(SLE=

N



EXAMPLE1

-3 -2 =1 0 T
Fig. 296. Solution u(x, t) in Example 1 for U, = 100°C, ¢ = 1 cm?/sec, and several
values of £
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HOMEWORK IN 12.6

B.D. Youn

» HW1. Problems 3.5
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CHAP. 12.7

MODELING: MEMBRANE, TWO-
DIMENSIONAL WAVE EQUATION

Extension to bars of infinite length.
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VIBRATING MEMBRANE AND
THE TWO-DIMENSIONAL WAVE EQUATION

Three Assumptions:

» The mass of the membrane is constant, the membrane is perfectly
flexible, and offers no resistance to bending;

» The membrane is stretched and then fixed along its entire boundary
in the x-y plane. Tension per unit length (T) which 1s caused by
stretching is the same at all points and in the plane and does not
change during the motion;

» The deflection of the membrane u(x,y,t) during vibratory motion is
small compared to the size of the membrane, and all angles of
inclination are small

V L
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GEOMETRY OF VIBRATING "DRUM"
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NOW FOR NEWTON'S LAW

TAy (s — siney) == TAy(tan 7 — tan o)
= TAy[uy(x + Ax, y1) —ux(x. y2)]
a2
(pAXAy) ?;1 = TAy[uX(X + AXx, yl) — ux(x, yz)] + TAX[Uy( X,y + Ay) — uy(xz, y)]
Divide by pAxAy:

& T ux(x + AX, Y1) — ux(x, y2) s uy( X, ¥ + Ay) — uy(XZ’ y)

ot2 B p AX Ay

Take limit as Ax - 0, Ay - 0

This 1s the two-dimensional wave equation

0%u ) (azu azu)
g _ 21242

+ —_—
ot* ox” dy”

A

=4
A
. "’/’:a

el
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WAVE EQUATION

B.D. Youn

» In Laplacian form:
Pu
ot’

2 v72
= ¢ " Vu

where
c2="T/p

= Some boundary conditions: u = 0 along all edges of the
boundary.

= Initial conditions could be the initial position and the initial
velocity of the membrane

= As before, the solution will be broken into separate functions
of X,y, and t.

= Subscripts will indicate variable for which derivatives are
taken.
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SOLUTION OF 2-D WAVE EQUATION

B.D. Youn

Let
u(x, y, t) = F(x, y)G(t)

substitute into wave equation:
FG = CZ(FXXG + Fny);

divide by c’FG, to get: .
S l(F +Ey) =-v?
c’G FY 7™ >

This gives two equations, one in time and one in space. For time,
G+ MG =0
where A = cv, and, what is called the amplitude function:
Fy + F, + V’F = 0

also known as the Helmholtz equation.
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SEPARATION OF THE HELMHOLTZ EQUATIONS

Let F(x, y)=H(x)Q(y)
and, substituting into the Helmholtz:
d’H ’Q
=—- | H +V'H
dx’ < ( dy* ¢

Here the variables may be separated by dividing by HQ:

1d*H 1 (sz , ] e
H dx? Q

Note: p?=v?-k?

As usual, set each side equal to a constant, -k?. This leads to two ordinary
linear differential equations:

2 2
d’H d*Q
— + k’'H=0, —= +p°Q=0
dx dy
DN, /L2
R
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