
Chapter 4D
The Processor

Chapter 4 — The Processor — 1

Instruction-Level Parallelism (ILP)
 Pipelining: executing multiple instructions in

parallel
 To increase ILP

 Deeper pipeline
 Less work per stage ⇒ shorter clock cycle

 Multiple issue
 Replicate pipeline stages ⇒ multiple pipelines
 Start multiple instructions per clock cycle
 CPI < 1, so use Instructions Per Cycle (IPC)
 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4
 But dependencies substantially reduce this.

§4.10 P
arallelism

 and A
dvanced Instruction Level P

arallelism

Chapter 4 — The Processor — 2

Multiple Issue
 Static multiple issue

 Compiler groups instructions to be issued together
 Packages them into “issue slots”
 Compiler detects and avoids hazards

 Dynamic multiple issue
 CPU examines instruction stream and chooses

instructions to issue each cycle
 Compiler can help by reordering instructions
 CPU resolves hazards using advanced techniques at

runtime

Chapter 4 — The Processor — 3

Speculation
 An approach whereby the compiler or processor guesses

the outcome of an instruction to remove it as a
dependence in executing other instructions

 Example
 Whether a branch is taken or not
 Whether a store that proceeds a load does not refer

to the same address.
 Must include two methods

 A method to check if the guess was right
 A method to unroll or back out the effects of the

instructions that were executed speculatively.

Chapter 4 — The Processor — 4

Speculation
 Can be done in the compiler or by the hardware.
 Moving an instruction across a branch or a load across a

store.
 Recovery mechanism in software

 Insert an additional routine to check the accuracy of speculation
 Provide a fix-up routine to use when the speculation is incorrect

 Recovery mechanism in hardware
 Buffers the speculative results until it knows they are no longer

speculative.
 If the speculation is correct, allow them to be written into the

registers or memory
 If the speculation is incorrect, flushes the buffers and re-executes

the correct instruction sequence.

Chapter 4 — The Processor — 5

Multi-issue Taxonomy
Common
Name

Issue
structure

Hazard
detection

Scheduling Distinguishing
characteristic

Examples

Superscaler
(static)

dynamic hardware static in-order execution Sun UltraSPARC
II/III

Superscaler
(dynamic)

dynamic hardware dynamic some out-of-order
execution

IBM Power2

Sperscaler
(speculative)

dynamic hardware dynamic
with
speculation

out-of-order
execution with
speculation

Pentium III/4
MIPS R10K,
Alpha 21264, HP
PA 8500, IBM
RS64III

VLIW/LIW static software static no hazards
between issue
packets

Trimedia, i860

EPIC mostly
static

mostly
software

mostly static explicit
dependencies
marked by
compiler

Itanium (IA-64 is
one
implementation)

Chapter 4 — The Processor — 6

Static Multiple Issue
 Compiler groups instructions into “issue

packets”
 Group of instructions that can be issued on a

single cycle
 Determined by pipeline resources required

 Think of an issue packet as a very long
instruction
 Specifies multiple concurrent operations
 ⇒ Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 7

Scheduling Static Multiple Issue

 Compiler must remove some/all hazards
 Reorder instructions into issue packets
 No dependencies with a packet
 Possibly some dependencies between

packets
 Varies between ISAs; compiler must know!

 Pad with nop if necessary

Chapter 4 — The Processor — 8

MIPS with Static Dual Issue
 Two-issue packets

 One ALU/branch instruction
 One load/store instruction
 64-bit aligned

 ALU/branch, then load/store
 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 9

MIPS with Static Dual Issue
4 read addresses
2 write addresses
2 input data ports
4 output data ports

Chapter 4 — The Processor — 10

Hazards in the Dual-Issue MIPS
 More instructions executing in parallel
 EX data hazard

 Avoided stalls with forwarding in single issue
 Now can’t use ALU result in load/store in same packet

 add $t0, $s0, $s1
load $s2, 0($t0)

 Split into two packets: effectively a stall
 Load-use hazard

 Still one-cycle use latency, which means the next two
instructions cannot use the load result

 Even for ALU instruction
 One-instruction use latency, which means its result

cannot be used in the paired load or store
 More aggressive scheduling required

Chapter 4 — The Processor — 11

Scheduling Example
 Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 addi $s1, $s1,–4 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 12

