
Chapter 4D 
The Processor 

Chapter 4 — The Processor — 1 



Instruction-Level Parallelism (ILP) 
 Pipelining: executing multiple instructions in 

parallel 
 To increase ILP 

 Deeper pipeline 
 Less work per stage ⇒ shorter clock cycle 

 Multiple issue 
 Replicate pipeline stages ⇒ multiple pipelines 
 Start multiple instructions per clock cycle 
 CPI < 1, so use Instructions Per Cycle (IPC) 
 E.g., 4GHz 4-way multiple-issue 

 16 BIPS, peak CPI = 0.25, peak IPC = 4 
 But dependencies substantially reduce this. 
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Multiple Issue 
 Static multiple issue 

 Compiler groups instructions to be issued together 
 Packages them into “issue slots” 
 Compiler detects and avoids hazards 

 Dynamic multiple issue 
 CPU examines instruction stream and chooses 

instructions to issue each cycle 
 Compiler can help by reordering instructions 
 CPU resolves hazards using advanced techniques at 

runtime 
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Speculation  
 An approach whereby the compiler or processor guesses 

the outcome of an instruction to remove it as a 
dependence in executing other instructions 

 Example 
 Whether a branch is taken or not 
 Whether a store that proceeds a load does not  refer 

to the same address. 
 Must include two methods 

 A method to check if the guess was right 
 A method to unroll or back out the effects of the 

instructions that were executed speculatively. 
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Speculation  
 Can be  done in the compiler or by the hardware. 
 Moving an  instruction across a branch or a load across a 

store. 
 Recovery mechanism in software 

 Insert an additional routine to check the accuracy of speculation 
 Provide a fix-up routine to use when the speculation is incorrect 

 Recovery mechanism in hardware 
 Buffers the speculative results until it knows they are no longer 

speculative. 
 If the speculation is correct, allow them to be written into the 

registers or memory 
 If the speculation is incorrect, flushes the buffers and re-executes 

the correct instruction sequence. 
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Multi-issue Taxonomy 
Common 
Name 

Issue 
structure 

Hazard 
detection 

Scheduling Distinguishing 
characteristic 

Examples 

Superscaler 
(static) 

dynamic hardware static in-order execution Sun UltraSPARC 
II/III 

Superscaler 
(dynamic) 

dynamic hardware dynamic some out-of-order 
execution 

IBM Power2 

Sperscaler 
(speculative) 

dynamic hardware dynamic 
with 
speculation 

out-of-order 
execution with 
speculation 

Pentium III/4 
MIPS R10K, 
Alpha 21264, HP 
PA 8500, IBM 
RS64III 

VLIW/LIW static software static no hazards 
between issue 
packets 

Trimedia, i860 

EPIC mostly 
static 

mostly 
software 

mostly static explicit 
dependencies 
marked by 
compiler 

Itanium (IA-64 is 
one 
implementation) 
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Static Multiple Issue 
 Compiler groups instructions into “issue 

packets” 
 Group of instructions that can be issued on a 

single cycle 
 Determined by pipeline resources required 

 Think of an issue packet as a very long 
instruction 
 Specifies multiple concurrent operations 
 ⇒ Very Long Instruction Word (VLIW) 
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Scheduling Static Multiple Issue 

 Compiler must remove some/all hazards 
 Reorder instructions into issue packets 
 No dependencies with a packet 
 Possibly some dependencies between 

packets 
 Varies between ISAs; compiler must know! 

