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Computer Aided Ship Design

Part I. Optimization Method
Ch. 3 Unconstrained Optimization Method

September, 2013
Prof. Myung-Il Roh

Department of Naval Architecture and Ocean Engineering,
Seoul National University of College of Engineering

Computer Aided Ship Design Lecture Note
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Ch. 3 Unconstrained Optimization 
Method

3.1 Gradient Method
3.2 Golden Section Search Method
3.3 Direct Search Method 
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3.1 Gradient Method

1. Steepest Descent Method
2. Conjugate Gradient Method
3. Newton’s Method
4. Davidon-Fletcher-Powell(DFP) Method
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) 
Method
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§ Step 2: Iterate successively to find the optimum design point.

3.1 Gradient Method
1. Steepest Descent Method (1/6)
§ Step 1: The search direction(d) is taken as the negative of the gradient of the objective function(f) at 

current iteration since the objective function decrease mostly rapidly.
§ The direction of gradient vector of  f , Ñf(x), is the direction of maximum increase of f at x

Ñf(x(1))

Search 
direction

Ex) Minimize the objective function

( )f= - º -Ñd c xSearch direction

x*

x(0)

x(2)

x(1)x(3)

Ñf(x(0))

Search 
direction

x1

x2

Ref) Appendix  A.1:
Directional Derivative & Gradient Vector
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3.1 Gradient Method
1. Steepest Descent Method (2/6): Example
þ By using the steepest descent method, find the minimum design 

point for the following function of 2-variables. 

Given: Starting design point x(0) = (0, 0), convergence tolerance e = 0.001   

Find: x(1), x(2)

2
221

2
12121 22),( xxxxxxxxf +++-=Minimize

Æ Optimization problem with 
two unknown variables

-4 -2 0 2 4

-4

-2

0

2

4

x2

A

A: True minimum design point
x1

* = -1.0, x2
* = 1.5, f (x1

*, x2
*) = -1.25

-4

-2

0

2

4
-4

-2

0

2

4

0

50

100

-4

-2

0

2

4

f(x1, x2)

x1

x2

x1
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3.1 Gradient Method
1. Steepest Descent Method (3/6): Example

n 1st Iteration: Find  

÷÷
ø

ö
çç
è

æ
-

=÷÷
ø

ö
çç
è

æ
++-

++
=÷÷

ø

ö
çç
è

æ
Ñ=Ñ

1
1

221
241

0
0

)(
21

21)0(

xx
xx

ff x

 )( )0()0()0()1( xxx fÑ-= a

÷÷
ø

ö
çç
è

æ-
=÷÷

ø

ö
çç
è

æ
-

-÷÷
ø

ö
çç
è

æ
=

a
a

a
1

1
0
0

(1) 2 2 2

2

( ) 2 2
2

f a a a a a

a a

= - - + - +

= -

x

(1)( ) 2 2 0 1.0df
d

a a
a

= - = ® =
x

2
221

2
12121 22),( xxxxxxxxf +++-=Minimize

÷÷
ø

ö
çç
è

æ
++-
++

=Ñ=Ñ
21

21
21 221

241
),()(

xx
xx

xxff x

x1

x2

÷÷
ø

ö
çç
è

æ-
=\

1
1)1(x

)0(x

)1(x

Starting design point  x(0) = (0, 0)

How can we differentiate f with respect to     ?a(1)x

Substituting                into the objective 
function

(1) ( , )a a= -x

To minimize        ,(1) ( )f x

Replacing       to     for 
convenience

(0) a  a
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Substituting                       into the objective 
function

(2) ( 1 ,1 )a a= - + +x

3.1 Gradient Method
1. Steepest Descent Method (4/6): Example

n 2nd Iteration: Find

 )( )1()1()1()2( xxx fÑ-= a

÷÷
ø

ö
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è
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è
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è

æ-
=

a
a

a
1
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1

1
1

125)( 2)2( --= aaxf

÷÷
ø
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è

æ
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-

=÷÷
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è
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=÷÷

ø

ö
çç
è
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Ñ=Ñ

1
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221
241

1
1

)(
21

21)1(

xx
xx

ff x

-2 -1.5 -1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

x1

x2

)0(x

)1(x
)2(x

(2)x

Replacing       to     for 
convenience

(1) a  a

(2)( ) 10 2 0 0.2df
d

a a
a

= - = ® =
x

To minimize        ,(2) ( )f x

(2) 0.8
1.2
-æ ö

\ = ç ÷
è ø

x

2
221

2
12121 22),( xxxxxxxxf +++-=Minimize Starting design point  x(0) = (0, 0)
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1 2(2)

1 2

1 4 20.8 0.2
( )

1.2 1 2 2 0.2
x x

f f
x x

+ +- æ öæ ö æ ö
Ñ = Ñ = =ç ÷ç ÷ ç ÷- + + -è ø è øè ø

x

 )( )2()2()2()3( xxx fÑ-= a

÷÷
ø

ö
çç
è

æ
+
--

=÷÷
ø

ö
çç
è

æ
-

-÷÷
ø

ö
çç
è

æ-
=

a
a

a
2.02.1

2.08.0
2.0

2.0
2.1

8.0

2.108.004.0)( 2)3( --= aaxf

-2 -1.5 -1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

x1

x2

)0(x

)1(x
)2(x

)3(x

n 3rd Iteration: Find (3)x

2
221

2
12121 22),( xxxxxxxxf +++-=Minimize Starting design point  x(0) = (0, 0)

Replacing       
to       for 
convenience

(1) a
 a

Substituting                                  into the 
objective function

(3) ( 0.8 0.2 ,1.2 0.2 )a a= - - +x

(3)( ) 0.08 0.08 0 1.0df
d

a a
a

= - = ® =
x

To minimize        ,(3) ( )f x

(3) 1
1.4
-æ ö

\ = ç ÷
è ø

x

3.1 Gradient Method
1. Steepest Descent Method (5/6): Example
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2

x1

x2

)0(x

)1(x
)2(x

)3(x

2
221

2
12121 22),( xxxxxxxxf +++-=Minimize Starting design point  x(0) = (0, 0)

n 4th Iteration: Find the minimum design point.
To obtain the minimum design point, we have to iterate.