Loop Unrolling
 A technique to get more performance form

loops that access arrays.
 Multiple copies of the loop body are

scheduled together.
 Reduces loop-control overhead

 Use different registers per replication
(register renaming) to avoid loop-carried
anti-dependencies (name dependencies)

 Store followed by a load of the same register
 Avoid WAR and WAW hazards

Chapter 4 — The Processor — 13

Loop Unrolling Example
 Unrolling 4 times

 Name dependence or antidependence

Loop: lw $t0, 0($s1) # $t0=array[0]
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 lw $t0, 4($s1) # $t0=array[1]
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 4($s1) # store result
 lw $t0, 8($s1) # $t0=array[2]
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 8($s1) # store result
 lw $t0, 12($s1) # $t0=array[3]
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 12($s1) # store result
 addi $s1, $s1,–16 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

Chapter 4 — The Processor — 14

Loop Unrolling Example
 Unrolling 4 times

 Register renaming: t0 t1, t2, t3

Loop: lw $t0, 0($s1) # $t0=array[0]
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 lw $t1, 4($s1) # $t1=array[1]
 addu $t1, $t1, $s2 # add scalar in $s2
 sw $t1, 4($s1) # store result
 lw $t2, 8($s1) # $t2=array[2]
 addu $t2, $t2, $s2 # add scalar in $s2
 sw $t2, 8($s1) # store result
 lw $t3, 12($s1) # $t3=array[3]
 addu $t3, $t3, $s2 # add scalar in $s2
 sw $t3, 12($s1) # store result
 addi $s1, $s1,–16 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

Chapter 4 — The Processor — 15

Loop Unrolling Example

 IPC = 14/8 = 1.75
 Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle
Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

Chapter 4 — The Processor — 16

Statically Scheduled Superscaler

 Instructions are issued in order:
 All hazards checked dynamically at issue time
 Variable number of instructions issued per clock

cycle: one , two, or more
 Require the compiler techniques to be efficient.

Common
Name

Issue
structure

Hazard
detectio
n

Scheduling Distinguishing
characteristic

Examples

Superscaler
(static)

dynamic hardware static in-order execution Sun
UltraSPARC
II/III

Chapter 4 — The Processor — 17

Superscaler vs VLIW
 superscaler

 The code is guaranteed by the hardware to
execute correctly, independently of the issue
rate or pipeline structure of the processor

 VLIW
 In some VLIW designs, recompilation is

required
 In other VLIW designs, the code would run in

different implementations, but often so poorly
as to make compilation effectively required.

Chapter 4 — The Processor — 18

Dynamically Scheduled Superscaler

 Dynamic scheduling does not restrict the types of
instructions that can be issued on a single clock cycle.

 Think of it as Tomasulo’s algorithm extended to support
multiple-issue

 Allows N instructions to be issued whenever reservation
stations are available.

 Branch prediction is used for fetch and issue (but not
execute)

Common
Name

Issue
structure

Hazard
detection

Scheduling Distinguishing
characteristic

Examples

Superscaler
(dynamic)

dynamic hardware dynamic some out-of-order
execution

IBM Power2

Chapter 4 — The Processor — 19

Tomasulo Organization

address

FIFO

Data, address

FP adders

Add1
Add2
Add3

FP multipliers

Mult1
Mult2

From Mem FP Registers

5 Reservation
Stations

Common Data Bus (CDB)

To Mem

FP instruction
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

Chapter 4 — The Processor — 20

Tomasulo Algorithm
 Control & buffers for each function unit (FU)

 FU buffers called a “reservation station” (RS);
 A RS for a FU
 Instructions in RS have pending operands

 Registers in instructions replaced by values or pointers to
reservation stations or load buffers if pending;
 called register renaming (avoids WAR, WAW hazards)
 4-bit tag: 5 reservation stations and 6 load buffers

 Results to FU from RS, not through registers, over
Common Data Bus (CDB) that broadcasts results to all FUs

 Load and Stores treated as FUs with RSs as well
 Integer instructions can go across branches, allowing

FP ops beyond a basic block in FP queue

Chapter 4 — The Processor — 21

Reservation Station Components
 Op: Operation to perform in the unit (e.g., + or –)
 Qj, Qk: Reservation station IDs producing source

registers (value to be written)
 Note: No ready flags as in Scoreboard; Qj,Qk=0 => ready
 Store buffers only have Qi for RS producing result

 Vj, Vk: Value of Source operands
 Store buffers has V field, result to be stored
 Either V or Q file is valid for each operand

 A: used to hold an address for a load or store
 Busy: Indicates reservation station or FU is busy

 Register result status—Indicates which functional unit will

write each register, if one exists. Blank when no pending
instructions that will write that register.