 Pad with nop if necessary 
 

Chapter 4 — The Processor — 8 



MIPS with Static Dual Issue 
 Two-issue packets 

 One ALU/branch instruction 
 One load/store instruction 
 64-bit aligned 

 ALU/branch, then load/store 
 Pad an unused instruction with nop 

Address Instruction type Pipeline Stages 

n ALU/branch IF ID EX MEM WB 

n + 4 Load/store IF ID EX MEM WB 

n + 8 ALU/branch IF ID EX MEM WB 

n + 12 Load/store IF ID EX MEM WB 

n + 16 ALU/branch IF ID EX MEM WB 

n + 20 Load/store IF ID EX MEM WB 
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MIPS with Static Dual Issue 
4 read addresses 
2 write addresses 
2 input data ports 
4 output data ports  
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Hazards in the Dual-Issue MIPS 
 More instructions executing in parallel 
 EX data hazard 

 Avoided stalls with forwarding in single issue 
 Now can’t use ALU result in load/store in same packet 

 add  $t0, $s0, $s1 
load $s2, 0($t0) 

 Split into two packets: effectively a stall 
 Load-use hazard 

 Still one-cycle use latency, which means the next two 
instructions cannot use the load result 

 Even for ALU instruction 
 One-instruction use latency, which means its result 

cannot be used in the paired load or store 
 More aggressive scheduling required 
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Scheduling Example 
 Schedule this for dual-issue MIPS 

Loop: lw   $t0, 0($s1)      # $t0=array element 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 0($s1)      # store result 
      addi $s1, $s1,–4      # decrement pointer 
      bne  $s1, $zero, Loop # branch $s1!=0 

ALU/branch Load/store cycle 
Loop: nop lw   $t0, 0($s1) 1 

addi $s1, $s1,–4 nop 2 

addu $t0, $t0, $s2 nop 3 

bne  $s1, $zero, Loop sw   $t0, 4($s1) 4 

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2) 
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Loop Unrolling 
 A technique to get more performance form 

loops that access arrays. 
 Multiple copies of the loop body are 

scheduled together. 
 Reduces loop-control overhead 

 Use different registers per replication 
(register renaming) to avoid loop-carried 
anti-dependencies (name dependencies) 

 Store followed by a load of the same register 
 Avoid WAR and WAW hazards 

Chapter 4 — The Processor — 13 



Loop Unrolling Example 
 Unrolling 4 times 

 Name dependence or antidependence 

Loop: lw   $t0, 0($s1)      # $t0=array[0] 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 0($s1)      # store result 
      lw   $t0, 4($s1)      # $t0=array[1] 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 4($s1)      # store result 
      lw   $t0, 8($s1)      # $t0=array[2] 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 8($s1)      # store result 
      lw   $t0, 12($s1)     # $t0=array[3] 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 12($s1)     # store result 
      addi $s1, $s1,–16     # decrement pointer  
      bne  $s1, $zero, Loop # branch $s1!=0 
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Loop Unrolling Example 
 Unrolling 4 times 

 Register renaming: t0  t1, t2, t3 

Loop: lw   $t0, 0($s1)      # $t0=array[0] 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 0($s1)      # store result 
      lw   $t1, 4($s1)      # $t1=array[1] 
      addu $t1, $t1, $s2    # add scalar in $s2 
      sw   $t1, 4($s1)      # store result 
      lw   $t2, 8($s1)      # $t2=array[2] 
      addu $t2, $t2, $s2    # add scalar in $s2 
      sw   $t2, 8($s1)      # store result 
      lw   $t3, 12($s1)     # $t3=array[3] 
      addu $t3, $t3, $s2    # add scalar in $s2 
      sw   $t3, 12($s1)     # store result 
      addi $s1, $s1,–16     # decrement pointer  
      bne  $s1, $zero, Loop # branch $s1!=0 
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Loop Unrolling Example 

 IPC = 14/8 = 1.75 
 Closer to 2, but at cost of registers and code size 

ALU/branch Load/store cycle 
Loop: addi $s1, $s1,–16 lw   $t0, 0($s1) 1 

nop lw   $t1, 12($s1) 2 

addu $t0, $t0, $s2 lw   $t2, 8($s1) 3 

addu $t1, $t1, $s2 lw   $t3, 4($s1) 4 

addu $t2, $t2, $s2 sw   $t0, 16($s1) 5 

addu $t3, $t4, $s2 sw   $t1, 12($s1) 6 

nop sw   $t2, 8($s1) 7 

bne  $s1, $zero, Loop sw   $t3, 4($s1) 8 
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Statically Scheduled Superscaler 

 Instructions are issued in order: 
 All hazards checked dynamically at issue time 
 Variable number of instructions issued per clock 

cycle: one , two, or more 
 Require the compiler techniques to be efficient. 