If                   , then stop the iterative process because x(k+1) can be 
assumed as the minimum design point.

( 1) ( )x xk k e+ - £

3.1 Gradient Method
1. Steepest Descent Method (6/6): Example
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To minimize                 ,*( )f + Dx x

[Reference] Differentiation of Function of x with Respect to 
the Another Variable

(1) 2 2 2

2

( ) 2 2
2

f a a a a a

a a

= - - + - +

= -

x

1 2( , ) ( )f x x f= x : f is the function of x.
(1) ( , )a a= -x : x(1) is the function of α

Æ Substituting x (1) into  f , f is , then, a 
function of α and can be differentiated with 
respect to α .

* * *1( ) ( ) ( ) 
2

T Tf f+ D = + D + D Dx x x c x x H x x

*( )f + Dx xThe second-order Taylor series expansion of

* * *1( ) ( ) ( ) 
2

T Tf f+ D - = D + D Dx x x c x x H x x

In the above equation, we assume that 
x* is a constant and        is a variable.Dx

*1( ) ( ) 
2

T Tf D = D + D Dx c x x H x x

To minimize f ,

In the similar way, we can consider the followings:

*

*

* 1

( ) ( ) 0

( ) 
 ( )

df
d

-

D
= + D =

D
Þ D = -

Þ D = -

x c H x x
x

H x x c
x H x c ‘Newton’s method’

(1) ( , )a a= -xSubstituting                into the objective 
function

(1)( ) 2 2 0 1.0df
d

a a
a

= - = ® =
x

÷÷
ø

ö
çç
è

æ-
=\

1
1)1(x

How can we differentiate f with respect to     ?a

To minimize        ,(1) ( )f x

2
221

2
12121 22),( xxxxxxxxf +++-=Minimize Starting design point  x(0) = (0, 0)
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3.1 Gradient Method
2. Conjugate Gradient Method (1/5)

þ This method requires only a simple modification to the 
steepest descent method and dramatically improves the 
convergence rate of the optimization process. 

þ The current steepest descent direction is modified by 
adding a scaled direction used in the previous iteration.

n Step 1 : Estimate a starting design point as     . Set the iteration 
counter       . Also, specify a tolerance    for stopping criterion. 
Calculate

Check stopping criterion. If            , then stop. Otherwise, go 
to Step 4.
It is noted that Step 1 of the conjugate gradient method and 
steepest descent method is the same.

)0(x
0=k e

)( )0()0()0( xcd f-Ñº-=

e<)0(c
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3.1 Gradient Method
2. Conjugate Gradient Method (2/5)

n Step 2 : Compute the gradient of the objective function as               .
If          , then stop; otherwise continue.

n Step 3 : Calculate the new search direction as

)( )()( kk f xc Ñ=

e<)(kc

2)1()(

)1()()(

)/( -

-

=

+-=
kk

k

k
k

kk

cc

dcd

b

b Previous search direction

The current search direction is calculated by adding a scaled direction used in the previous iteration.

n Step 4 :  Compute a step size       to minimize                .

n Step 5 : Change the design point as follows, then set          and go 
to Step 2.

)( )()( kkf dx a+kaa =

)()()1( k
k

kk dxx a+=+

1+= kk
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3.1 Gradient Method
2. Conjugate Gradient Method (3/5) : Example

þ 1st Iteration: Find 

2
221

2
12121 22),( xxxxxxxxf +++-=Minimize

÷÷
ø

ö
çç
è

æ
++-
++

=Ñ=Ñ
21

21
21 221

241
),()(

xx
xx

xxff x

x1

x2

)0(x

)1(x

(1)x

Starting design point  x(0) = (0, 0)

Replacing       to     for 
convenience

0 a  a

(1) 2 2 2

2

( ) 2 2
2

f a a a a a

a a

= - - + - +

= -

x

(1) ( , )a a= -xSubstituting                into the objective 
function

(1)( ) 2 2 0 1.0df
d

a a
a

= - = ® =
x

÷÷
ø

ö
çç
è

æ-
=\

1
1)1(x

To minimize        ,(1) ( )f x

( )(0) (0) (0) 0
0

f f æ ö
= - = -Ñ = -Ñ ç ÷

è ø
d c x

(1) (0) (0)
0a= +x x d

1 2

1 2

1 4 2 1 1
1 2 2 1 1

x x
x x

+ + -æ ö æ ö æ ö
= - = - =ç ÷ ç ÷ ç ÷- + + -è ø è øè ø

0 1
0 1

a
a

a
- -æ ö æ ö æ ö

= + =ç ÷ ç ÷ ç ÷
è ø è ø è ø

Note: Step 1 of the conjugate gradient method 
and steepest descent method is the same.
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2)1()(

)1()()(

)/( -

-

=

+-=
kk

k

k
k

kk

cc

dcd

b

b

)()()1( k
k

kk dxx a+=+

3.1 Gradient Method
2. Conjugate Gradient Method (4/5): Example

2
221

2
12121 22),( xxxxxxxxf +++-=Minimize

n 2nd Iteration-Find (2)x
Compute the gradient of the objective function as 

( )(1) (1)

1 2

1 2

1 4 21 1
1 2 21 1

f

x x
f

x x

= Ñ

+ +- -æ öæ ö æ ö
= Ñ = =ç ÷ç ÷ ç ÷- + + -è ø è øè ø

c x

Calculate the new search direction as

( )
( )

2(1)
(1) (1) (0) (1) (0)

1 2(0)