Chapter 4 — The Processor — 22

Tomasulo Algorithm
1. Issue—(dispatch) get instruction from FP Op Queue
 If an RS entry is free (no structural hazard), issues an instruction &
 reads its operands if available. (register renaming: avoid WAR and
 WAW hazards)
2. Execution—(issue) operate on operands (EX)
 When both operands ready, then execute; if not ready, watch
 Common Data Bus, waiting for result (avoid RAW hazards)
3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting RS units, FP registers, and
 store buffers; mark its reservation station available

 Normal data bus: data + destination (“go to” bus)
 Common data bus: data + source (“come from” bus)

 64 bits of data + 4-bit tag of Functional Unit source address
 Does the broadcast
 Write if tags matches (expected FU produces result)

Chapter 4 — The Processor — 23

Why Do Dynamic Scheduling?
 Why not just let the compiler schedule

code?
 Not all stalls are predicable

 e.g., cache misses
 Can’t always schedule around branches

 When branch outcome is dynamically
determined

 Different implementations of an ISA have
different latencies and hazards

Chapter 4 — The Processor — 24

Dynamic Pipeline Scheduling
 Allow the CPU to

 execute instructions out of order to avoid stalls
 But commit result to registers in order

 Example
 lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

 Can start sub while addu is waiting for lw, which
might take many clock cycles (when lw causes a data
cache miss)

 Dynamic scheduling allows such hazards to be
avoided either fully or partially

Chapter 4 — The Processor — 25

Dynamic Scheduling: Issue
 Simple pipeline had only one stage to check

both structural and data hazards: Instruction
Decode (ID), also called Instruction Issue

 Dynamic scheduling HW splits the ID pipe stage
into 2 stages:

 Issue:

 Decode instructions, check for structural hazards

 Read operands:

 Wait until no data hazards, then read operands

Chapter 4 — The Processor — 26

HW Schemes to Schedule Instructions
 Key idea: Allow instructions behind stall to proceed

 DIVD F0,F2,F4
 ADDD F10,F0,F8
 SUBD F12,F8,F14

 Enables out-of-order execution and allows out-of-order
completion (e.g., schedule SUBD before slow DIVD)
 In a dynamically scheduled pipeline, all instructions still

pass through issue stage in order (in-order issue)
 Will distinguish

 when an instruction begins execution from
 when it completes execution;
 between the two times, the instruction is in execution

Chapter 4 — The Processor — 27

Advantages of Dynamic Scheduling
 Dynamic scheduling - hardware rearranges the

instruction execution to reduce stalls while
maintaining data flow and exception behavior

 It handles cases in which dependences were
unknown at compile time
 it allows the processor to tolerate unpredictable delays such as

cache misses, by executing other code while waiting for the miss
to resolve

 It allows code compiled for one pipeline to run
efficiently on a different pipeline

 It simplifies the compiler
 Hardware speculation, a technique with significant

performance advantages, builds on dynamic
scheduling

Chapter 4 — The Processor — 28

Speculative Superscaler
Common
Name

Issue
structure

Hazard
detection

Scheduling Distinguishing
characteristic

Examples

Superscaler
(speculative)

dynamic hardware dynamic with
speculation

out-of-order
execution with
speculation

Pentium III/4
MIPS R10K,
Alpha 21264,
HP PA 8500,
IBM RS64III

Hardware-based Speculation
• Dynamic branch prediction to choose which instructions to
execute
• Speculation to allow execution of instructions before control
dependencies are resolved
• Dynamic scheduling to deal with scheduling of different
combinations of basic blocks

Chapter 4 — The Processor — 29

Dynamically Scheduled CPU

Results also sent
to any waiting

reservation stations
Reorders buffer is

the buffer in the
commit unit for

register writes that
hold results until it
is safe to store the
results to memory

or a register

Can supply
operands for

issued instructions

Preserves
dependencies

Hold pending
operands and

operation

Decide when it is safe
to release the result of
operation to memory or

registers operation
Chapter 4 — The Processor — 30

Speculation
 “Guess” what to do with an instruction

 Start operation as soon as possible
 Check whether guess was right

 If so, complete the operation
 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue
 Speculate on branch outcome: move

 Move an instruction across an branch
 Roll back if path taken is different

 Speculate on load
 Move a load across a store
 Roll back if the location is updated by the store

Chapter 4 — The Processor — 31

Memory Data Dependences
 Besides branches, long memory latencies are one of the

biggest performance challenges today.