 

Common 
Name 

Issue 
structure 

Hazard 
detectio
n 

Scheduling Distinguishing 
characteristic 

Examples 

Superscaler 
(static) 

dynamic hardware static in-order execution Sun 
UltraSPARC 
II/III 
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Superscaler vs VLIW 
 superscaler 

 The code is guaranteed by the hardware to 
execute correctly, independently of the issue 
rate or pipeline structure of the processor 

 VLIW 
 In some VLIW designs, recompilation is 

required 
 In other VLIW designs,  the code would run in 

different implementations, but often  so poorly 
as to make  compilation effectively required. 
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Dynamically Scheduled Superscaler 

 Dynamic scheduling does not restrict the types of 
instructions that can be issued on a single clock cycle. 

 Think of it as Tomasulo’s algorithm extended to support 
multiple-issue 

 Allows N instructions to be issued whenever reservation 
stations are available. 

 Branch prediction is used for fetch and issue (but not 
execute) 
 

Common 
Name 

Issue 
structure 

Hazard 
detection 

Scheduling Distinguishing 
characteristic 

Examples 

Superscaler 
(dynamic) 

dynamic hardware dynamic some out-of-order 
execution 

IBM Power2 
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Tomasulo Organization 

address 

FIFO 

Data, address 

FP adders 

Add1 
Add2 
Add3 

FP multipliers 

Mult1 
Mult2 

From Mem FP Registers 

5 Reservation  
Stations 

Common Data Bus (CDB) 

To Mem 

FP  instruction 
Queue 

Load Buffers 

Store  
Buffers 

Load1 
Load2 
Load3 
Load4 
Load5 
Load6 
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Tomasulo Algorithm 
 Control & buffers  for each function unit (FU) 

 FU buffers called  a “reservation station” (RS);  
 A RS for a FU 
 Instructions in RS have pending operands 

 Registers in instructions replaced by values or pointers to 
reservation stations or load buffers if pending;  
 called  register renaming (avoids WAR, WAW hazards) 
 4-bit tag: 5 reservation stations and 6 load buffers 

 Results to FU from RS, not through registers, over 
Common Data Bus (CDB) that broadcasts results to all FUs 

 Load and Stores treated as FUs with RSs as well 
 Integer instructions can go across branches, allowing  

FP ops beyond a basic block in FP queue 
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Reservation Station Components 
 Op: Operation to perform in the unit (e.g., + or –) 
 Qj, Qk: Reservation station IDs producing source 

registers (value to be written) 
 Note: No ready flags as in Scoreboard; Qj,Qk=0 => ready 
 Store buffers only have Qi for RS producing result 

  Vj, Vk: Value of Source operands 
 Store buffers has V field, result to be stored 
 Either V or Q file is valid for each operand 

    A: used to hold an address for a load or store 
    Busy: Indicates reservation station or FU is busy 
  
 Register result status—Indicates which functional unit will 

write each register, if one exists. Blank when no pending 
instructions that will write that register.  
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Tomasulo Algorithm 
1. Issue—(dispatch) get instruction from FP Op Queue 
     If an RS entry is free (no structural hazard), issues an instruction &     
     reads its operands if available. (register renaming: avoid WAR and  
     WAW hazards) 
2. Execution—(issue) operate on operands (EX) 
     When both operands ready, then execute; if not ready, watch   
     Common Data Bus, waiting for result (avoid RAW hazards) 
3. Write result—finish execution (WB) 
     Write on Common Data Bus to all awaiting RS units, FP registers, and  
     store buffers;  mark its reservation station available 

 Normal data bus: data + destination (“go to” bus) 
 Common data bus: data + source  (“come from” bus) 