1 1 02
1 1 22

f

f
b

Ñ
= - + = - +

Ñ

- -æ ö æ ö æ ö
= - + =ç ÷ ç ÷ ç ÷-è ø è ø è ø

x
d c d c d

x

( )(0) (0) 1
1

f
-æ ö

= -Ñ = ç ÷
è ø

d x

(1) 1
1
-æ ö

= ç ÷
è ø

x



15
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

-2 -1.5 -1 -0.5 0 0.5 1
-1

-0.5

0
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x1

x2

)0(x

)1(x

)2(x

3.1 Gradient Method
2. Conjugate Gradient Method (5/5): Example

2
221

2
12121 22),( xxxxxxxxf +++-=Minimize

Replacing       to     for convenience1 a  a

(2) (1) (1)
1a= +x x d

1 0 1
1 2 1 2

a
a

- -æ ö æ ö æ ö
= + =ç ÷ ç ÷ ç ÷+è ø è ø è ø

(1) 0
2
æ ö

= ç ÷
è ø

d(1) 1
1
-æ ö

= ç ÷
è ø

x

(2) ( 1,1 2 )a= - +xSubstituting                    into the objective function
(2) 2( ) 4 2 1f a a= - -x

(2)( ) 8 2 0 0.25df
d

a a
a

= - = ® =
x

To minimize        ,(1) ( )f x

(2) 1
1.5
-æ ö

\ = ç ÷
è ø

x

( )(2) (2) 1 0
1.5 0

f f
-æ ö æ ö

= Ñ = Ñ =ç ÷ ç ÷
è ø è ø

c x

÷÷
ø

ö
çç
è

æ
++-
++

=Ñ=Ñ
21

21
21 221

241
),()(

xx
xx

xxff x

Check stopping criterion.

(2) 0 e= <c →Stop!

→Minimum design point

)()()1( k
k

kk dxx a+=+
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3.1 Gradient Method
3. Newton’s Method (1)

Consider the quadratic approximation of the 
function f(x) at x=x(k) using the second-order Taylor 
expansion.

( ) ( )
( ) 2 ( ) 2 3( ) ( ) ( ) ( ) ( ) ( )

2
( ) 1 ( )( ) ( ) ( )

2

k k
k k k k k kdf x d f xf x x f x x x O x

dx dx
+ D = + D + D + D

x* which minimizes f (x)

Given:

Find:

NO
1k k= +

YES

Set                   and stop the iteration.* ( 1)kx x +=

Calculate the small change           in design.( )kxD
( ) 2 ( )

( )
2

( ) ( )/
k k

k df x d f xx
dx dx

æ ö æ ö
D = -ç ÷ ç ÷

è ø è ø

f(x)

x0 x(k)

f(x(k))

x(k+1)

f(x(k+1))

( )kxD

x*

( 1)kx +D

x(k+2)

Differentiate this equation with respect to         .( )kxD
( ) ( ) 2 (( ) )

2
( )

( )
( ) ( ) ( ) 0

kk
k

k

k kdf x x x
x

df x d f x
d dx dx

D
D

= +
D+

=
The necessary condition 
for minimization of this 
function

In this equation, x(k) is a constant and is a variable. So, 
the following equation is a quadratic function in terms of       .

( )kxD

( )(
( ) 2 ( ) 2( ) ( )) ( )

2
( )( ) 1 ( )( ) ( )

2
k kk k

k k
k df x d f xf x f x

d
x

x
x x

dx
+ D D D= + +

( 1) ( ) ( )k k kx x x+ = + DAssume that f(x) has minimum at                     . 

Is |          |< ε ?( )kxD

( )f x

( )kxD
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Assume that f(x) has minimum at                   . (1) (0) (0)x x x= + D
3.1 Gradient Method 
3. Newton’s Method (2/9): Example

x* which minimizes f (x)

Given:

Find:

f(x)

x0 x(0)

f(x(0))

x(1)

f(x(1))
(0)xD

2( ) 2 2f x x x= - + Consider the quadratic approximation of the 
function f(x) at x=x(0) using the second-order Taylor 
expansion.

( )
(0) 2 (0) 2(0) (0) (0) (0) (0)

2
( ) 1 ( )( ) ( )

2
df x d f xf x x f x x x

dx dx
+ D = + D + D

NO1
0 1 1

k k= +
= + =

Calculate the small change           in design.(0)xD

( ) ( )

(0) 2 (0)
(0)

2

3 3

( ) ( )/

2 2 / 2 2
x x

df x d f xx
dx dx

x
= =

æ ö æ ö
D = -ç ÷ ç ÷

è ø è ø
= - + = -

Is |          |< ε ?(0)xD

1=

0k =

3=

2= -

Differentiate this equation with respect to         .(0)xD
(0) (0) 2 (0)

2

(0)
(0)

(0)
( ) ( ) ( ) 0df x df x d f x

d d
x x

x x dx
+

=
D

D
D

+ =
The necessary condition 
for minimization of this 
function

In this equation,  x(0) is a constant and is a variable. So, 
the following equation is a quadratic function in terms of       .

(0)xD

( )
(0) 2 (0)

(0) (0) 2(0) (0) 0
2

( )( ) 1 ( )( ) ( )
2

df x d f xf x f x
d

x x
x

x
dx

D D D+ = + +

(0)xD

Starting design point  x(0) = 3
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f(x)

x0

f(x(0))

f(x(1))

x*

Is it possible to find the x* which minimizes a 
cubic function at once?

Consider the quadratic approximation of the 
function f(x) at x=x(1) using the second-order Taylor 
expansion.

( )
(1) 2 (1) 2(1) (1) (1) (1) (1)

2
( ) 1 ( )( ) ( )

2
df x d f xf x x f x x x

dx dx
+ D = + D + D

YES

Set and stop the iteration.* (2)x x=

Calculate the small change           in design.(1)xD

( ) ( )

(1) 2 (1)
(1)

2

1 1

( ) ( )/

2 2 / 2 0
x x

df x d f xx
dx dx

x
= =

æ ö æ ö
D = -ç ÷ ç ÷

è ø è ø
= - + =

(2) (1) (1)x x x= + DAssume that f(x) has minimum at                     . 