 To preserve sequential (in-order) state in the data caches
and external memory (so that recovery from exceptions is
possible) stores are performed in order. This takes care of
antidependences (WAR) and output dependences (WAW) to
memory locations.

 However, loads can be issued out of order with respect to
stores if the out-of-order loads check for data dependences
with respect to previous, pending stores.

WAW WAR RAW
store X load X store X

: : :
store X store X load X
 Chapter 4 — The Processor — 32

Memory Dependencies

st r1, (r2)
ld r3, (r4)

 When can we execute the load?
 Does the load move across the store?

 Chapter 4 — The Processor — 33

Memory Data Dependences
 Memory Aliasing:

 Two memory references involving the same
memory location (collision of two memory
addresses).

 Memory Disambiguation:
 Determining whether two memory references will

alias or not (whether there is a dependence or not).
 Memory Dependency Detection:

 Must compute effective addresses of both memory
references

 Effective addresses can depend on run-time data
and other instructions

Chapter 4 — The Processor — 34

Conservative OOO Load Execution
st r1, (r2)
ld r3, (r4)

 Split execution of store instruction into two phases:\
 address calculation and
 data write

 (load bypassing) Can execute load before store, if
addresses known and r4 != r2

 Each load address compared with addresses of all
previous uncommitted stores
 can use partial conservative check i.e., bottom 12 bits of

address
 Don’t execute load if any previous store address not

known
 MIPS R10K, 16 entry address queue

Chapter 4 — The Processor — 35

Out-of-order

Address Speculation

 Assume that r4 != r2

 Execute load before store address known

 Need to hold all completed but uncommitted load/store
addresses in program order

 If subsequently find r4==r2, squash load and all following
instructions
 => Large penalty for inaccurate address speculation

st r1, (r2)
ld r3, (r4)

Chapter 4 — The Processor — 36

Memory Dependence Prediction
st r1, (r2)
ld r3, (r4)

 Guess that r4 != r2 and execute load before

store
 If later find r4==r2, squash load and all

following instructions, but mark load instruction
as store-wait for future executions

 Subsequent executions of the same load
instruction will wait for all previous stores to
complete

 Periodically clear store-wait bits

Chapter 4 — The Processor — 37

Compiler/Hardware Speculation
 SW: Compiler can reorder instructions

 Also include a “fix-up” routine to recover from
incorrect guess

 HW: can look ahead for instructions to
execute
 Buffer speculative results until it knows the

speculation is correct
 Allow the buffer contents to be written into the

register or memory if the speculation is correct,
 Flush the buffers on incorrect speculation

Chapter 4 — The Processor — 38

Speculation and Exceptions
 What if exception occurs on a speculatively

executed instruction?
 e.g., speculative load before null-pointer check
 A speculated instruction should not cause an

exception: unneeded negative performance effects
 For static speculation (compiler)

 Can add ISA support for deferring exceptions
 For dynamic speculation (hardware)

 Can buffer exceptions until instruction is no more
speculative

Chapter 4 — The Processor — 39

HW Support for Compiler Speculation

 Three capabilities are required for speculation
 (compiler) Ability to find instructions that can be

speculatively moved.
 (Hw) Ability to ignore exceptions in speculated

instructions
 (Hw) Ability to speculatively interchange loads and

stores, or stores and stores, which may have address
conflicts.

 Two types of exceptions
 Termination: memory protection violation: ignore
 Resumption: page faults: acceptable

Chapter 4 — The Processor — 40

For Preserving Exception Behavior
 There are four methods

1. The hardware and operating system cooperatively ignore
(terminating) exceptions for speculative instructions. As we will see
later, this approach preserves exception behavior only for correct
programs, but not for incorrect ones. This approach may be viewed as
unacceptable for some programs, but it has been used, under
program control, as a “fast mode” in several processors.
2. Speculative instructions that never raise (terminating) exceptions
are used, and checks are introduced to determine when a
(terminating) exception should occur.
3. A set of status bits, called poison bits, are attached to the result
registers written by speculated instructions when the instructions
cause (terminating) exceptions. The poison bits cause a fault when a
normal instruction attempts to use the register.
4. A mechanism is provided to indicate that an instruction is
speculative, and the hardware buffers the instruction result until it is
certain that the instruction is no longer speculative.