 64 bits of data + 4-bit tag of Functional Unit  source address 
 Does the broadcast 
 Write if tags matches (expected FU produces result) 
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Why Do Dynamic Scheduling? 
 Why not just let the compiler schedule 

code? 
 Not all stalls are predicable 

 e.g., cache misses 
 Can’t always schedule around branches 

 When branch outcome is dynamically 
determined 

 Different implementations of an ISA have 
different latencies and hazards 
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Dynamic Pipeline Scheduling 
 Allow the CPU to  

 execute instructions out of order to avoid stalls 
 But commit result to registers in order 

 Example 
 lw    $t0, 20($s2) 
addu  $t1, $t0, $t2 
sub   $s4, $s4, $t3 
slti  $t5, $s4, 20 

 Can start sub while addu is waiting for lw, which 
might take many clock cycles (when lw causes a data 
cache miss) 

 Dynamic scheduling allows such hazards to be 
avoided either fully or partially 
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Dynamic Scheduling: Issue 
 Simple pipeline had only one stage to check 

both structural and data hazards: Instruction 
Decode (ID), also called Instruction Issue 

 Dynamic scheduling HW splits the ID pipe stage 
into 2 stages:  

 Issue:  

 Decode instructions, check for structural hazards  

 Read operands:  

 Wait until no data hazards, then read operands  
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HW Schemes to Schedule Instructions 
 Key idea: Allow instructions behind stall to proceed 

 DIVD F0,F2,F4 
 ADDD F10,F0,F8 
 SUBD F12,F8,F14 

 Enables out-of-order execution and allows out-of-order 
completion (e.g., schedule SUBD before slow DIVD) 
 In a dynamically scheduled pipeline, all instructions still 

pass through issue stage in order (in-order issue) 
 Will distinguish  

 when an instruction begins execution from  
 when it completes execution;  
 between the two times, the instruction is in execution 
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Advantages of Dynamic Scheduling 
 Dynamic scheduling - hardware rearranges the 

instruction execution to reduce stalls while 
maintaining data flow and exception behavior 

 It handles cases in which dependences were 
unknown at compile time  
 it allows the processor to tolerate unpredictable delays such as 

cache misses, by executing other code while waiting for the miss 
to resolve 

 It allows code compiled for one pipeline to run 
efficiently on a different pipeline  

 It simplifies the compiler  
 Hardware speculation, a technique with significant 

performance advantages, builds on dynamic 
scheduling 
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Speculative Superscaler 
Common 
Name 

Issue 
structure 

Hazard 
detection 

Scheduling Distinguishing 
characteristic 

Examples 

Superscaler 
(speculative) 

dynamic hardware dynamic with 
speculation 

out-of-order 
execution with 
speculation 

Pentium III/4 
MIPS R10K, 
Alpha 21264, 
HP PA 8500, 
IBM RS64III 

Hardware-based Speculation 
• Dynamic branch prediction to choose which instructions to 
execute 
• Speculation to allow execution of instructions before control 
dependencies are resolved 
• Dynamic scheduling to deal with scheduling of different 
combinations of basic blocks 
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Dynamically Scheduled CPU 

Results also sent 
to any waiting 

reservation stations 
Reorders buffer  is 

the buffer in the 
commit unit for 

register writes that 
hold  results until it 
is safe to store the 
results to memory 

or a register 

Can supply 
operands for 

issued instructions 

Preserves 
dependencies 

Hold pending 
operands and 

operation 

Decide when it is safe 
to release the result  of 
operation to memory or  

registers operation 
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Speculation 
 “Guess” what to do with an instruction 

 Start operation as soon as possible 
 Check whether guess was right 

 If so, complete the operation 
 If not, roll-back and do the right thing 

 Common to static and dynamic multiple issue 
 Speculate on branch outcome: move  

 Move an instruction across an branch 
 Roll back if path taken is different 

 Speculate on load 
 Move a load across a store 
 Roll back if the location is updated by the store 
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Memory Data Dependences 
 Besides branches, long memory latencies are one of the 

biggest performance challenges today. 