Is  |          |< ε?(1)xD

1k =

x(0)x(1)

(0)xD

1= 3=

2= -

Differentiate this equation with respect to         .(1)xD
(1) (1) 2 (1)

2

(1)
(1)

(1)
( ) ( ) ( ) 0df x df x d f x

d d
x x

x x dx
+

=
D

D
D

+ =
The necessary condition 
for minimization of this 
function

In this equation,  x(1) is a constant and is a variable. So, 
the following equation is a quadratic function in terms of       .

(1)xD

( )
(1) 2 (1)

(1) (1) 2(1) (1) 1
2

( )( ) 1 ( )( ) ( )
2

df x d f xf x f x
d

x x
x

x
dx

D D D+ = + +

(1)xD

x* which minimizes f (x)

Given:

Find:

2( ) 2 2f x x x= - +
Starting design point  x(0) = 3

3.1 Gradient Method 
3. Newton’s Method (3/9): Example
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f(x)

x0

x(0)

f(x(0))

x(1)

f(x(1))
(0)xD

Consider the quadratic approximation of the 
function f(x) at x=x(0) using the second-order Taylor 
expansion.

( ) ( )
(0) 2 (0) 2 3(0) (0) (0) (0) (0) (0)

2
( ) 1 ( )( ) ( ) ( )

2
df x d f xf x x f x x x O x

dx dx
+ D = + D + D + D

NO1
0 1 1

k k= +
= + =

Calculate the small change           in design.(0)xD

( ) ( )

(0) 2 (0)
(0)

2

2
33

( ) ( )/

113 6 2 / 6 6
12xx

df x d f xx
dx dx

x x x
==

æ ö æ ö
D = -ç ÷ ç ÷

è ø è ø

= - + - - = -

(1) (0) (0)x x x= + DAssume that f(x) has minimum at                     . 

Is  |          |< ε?(0)xD

0k =

3=

12
12

=

x* which minimizes f (x)

Given:

Find:

3 2( ) 3 2f x x x x= - +

Is it possible to find the x* which 
minimizes a cubic function at once?

Differentiate this equation with respect to         .(0)xD
(0) (0) 2 (0)

2

(0)
(0)

(0)
( ) ( ) ( ) 0df x df x d f x

d d
x x

x x dx
+

=
D

D
D

+ =
The necessary condition 
for minimization of this 
function

In this equation,  x(0) is a constant and is a variable. So, 
the following equation is a quadratic function in terms of       .

(0)xD

( )
(0) 2 (0)

(0) (0) 2(0) (0) 0
2

( )( ) 1 ( )( ) ( )
2

df x d f xf x f x
d

x x
x

x
dx

D D D+ = + +

(0)xD

Starting design point  x(0) = 3

3.1 Gradient Method 
3. Newton’s Method (4/9): Example
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f(x)

x

0

x(0)

f(x(0))

x(1)

f(x(1))
(1)xD

Consider the quadratic approximation of the 
function f(x) at x=x(1) using the second-order Taylor 
expansion.

( ) ( )
(1) 2 (1) 2 3(1) (1) (1) (1) (1) (1)

2
( ) 1 ( )( ) ( ) ( )

2
df x d f xf x x f x x x O x

dx dx
+ D = + D + D + D

NO1
1 1 2

k k= +
= + =

Calculate the small change           in design.(1)xD

( ) ( )

(1) 2 (1)
(1)

2

2
2525
1212

( ) ( )/

3 6 2 / 6 6 0.388
xx

df x d f xx
dx dx

x x x
==

æ ö æ ö
D = -ç ÷ ç ÷

è ø è ø

= - + - - = -

(2) (1) (1)x x x= + DAssume that f(x) has minimum at                     . 

Is  |          |< ε?(1)xD

1k =

3=
2.083=f(x(2))

x(2) 1.70=

Why is it not possible to 
find the x* which minimizes 
a cubic function at once?

Since the second-order Taylor expansion is just an approximation for f(x) at the point x(0) or x(1), 
x(1) or x(2) will probably not be the precise minimum design point of f(x).

Is it possible to find the x* which 
minimizes a cubic function at once?

Differentiate this equation with respect to         .(1)xD
(1) (1) 2 (1)

2

(1)
(1)

(1)
( ) ( ) ( ) 0df x df x d f x

d d
x x

x x dx
+

=
D

D
D

+ =
The necessary condition 
for minimization of this 
function

In this equation,  x(1) is a constant and is a variable. So, 
the following equation is a quadratic function in terms of       .

(1)xD

( )
(1) 2 (1)

(1) (1) 2(1) (1) 1
2

( )( ) 1 ( )( ) ( )
2

df x d f xf x f x
d

x x
x

x
dx

D D D+ = + +

(1)xD

3.1 Gradient Method 
3. Newton’s Method (5/9): Example

x* which minimizes f (x)

Given:

Find:

3 2( ) 3 2f x x x x= - +
Starting design point  x(0) = 3
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n 1st Iteration: Find 

÷÷
ø

ö
çç
è

æ
++-
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=÷÷
ø

ö
çç
è

æ
=Ñ=Ñ

21

21
21 221

241
),()(

2

1

xx
xx

f
f

xxff
x

xx ( )

2 2

2
1 1 2

2 2

2
1 2 2

4 2
,

2 2

f f
x x x
f f

x x x

æ ö¶ ¶
ç ÷¶ ¶ ¶ æ öç ÷= = ç ÷ç ÷¶ ¶ è ø
ç ÷
¶ ¶ ¶è ø

H x

(1)x
(1) (0) (0)= + Dx x xAssume that f(x) has minimum at                        .