Chapter 4 — The Processor — 41

Dynamically Scheduled CPU

Results also sent
to any waiting

reservation stations
Reorders buffer is

the buffer in the
commit unit for

register writes that
hold results until it
is safe to store the
results to memory

or a register

Can supply
operands for

issued instructions

Preserves
dependencies

Hold pending
operands and

operation

Decide when it is safe
to release the result of
operation to memory or

registers operation
Chapter 4 — The Processor — 42

to avoid stalls

Adding Speculation to Tomasulo
 Must separate execution from allowing instruction to

finish or “commit”
 This additional step is called instruction commit; it

occurs
 whenever the branch prediction is confirmed for the branch

immediately before a block of speculated instructions.

 When an instruction is no longer speculative, allow it
to update the register file or memory.

 Requires an additional set of buffers to hold results of
instructions that have finished execution but have not
committed.

 This reorder buffer (ROB) is also used to pass results
among instructions that may be speculated.

Chapter 4 — The Processor — 43

Reorder Buffer (ROB)
 In Tomasulo’s algorithm, once an instruction writes its

result, any subsequently issued instructions will find result in
the register file

 With speculation, the register file is not updated until the
instruction commits
 when know for sure that the instruction should have executed

 The ROB supplies operands in the interval between end of
instruction execution and instruction commit
 ROB is a source of operands for instructions, just as

reservation stations (RS) provide operands in
Tomasulo’s algorithm

 ROB extends architecture registers as the reservation
stations did

Chapter 4 — The Processor — 44

Reorder Buffer Entry Fields
 Each entry in the ROB contains four fields:
1. Instruction type

• A branch (has yet no destination result), a store (has a memory
address destination), or a register operation (ALU operation or
load, each of which has a register destination for writeback)

2. Destination
• Register number (for loads and ALU operations) or

memory address (for stores) - where the instruction result should
be written

3. Value
• Value of instruction result being held until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the value

is ready once the instruction commits

Chapter 4 — The Processor — 45

Reorder Buffer Operation
 Holds instructions in FIFO order, exactly as issued
 When instructions complete, results placed into ROB

 Supplies operands to other instruction between
execution complete & commit ⇒ more registers
like RSs (reservation stations)

 Tag results with ROB buffer number instead of
reservation station number

 Instructions commit ⇒values at head of ROB placed
in registers

 As a result, easy to undo speculated instructions
on mispredicted branches or on exceptions

Chapter 4 — The Processor — 46

Reorder Buffer Operation

Reorder
Buffer

FP
Op

Queue

FP Adder FP M’plier

Res Stations Res Stations

FP Regs

Commit path from head of buffer
In-order commit

Chapter 4 — The Processor — 47

Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
 If reservation station free (no structural hazard),

control issues instr & sends operands (renames registers).

2. Execution—operate on operands (EX)
 When both operands ready then execute;

 if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting units;

mark reservation station available

Chapter 4 — The Processor — 48

Speculative Tomasulo Algorithm
1. Issue (dispatch) —get instruction from FP Op Queue

 If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer index for destination

2. Execution (issue)—operate on operands (EX)
 Checks for RAW hazards; when both operands ready then

execute; if not ready, watch Common Data Bus for result; when
both in reservation station, execute.

3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting RSs & reorder buffer;

mark reservation station available.
4. Commit (graduation) —update register with reorder result

 When instr. at head of reorder buffer & result are present and the
branch before it has been confirmed, update register with result
(or store to memory) and remove instr from reorder buffer.
Mispredicted branch flushes reorder buffer above (executed after)
the branch

Note: steps added for speculation in blue

Chapter 4 — The Processor — 49

Does Multiple Issue Work?