 To preserve sequential (in-order) state in the data caches 
and external memory (so that recovery from exceptions is 
possible) stores are performed in order. This takes care of 
antidependences (WAR) and output dependences (WAW) to 
memory locations. 

 However, loads can be issued out of order with respect to 
stores if the out-of-order loads check for data dependences 
with respect to previous, pending stores. 

 
WAW   WAR   RAW 
store X   load X   store X 

:    :   : 
store X   store X   load X 
 Chapter 4 — The Processor — 32 



Memory Dependencies 

st r1, (r2) 
ld r3, (r4) 

 
   When can we execute the load? 
       Does the load move across the store? 
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Memory Data Dependences 
 Memory Aliasing:  

 Two memory references involving the same 
memory location (collision of two memory 
addresses). 

 Memory Disambiguation:  
 Determining whether two memory references will 

alias or not (whether there is a dependence or not). 
 Memory Dependency Detection: 

 Must compute effective addresses of both memory 
references 

 Effective addresses can depend on run-time data 
and other instructions 
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Conservative OOO Load Execution 
st r1, (r2) 
ld r3, (r4)  

 Split execution of store instruction into two phases:\ 
 address calculation and  
 data write 

 (load bypassing) Can execute load before store, if 
addresses known and r4 != r2 

 Each load address compared with addresses of all 
previous uncommitted stores   
 can use partial conservative check i.e., bottom 12 bits of 

address 
 Don’t execute load if any previous store address not 

known 
 MIPS R10K, 16 entry address queue 
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Address Speculation 

 Assume that r4 != r2  
 

 Execute load before store address known 
 

 Need to hold all completed but uncommitted load/store 
addresses in program order 
 

 If subsequently find r4==r2, squash load and all following 
instructions 
   => Large penalty for inaccurate address speculation 

st r1, (r2) 
ld r3, (r4) 
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Memory Dependence Prediction 
st r1, (r2) 
ld r3, (r4)  

 
 Guess that r4 != r2 and execute load before 

store 
 If later find r4==r2, squash load and all 

following instructions, but mark load instruction 
as store-wait for future executions 

 Subsequent executions of the same load 
instruction will wait for all previous stores to 
complete 

 Periodically clear store-wait bits 
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Compiler/Hardware Speculation 
 SW: Compiler can reorder instructions 

 Also include  a “fix-up” routine to recover from 
incorrect guess 

 HW: can look ahead for instructions to 
execute 
 Buffer speculative results until it knows the 

speculation is correct 
 Allow the buffer contents to be written into the 

register or memory if the speculation is correct, 
 Flush the buffers on incorrect speculation 

Chapter 4 — The Processor — 38 



Speculation and Exceptions 
 What if exception occurs on a speculatively 

executed instruction? 
 e.g., speculative load before null-pointer check 
 A speculated instruction should not cause an 

exception: unneeded negative performance effects 
 For static speculation (compiler) 

 Can add ISA support for deferring exceptions 
 For dynamic speculation (hardware) 

 Can buffer exceptions until instruction is no more 
speculative 
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HW Support for Compiler Speculation 

 Three capabilities are required for speculation 
 (compiler) Ability to find instructions that can be 

speculatively moved. 
 (Hw) Ability to ignore exceptions in speculated 

instructions 
 (Hw) Ability to speculatively interchange loads and 

stores, or stores and stores, which may have address 
conflicts. 

 Two types of exceptions 
 Termination: memory protection violation: ignore 
 Resumption: page faults: acceptable 
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For Preserving Exception Behavior 
 There are four methods 

1. The hardware and operating system cooperatively ignore 
(terminating) exceptions for speculative instructions. As we will see 
later, this approach preserves exception behavior only for correct 
programs, but not for incorrect ones. This approach may be viewed as 
unacceptable for some programs, but it has been used, under 
program control, as a “fast mode” in several processors. 
2. Speculative instructions that never raise (terminating) exceptions 
are used, and checks are introduced to determine when a 
(terminating) exception should occur. 
3. A set of status bits, called poison bits, are attached to the result 
registers written by speculated instructions when the instructions 
cause (terminating) exceptions. The poison bits cause a fault when a 
normal instruction attempts to use the register. 
4. A mechanism is provided to indicate that an instruction is 
speculative, and the hardware buffers the instruction result until it is 
certain that the instruction is no longer speculative. 
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Dynamically Scheduled CPU 