In this equation,  x(0) is a constant and         is a variable. So, the following 
equation is a quadratic function in terms of       .

(0) (0) (0) (0(0) (0) (0) (0) )1( ) ( ) ( ) ( ) ( )
2

T Tf f fD D+ = +Ñ + D Dx x xx x xHx x

(0)Dx

Consider the quadratic approximation of the function f(x) at x=x(0) using the 
second-order Taylor expansion.

(0) (0) (0) (0) (0) (0) (0) (0)1( ) ( ) ( ) ( ) ( )
2

T Tf f f+ D = +Ñ D + D Dx x x x x x H x x

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x= = - + + +x Starting design point  x(0) = (0, 0)

How?

(0)Dx

3.1 Gradient Method
3. Newton’s Method (6/9): Example of Function of Two Variables
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n 1st Iteration: Find (1)x (0) (0) (0) (0(0) (0) (0) (0) )1( ) ( ) ( ) ( ) ( )
2

T Tf f fD D+ = +Ñ + D Dx x xx x xHx x

(0)(0)
(0) (0 (0)

(0)
)( ) ( ) ( ) 0

( )
f f¶ +

= Ñ
D

D+ =
¶ D

x xH
x

x x x

Differentiate this equation with respect to         .(0)xD
The necessary condition for 
minimization of function f(x1, x2)

÷÷
ø

ö
çç
è

æ
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=÷÷
ø

ö
çç
è

æ
=Ñ=Ñ

21

21
21 221
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),()(

2

1

xx
xx

f
f

xxff
x

xx

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x= = - + + +x Starting design point  x(0) = (0, 0)

-2 -1.5 -1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

x1

x2

)0(x

)1(x(0)(0) (0)( ) ( )f= -ÑDH x xx
Calculate the small change           in design.(0)xD

( )

2 2

2
1 1 2(0) (0)

2 2

2
1 2 2

1 4 2
( ) ,

1 2 2

f f
x x x

f
f f

x x x

æ öæ ö¶ ¶
ç ÷ç ÷¶ ¶ ¶-æ ö æ öç ÷ç ÷-Ñ = = =ç ÷ ç ÷ç ÷ç ÷¶ ¶è ø è øç ÷ç ÷ç ÷¶ ¶ ¶è øè ø

x H x

1

(0)

(0) 1

2

4 2 1
2 2 1

-æ ö -æ ö æ ö
=ç ÷ ç ÷ ç ÷ç ÷ è ø è

D

D øè ø

x

x
1

( 0)

(0)

2

1
1.5

æ ö -æ ö
® =ç ÷ ç ÷ç ÷ èè

D

øD ø

x

x

(1) 0) ( )(0 0 1 1
0 1.5 1.5

x x
- -æ ö æ ö æ ö

\ = + = + =ç ÷ ç ÷ ç ÷
è ø è ø è

D
ø

x

How?

( )( )) 1 ([ ( )] ( )k kk f-- ÑD = H x xx

3.1 Gradient Method
3. Newton’s Method (7/9): Example of Function of Two Variables
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n 2nd Iteration-Find (2)x

(2) (1) (1)= + Dx x xAssume that f(x) has minimum at                         .

In this equation, x(1) is a constant and         is a variable. So, the following 
equation is a quadratic function in terms of       .

(1) (1) (1) (1(1) (1) (1) (1) )1( ) ( ) ( ) ( ) ( )
2

T Tf f fD D+ = +Ñ + D Dx x xx x xHx x

(1)xD

Consider the quadratic approximation of the function f(x) at x=x(1) using the 
second-order Taylor expansion.

(1) (1) (1) (1) (1) (1) (1) (1)1( ) ( ) ( ) ( ) ( )
2

T Tf f f+ D = +Ñ D + D Dx x x x x x H x x

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x= = - + + +x Starting design point  x(0) = (0, 0)

(1) 1
1.5

x
-æ ö

= ç ÷
è ø

(1)(1)
(1) (1 (1)

(1)
)( ) ( ) ( ) 0

( )
f f¶ +

= Ñ
D

D+ =
¶ D

x xH
x

x x x

Differentiate this equation with respect to         .
(1)xD

The necessary condition 
for minimization of 
function f(x1, x2)

In the same way as 1st Iteration,

(1)xD

3.1 Gradient Method
3. Newton’s Method (8/9): Example of Function of Two Variables
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3.1 Gradient Method
3. Newton’s Method (9/9): Example of Function of Two Variables

n 2nd Iteration-Find (2)x

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x= = - + + +x Starting design point  x(0) = (0, 0)

(1) 1
1.5

x
-æ ö
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è ø

÷÷
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ö
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1
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xx
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xxff
x

xx(1)(1) (1)( ) ( )f= -ÑDH x xx
Calculate the small change         in design.(1)xD

( )

2 2

2
1 1 2(1) (1)

2 2

2
1 2 2

0 4 2
( ) ,

0 2 2

f f
x x x

f
f f

x x x

æ öæ ö¶ ¶
ç ÷ç ÷¶ ¶ ¶æ ö æ öç ÷ç ÷-Ñ = = =ç ÷ ç ÷ç ÷ç ÷¶ ¶è ø è øç ÷ç ÷ç ÷¶ ¶ ¶è øè ø

x H x

1

(1)

(1) 1

2

4 2 0
2 2 0

-æ ö æ ö æ ö
=ç

D
÷ ç ÷ ç ÷ç ÷ è ø è øè D ø

x

x
1

(1)

(1)

2

0
0

æ ö æ ö
® =ç

D

D
÷ ç ÷ç ÷ è øè ø

x

x

(2) (1) (1) 1 0 1
1.5 0 1.5

x x
- -æ ö æ ö æ ö

\ = + = + =ç ÷ ç ÷ ç ÷
è ø è ø è

D
ø

x

Check stopping criterion.
(1) 0 eD = <x

→Stop!