 Yes, but not as much as we’d like
 Programs have real dependencies that limit ILP
 Some dependencies are hard to eliminate

 e.g., pointer aliasing
 Some parallelism is hard to expose

 Limited window size during instruction issue
 Memory delays and limited bandwidth

 Hard to keep pipelines full
 Speculation can help if done well

The BIG Picture

Chapter 4 — The Processor — 50

Power Efficiency
 Complexity of dynamic scheduling and

speculations requires power
 Multiple simpler cores may be better
Microprocessor Year Clock Rate Pipeline

Stages
Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Chapter 4 — The Processor — 51

The Opteron X4 Microarchitecture
§4.11 R

eal S
tuff: The A

M
D

 O
pteron X4 (B

arcelona) P
ipeline

72 physical
registers

Chapter 4 — The Processor — 52

What is architectural registers?
16 Visible register in ISA

Register renaming requires to
the processor to maintain a map
between the architectural registers
and the physical registers, indicating
that which physical register is the
Most current copy of an architectural
register

The Opteron X4 Pipeline Flow
 For integer operations

 FP is 5 stages longer
 Up to 106 RISC-ops in progress

 Bottlenecks
 Complex instructions with long dependencies
 Branch mispredictions
 Memory access delays

Chapter 4 — The Processor — 53

Fallacies
 Pipelining is easy (!)

 The basic idea is easy
 The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology
 So why haven’t we always done pipelining?
 More transistors make more advanced techniques

feasible
 Pipeline-related ISA design needs to take account of

technology trends
 e.g., predicated instructions

§4.13 Fallacies and P
itfalls

Chapter 4 — The Processor — 54

Pitfalls
 Poor ISA design can make pipelining

harder
 e.g., complex instruction sets (VAX, IA-32)

 Significant overhead to make pipelining work
 IA-32 micro-op approach

 e.g., complex addressing modes
 Register update side effects, memory indirection

 e.g., delayed branches
 Advanced pipelines have long delay slots

Chapter 4 — The Processor — 55

Chapter 4 — The Processor — 56

Concluding Remarks
 ISA influences design of datapath and control
 Datapath and control influence design of ISA
 Pipelining improves instruction throughput

using parallelism
 More instructions completed per second
 Latency for each instruction not reduced

 Hazards: structural, data, control
 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism
 Complexity leads to the power wall

§4.14 C
oncluding R

em
arks

Summary
 Leverage Implicit Parallelism for

Performance: Instruction Level Parallelism
 Loop unrolling by compiler to increase ILP
 Branch prediction to increase ILP
 Dynamic HW exploiting ILP

 Works when cannot know dependences at compile
time

 Can hide L1 cache misses
 Code for one pipelined machine runs well on another

Chapter 4 — The Processor — 57

Homework: chapter 4
 Due before starting the midterm on Oct. 27.
 Exercise 4.14
 Exercise 4.22
 Exercise 4.29
 Exercise 4.35

§1.9 C
oncluding R

em
arks

Chapter 4 — The Processor — 58

	Chapter 4D
	Instruction-Level Parallelism (ILP)
	Multiple Issue
	Speculation
	Speculation
	Multi-issue Taxonomy
	Static Multiple Issue
	Scheduling Static Multiple Issue
	MIPS with Static Dual Issue
	MIPS with Static Dual Issue
	Hazards in the Dual-Issue MIPS
	Scheduling Example
	Loop Unrolling
	Loop Unrolling Example
	Loop Unrolling Example
	Loop Unrolling Example
	Statically Scheduled Superscaler
	Superscaler vs VLIW
	Dynamically Scheduled Superscaler
	Tomasulo Organization
	Tomasulo Algorithm
	Reservation Station Components
	Tomasulo Algorithm
	Why Do Dynamic Scheduling?
	Dynamic Pipeline Scheduling
	Dynamic Scheduling: Issue
	HW Schemes to Schedule Instructions
	Advantages of Dynamic Scheduling
	Speculative Superscaler
	Dynamically Scheduled CPU
	Speculation
	Memory Data Dependences
	Memory Dependencies
	Memory Data Dependences
	Conservative OOO Load Execution
	Address Speculation
	Memory Dependence Prediction
	Compiler/Hardware Speculation
	Speculation and Exceptions
	HW Support for Compiler Speculation
	For Preserving Exception Behavior
	Dynamically Scheduled CPU
	Adding Speculation to Tomasulo
	Reorder Buffer (ROB)
	Reorder Buffer Entry Fields
	Reorder Buffer Operation
	Reorder Buffer Operation
	Tomasulo Algorithm
	Speculative Tomasulo Algorithm
	Does Multiple Issue Work?
	Power Efficiency
	The Opteron X4 Microarchitecture
	The Opteron X4 Pipeline Flow
	Fallacies
	Pitfalls
	Concluding Remarks
	Summary
	Homework: chapter 4