Results also sent 
to any waiting 

reservation stations 
Reorders buffer  is 

the buffer in the 
commit unit for 

register writes that 
hold  results until it 
is safe to store the 
results to memory 

or a register 

Can supply 
operands for 

issued instructions 

Preserves 
dependencies 

Hold pending 
operands and 

operation 

Decide when it is safe 
to release the result  of 
operation to memory or  

registers operation 
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Adding Speculation to Tomasulo 
 Must separate execution from allowing instruction to 

finish or “commit” 
 This additional step is called instruction commit; it 

occurs  
 whenever the branch prediction is confirmed for the branch 

immediately before a block of speculated instructions. 

 When an instruction is no longer speculative, allow it 
to update the register file or memory.  

 Requires an additional set of buffers to hold results of 
instructions that have finished execution but have not 
committed. 

 This reorder buffer (ROB) is also used to pass results 
among instructions that may be speculated. 
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Reorder Buffer (ROB) 
 In Tomasulo’s algorithm, once an instruction writes its 

result, any subsequently issued instructions will find result in 
the register file 

 With speculation, the register file is not updated until the 
instruction commits  
 when know for sure that the instruction should have executed 

 The ROB supplies operands in the interval between end of 
instruction execution and instruction commit 
 ROB is a source of operands for instructions, just as 

reservation stations (RS) provide operands in 
Tomasulo’s algorithm 

 ROB extends architecture registers as the reservation 
stations did 
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Reorder Buffer Entry Fields 
 Each entry in the ROB contains four fields:  
1. Instruction type  

• A branch (has yet no destination result), a store (has a memory 
address destination), or a register operation (ALU operation or 
load, each of which has a register destination for writeback) 

2. Destination 
• Register number (for loads and ALU operations) or  

memory address (for stores) - where the instruction result should 
be written 

3. Value 
• Value of instruction result being held until the instruction commits 

4. Ready 
• Indicates that instruction has completed execution, and the value 

is ready once the instruction commits 
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Reorder Buffer Operation 
 Holds instructions in FIFO order, exactly as issued 
 When instructions complete, results placed into ROB 

 Supplies operands to other instruction between 
execution complete & commit ⇒ more registers 
like RSs (reservation stations) 

 Tag results with ROB buffer number instead of 
reservation station number 

 Instructions commit ⇒values at head of ROB placed 
in registers 

 As a result, easy to undo speculated instructions  
on mispredicted branches or on exceptions 
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Reorder Buffer Operation 

Reorder 
Buffer 

FP 
Op 

Queue 

FP Adder FP M’plier 

Res Stations Res Stations 

FP Regs 

Commit path from head of buffer 
In-order commit 
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Tomasulo Algorithm 

1. Issue—get instruction from FP Op Queue 
  If reservation station free (no structural hazard),  

control issues instr & sends operands (renames registers). 

2. Execution—operate on operands (EX) 
  When both operands ready then execute; 

 if not ready, watch Common Data Bus for result 

3. Write result—finish execution (WB) 
  Write on Common Data Bus to all awaiting units;  

mark reservation station available 
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Speculative Tomasulo Algorithm 
1. Issue (dispatch) —get instruction from FP Op Queue 

  If reservation station and reorder buffer slot free, issue instr & 
send operands & reorder buffer index for destination 

2. Execution (issue)—operate on operands (EX) 
  Checks for RAW hazards; when both operands ready then 

execute; if not ready, watch Common Data Bus for result; when 
both in reservation station, execute.  