→Optimal design point 

-2 -1.5 -1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

x1

x2

)0(x

)1()2( xx =

( )( )) 1 ([ ( )] ( )k kk f-- ÑD = H x xx
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3.1 Gradient Method
3. Modified Newton’s Method (1/2)
þ In this method, we treat of the Newton’s 

method as the search direction and use any of the one-
dimensional search methods to calculate the step size in the 
search direction.

n Step 1 : Estimate a starting design point     . 
Set iteration counter         . Specify a tolerance   for the stopping  
criterion.

n Step 2 : Calculate                         for       to    . If           , then 
stop the iterative process. Otherwise, continue.

n Step 3 : Calculate the Hessian matrix       at current design 
point      .

)0(x
0=k e

1=i ni
kk

i xfc ¶¶= /)( )()( x ( )k e<c

( )kH
( )kx 2

( )( ) , 1, , ; 1, ,k

i j

f i n j n
x x

é ù¶
= = =ê ú¶ ¶ê úë û

H x L L

( ) ( ) 1 ( )[ ( )] ( )k k kf-D = - Ñx H x x
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3.1 Gradient Method
3. Modified Newton’s Method (2/2)

n Step 4 : Calculate the search direction as follows:

( ) ( ) 1 ( )k k k-= D = -d x H c * * *1( ) ( ) ( ) 
2

T Tf f+ D = + D + D Dx x x c x x H x x

*

* * 1

( ) / ( ) 0
( )  ( )

df d
-

D D = + D =

Þ D = - Þ D = -

x x c H x x
H x x c x H x c

When                                                                 ,
the necessary condition for minimization of this function is as follows:

n Step 5 : Update the design point as                         , where      
is calculated to minimize                   . Any one-dimensional 
search method may be used to calculate    .

n Step 6 : Set             and go to Step 2.

( 1) ( ) ( )k k ka+ = +x x d

a
)( )()( kkf dx a+

1+= kk

a
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1. It requires the storing of the n×n matrix         .

2. It becomes very difficult and sometimes, impossible 
to compute the elements of the matrix         .

3. It requires the inversion of the matrix          at each 
iteration.

4. It requires the evaluation of the quantity                       
at each iteration.

( )( )kH x

( )( )kH x

( )( )kH x

( ) 1 ( )( ) ( )k kf- ÑH x x

The Newton’s method is not very useful in practice, due to
following features of the method:

3.1 Gradient Method
3. Disadvantages of the Newton’s Method
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3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method (1/6)

þ This method builds an approximation for the inverse of 
the Hessian matrix of      using only the first derivatives.

n Step 1 : Estimate a starting design point     . 
Choose a symmetric positive definite nxn matrix       as an 
approximation for the inverse of the Hessian matrix of the
objective function. In the absence of more information,             
may be chosen. Also, specify a tolerance   for the stopping  
criterion. Set         and compute the gradient vector 
as                              .

n Step 2 : Calculate the norm of the gradient vector as       .
If            , then stop the iterative process. Otherwise, continue.
It is noted that Step 1 and 2 of this method and the steepest 
descent method are the same.

)0(x
)0(A

IA =)0(

0=k
e

(0) (0) (0)( )f= - º -Ñd c x

)(kc
e<)(kc

( )f x
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n Step 3 : Calculate the search direction as follows:

Here, the matrix    is used as an estimate for the inverse of
the Hessian matrix of the objective function.

n Step 4 : Compute optimum step size           to minimize              .

n Step 5 : Update the design point as                         .

1-H
A

)()()( kkk cAd -=

)( )()( kkf dx a+aa =k

)()()1( k
k

kk dxx a+=+

3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method (2/6)

( ) ( ) 1 ( )[ ( )] ( )k k kf-D = - Ñx H x x
Newton’s method

( ) ( ) 1 ( )( )k k k-\ = -d H c
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n Step 6 : Update the matrix      - approximation for the inverse of
the Hessian matrix of the objective function - as follows:

where, the correction matrices        and       are calculated as 
below.

)(kA

nnkkkk ´++=+    ;     )()()()1( CBAA

1+= kkn Step 7 : Set              and go to Step 2.

matrix
( )kB ( )kC

nnkk

Tkk
k ´

×
=    ;        

)(
)(
)()(

)()(
)(

ys
ssB nnkk

Tkk
k ´

×
-

=     ;      
)(
)(

)()(

)()(
)(

zy
zzCmatrix matrix

( ) ( )

( ) ( 1) ( )

( 1) ( 1)

( ) ( ) ( )

                 :    1
         :    1

( )        :    1
              :

k k
k

k k k

k k

k k k

n
n

f n

a
+

+ +

= ´

= - ´

= Ñ ´

=

s d
y c c
c x
z A y

matrix

matrix

matrix

matrix[ ][ 1] [ 1]n n n n´ ´ = ´

3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method (3/6)

( )

( )

k

ka

d : search direction

: optimum step size
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x2

)0(x

)1(x

n 1st Iteration: Find 

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x= = - + + +x Starting design point  x(0) = (0, 0)

(1)x

(0) (0) 1 4 0 2 0 1
( )

1 2 0 2 0 1
f

+ × + ×æ ö æ ö
= Ñ = =ç ÷ ç ÷- + × + × -è ø è ø

c x

(0) (0) (0) (0) (0) 1
1
-æ ö

= - = - = - = ç ÷
è ø

d A c Ic c

(1)( ) 2 2 0 1.0df
d

a a
a

= - = ® =
x

÷÷
ø

ö
çç
è

æ-
=\

1
1)1(x

To minimize        ,(1) ( )f x

(0) 2 21 ( 1) 2 e= + - = >c

Replacing       to     for 
convenience

0 a  a

Check stopping criterion.

(1) (0) (0)
0

0 1
0 1

a
a

a
a

= +

- -æ ö æ ö æ ö
= + =ç ÷ ç ÷ ç ÷
è ø è ø è ø

x x d

3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method (4/6): Example

(1) 2( ) 2f a a= -x

(1) ( , )a a= -xSubstitute                into the objective 
function
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( )(0) (0) 1
1a -= =s d

( )(0) (0) 1  1
1  1

T -= -s s

Update the matrix      - approximation for 
the inverse of the Hessian matrix of the 
objective function - as follows:

(1)A

( )(1) 1
1
-= -c

(0) (0) 4× =y z

(0) (0) 2× =s y

( )(0) (0) (0) 2
0
-= =z A y

( )(0) (1) (0) 2
0
-= - =y c c

(0) (0)
(0)

(0) (0)

T

=
×

s sB
s y

( )(0) (0) 4  0
0  0

T

=z z

( )1  0
0  0
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(1) (0) (0) (0)

1 0 0.5 0.5 1 0
0 1 0.5 0.5 0 0
0.5 0.5
0.5 1.5

= + +
- -æ ö æ ö æ ö
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A I

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x= = - + + +x Starting design point  x(0) = (0, 0)

3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method (5/6): Example
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n 2nd Iteration: Find (2)x
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Replacing       to     
for convenience

1 a  a

(2) ( 1,1 )a= - +xSubstitute                   into the objective 
function

To minimize        ,(2) ( )f x
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xxff x

(2) (2) 1 4 ( 1) 2 1.5 0
( )

1 2 ( 1) 2 1.5 0
f

+ × - + ×æ ö æ ö
= Ñ = =ç ÷ ç ÷- + × - + ×è ø è ø

c xCheck stopping criterion.

→Stop!

→Optimal design point

Check stopping criterion.

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x= = - + + +x Starting design point  x(0) = (0, 0)

3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method (6/6): Example

n 2nd Iteration: Find (2)x
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3.1 Gradient Method
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (1/6)

þ This method updates the Hessian matrix rather than its 
inverse at every iteration.

n Step 1 : Estimate a starting design point .
Choose a symmetric positive definite nxn matrix       as
an approximation for the Hessian matrix of the objective function.
In the absence of more information, let            . Specify
a tolerance     for the stopping criterion. Set        , and compute
the gradient vector as                   .

n Step 2 : Calculate the norm of the gradient vector as       .
If             , then stop the iterative process. Otherwise, continue.
It is noted that Step 1 and 2 of this method and the steepest 
descent method are the same.

(0)H%

(0) =H I%
0=ke

)( )0()0( xc fÑ=

)(kc
e<)(kc

)0(x
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n Step 3 : Solve the linear system of the following equation to
obtain the search direction.

This equation looks like                        of the Newton’s method,
but       is an approximated Hessian matrix , comprised of the 
first order derivatives.

n Step 4 : Compute optimum step size           to minimize              .

n Step 5 : Update the design point as                         .

)( )()( kkf dx a+aa =k

)()()1( k
k

kk dxx a+=+

( ) ( ) 1 ( )( )k k k-= -d H c%

( )kH%
( ) ( ) 1 ( )( )k k k-= -d H c

( )kH

3.1 Gradient Method
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (2/6)

( ) ( ) 1 ( )[ ( )] ( )k k kf-D = - Ñx H x x
Newton’s method

( ) ( ) 1 ( )( )k k k-\ = -d H c
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n Step 6 : Update the matrix       - approximation for the Hessian
matrix of the objective function - as follows:

where, the correction matrices        and        are given as below.

n Step 7 : Set              and go to Step 2.

3.1 Gradient Method
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (3/6)

matrix( 1) ( ) ( ) ( )       :    k k k k n n+ = + + ´H H D E% %
)(kD )(kE

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ); ;
( ) ( )

T Tk k k k
k k

k k k k= =
× ×

y y c cD E
y s c d

( ) ( )

( ) ( 1) ( )

( 1) ( 1)( )

k k
k

k k k

k kf

a
+

+ +

=

= -

= Ñ

s d
y c c
c x

: change in design

: change in gradient

1+= kk

( )

( )

k

ka

d : search direction

: optimum step size

( )kH%
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)1(x

n 1st Iteration: Find 

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x= = - + + +x Starting design point  x(0) = (0, 0)

(1)x

(0) (0) 1 4 0 2 0 1
( )

1 2 0 2 0 1
f

+ × + ×æ ö æ ö
= Ñ = =ç ÷ ç ÷- + × + × -è ø è ø

c x

(0) (0) 1 (0) (0) (0) 1
( )

1
- -æ ö

= - = - = - = ç ÷
è ø

d H c Ic c%

(1)( ) 2 2 0 1.0df
d
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a

= - = ® =
x ÷÷

ø

ö
çç
è

æ-
=\

1
1)1(x

To minimize        ,(1) ( )f x

(0) 2 21 ( 1) 2 e= + - = >c

Replacing       to     for 
convenience

0 a  a

Check stopping criterion.

(1) (0) (0)
0

0 1
0 1

a
a

a
a

= +

- -æ ö æ ö æ ö
= + =ç ÷ ç ÷ ç ÷
è ø è ø è ø

x x d

(0) (0)0
,

0
æ ö

= =ç ÷
è ø

x H I%

3.1 Gradient Method
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (4/6): Example 

(1) 2( ) 2f a a= -x

(1) ( , )a a= -xSubstitute                into the objective 
function
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( )(0) (0) 1
1a -= =s d

(0) (0) 4 0
0 0

T æ ö
= ç ÷
è ø

y y

Update the matrix       - approximation for 
the Hessian matrix of the objective 
function - as follows:

(0)H%

( )(1) 1
1
-= -c

(0) (0) 2× = -c d

(0) (0) 2× =y s

( )(0) (1) (0) 2
0
-= - =y c c

(0) (0)
(0)

(0) (0)

T

=
×

y yD
y s

(0) (0) 1 1
1 1

T -æ ö
= ç ÷-è ø

c c

0.5 0.5
0.5 0.5
-æ ö

= ç ÷-è ø
(1) (0) (0) (0)