3. Write result—finish execution (WB) 
  Write on Common Data Bus to all awaiting RSs & reorder buffer; 

mark reservation station available. 
4. Commit  (graduation) —update register with reorder result 

  When instr. at head of reorder buffer & result are present and the 
branch before it has been confirmed, update register with result 
(or store to memory) and remove instr from reorder buffer. 
Mispredicted branch flushes reorder buffer above (executed after) 
the branch 

Note: steps added for speculation in blue 
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Does Multiple Issue Work? 

 Yes, but not as much as we’d like 
 Programs have real dependencies that limit ILP 
 Some dependencies are hard to eliminate 

 e.g., pointer aliasing 
 Some parallelism is hard to expose 

 Limited window size during instruction issue 
 Memory delays and limited bandwidth 

 Hard to keep pipelines full 
 Speculation can help if done well 

The BIG Picture 
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Power Efficiency 
 Complexity of dynamic scheduling and 

speculations requires power 
 Multiple simpler cores may be better 
Microprocessor Year Clock Rate Pipeline 

Stages 
Issue 
width 

Out-of-order/ 
Speculation 

Cores Power 

i486 1989 25MHz 5 1 No 1 5W 

Pentium 1993 66MHz 5 2 No 1 10W 

Pentium Pro 1997 200MHz 10 3 Yes 1 29W 

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W 

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W 

Core 2006 2930MHz 14 4 Yes 2 75W 

UltraSparc III 2003 1950MHz 14 4 No 1 90W 

UltraSparc T1 2005 1200MHz 6 1 No 8 70W 
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The Opteron X4 Microarchitecture 
§4.11 R

eal S
tuff: The A

M
D

 O
pteron X4 (B

arcelona) P
ipeline 

72 physical 
registers 
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What is architectural registers? 
16 Visible register in ISA 

Register renaming requires to 
the processor to maintain a map  
between the architectural registers 
and the physical registers, indicating 
that which physical register is the 
Most current copy of  an architectural  
register 



The Opteron X4 Pipeline Flow 
 For integer operations 

 FP is 5 stages longer 
 Up to 106 RISC-ops in progress 

 Bottlenecks 
 Complex instructions with long dependencies 
 Branch mispredictions 
 Memory access delays 
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Fallacies 
 Pipelining is easy (!) 

 The basic idea is easy 
 The devil is in the details 

 e.g., detecting data hazards 

 Pipelining is independent of technology 
 So why haven’t we always done pipelining? 
 More transistors make more advanced techniques 

feasible 
 Pipeline-related ISA design needs to take account of 

technology trends 
 e.g., predicated instructions 

§4.13 Fallacies and P
itfalls 
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Pitfalls 
 Poor ISA design can make pipelining 

harder 
 e.g., complex instruction sets (VAX, IA-32) 

 Significant overhead to make pipelining work 
 IA-32 micro-op approach 

 e.g., complex addressing modes 
 Register update side effects, memory indirection 

 e.g., delayed branches 
 Advanced pipelines have long delay slots 

Chapter 4 — The Processor — 55 



Chapter 4 — The Processor — 56 

Concluding Remarks 
 ISA influences design of datapath and control 
 Datapath and control influence design of ISA 
 Pipelining improves instruction throughput 

using parallelism 
 More instructions completed per second 
 Latency for each instruction not reduced 

 Hazards: structural, data, control 
 Multiple issue and dynamic scheduling (ILP) 

 Dependencies limit achievable parallelism 
 Complexity leads to the power wall 

§4.14 C
oncluding R

em
arks 



Summary 
 Leverage Implicit Parallelism for 

Performance: Instruction Level Parallelism 
 Loop unrolling by compiler to increase ILP 
 Branch prediction to increase ILP 
 Dynamic HW exploiting ILP 

 Works when cannot know dependences at compile 
time 

 Can hide L1 cache misses 
 Code for one pipelined machine runs well on another 
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Homework: chapter 4 
 Due before starting the midterm on Oct. 27. 
 Exercise 4.14 
 Exercise 4.22 
 Exercise 4.29 
 Exercise 4.35 
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