1 0 2 0 0.5 0.5
0 1 0 0 0.5 0.5
2.5 0.5
0.5 0.5

= + +
-æ ö æ ö æ ö

= + +ç ÷ ç ÷ ç ÷-è ø è ø è ø
æ ö

= ç ÷
è ø

H H D E% %

(1) (0) (0) (0)= + +H H D E% %

2 0
0 0
æ ö
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è ø

(0) 1
,

1
æ ö

= ç ÷-è ø
c

(0) (0)
(0)

(0) (0)
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=

×
c cE

c d

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x= = - + + +x Starting design point  x(0) = (0, 0)

(0) 1
,

1
æ ö

= ç ÷-è ø
c (0) 1

1
-æ ö

= ç ÷
è ø

d

3.1 Gradient Method
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (5/6): Example 
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n 2nd Iteration: Find (2)x
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(1) 2 e= >c

(2) 2( ) 4 2 1f a a= - -x

÷÷
ø

ö
çç
è

æ-
=\

5.1
1)2(x

(2) 0 e= £c

-2 -1.5 -1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

x1

x2

)0(x

)1(x

)2(x

(2)( ) 8 2 0 0.25df
d

a a
a

= - = ® =
x

(2) (1) (1)
1

1 0 1
1 2 1 2

a

a
a

= +

- -æ ö æ ö æ ö
= + =ç ÷ ç ÷ ç ÷+è ø è ø è ø

x x d

Replacing       to     
for convenience

1 a  a

(2) ( 1,1 2 )a= - +xSubstitute                     into the objective 
function

To minimize        ,(2) ( )f x

÷÷
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çç
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æ
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21
21 221

241
),()(

xx
xx

xxff x

(2) (2) 1 4 ( 1) 2 1.5 0
( )

1 2 ( 1) 2 1.5 0
f

+ × - + ×æ ö æ ö
= Ñ = =ç ÷ ç ÷- + × - + ×è ø è ø

c xCheck stopping criterion.

→Stop!

→Optimal design point 

Check stopping criterion.

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x= = - + + +x Starting design point  x(0) = (0, 0)

(1) (1) (1)= -H d c%

( )(1) 0
2=d(1) 2.5 0.5

,
0.5 0.5
æ ö

= ç ÷
è ø

H% ( )(1) 1
1
-= -c

3.1 Gradient Method
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (6/6): Example 

n 2nd Iteration: Find (2)x

(1) (1) 1 (1)( )-= -d H c%
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3.2 Golden Section Search Method 
(One Dimensional Search Method)
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3.2 Golden Section Search Method 
- Phase 1: Global Search (1/2)

þ Searching for the interval in which the minimum lies
n In the figure, starting at        , we evaluate         at         , where         

is a small number. If the value        is smaller than the value       , we 
then take an increment of           in the step size(i.e., the increment is 
1.618 times the previous increment    ). (See Fibonacci sequence)

da =
)(df )0(f
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3.2 Golden Section Search Method 
- Phase 1: Global Search (2/2)

n If the function at        is smaller than that at the previous point       
and the next point      , (i.e., ) the 
minimum point lies between     and       .

(The interval in which the minimum lies is called the interval of uncertainty.)

1-qa 2-qa
qa )()(   ),()( 121 qqqq ffff aaaa << ---
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åå
-

=
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q

j

j
ql

q

j

j
qu daadaa

upper lower

aq-2 aq-1 aq

f(a)

a0

…

16.326d2.618d
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9.472d
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= = =

f(a)

Æ
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(au)

lower
(al)

The interval of uncertaintyThe interval of uncertainty

d

a0

…

…

1.0 1.618

1.0:1.618 = 0.382:0.618
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1

1
0

, (1.618)
q

j
a q

j
a a d

-

-
=

º =å
n Therefore, upper and lower limits on the interval of uncertainty are
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[Reference] Fibonacci Sequence

Fibonacci sequence defined as

0 10;    1;F F= = 1 2 ,    2,  3,  n n nF F F n- -= + = L
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( )1 1 5,   1.6180339887
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1
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F
F
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®¥

-
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- = -

è 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Any number of the Fibonacci sequence for n(>1) is obtained by adding
the previous two numbers, so the sequence is given as follows.
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(1 - t)I(k)=(1/3)I(k)tI(k)=(2/3)I(k)

ab

I(k)

al au

(a)

(1 - t)I(k)=(1/3)I(k) tI(k)=(2/3)I(k)

aa

< If t = 2/3 >

If f(aa) < f(ab), then minimum 
point  lies between al and ab.

aq-2 aq

f(a)

the interval of uncertainty

al au

= =

Repeat to reduce 
the interval of 

uncertainty

I(k+1)=tI(k)=(2/3)I(k)

al¢
(b)

au¢
tI(k+1) (1 - t)I(k+1)

ab¢aa¢

aal¢ aa¢ ab¢ au¢

For new interval of uncertainty, we always 
have to compute f(aa¢), f(ab¢ ).
<Question>
Is there any method to use the previous 
function values?

3.2 Golden Section Search Method 
- Phase 2: Local Search (1/3)

n Reduction of the interval of uncertainty by comparing 
function values at aa and ab

• We consider two points symmetrically located from 
either end as shown in the figure – points aa and ab are 
located at a distance of t I(k) from either end of the 
interval.

• Comparing function values at aa and ab, either the left 
(al , aa) or the right (ab , au) portion of the interval gets 
discarded because the minimum cannot lie there.
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If f(aa) < f(ab), then minimum 
point lies between al and ab.

tI(k+1) (1 - t)I(k+1)

ab¢

(1 - t)I(k) tI(k)

aa

(1 - t)I(k)tI(k)
I(k)

al au
(a)

I(k+1) =tI(k)

al¢ au¢
(b)

0)1( )()( =--× kk II ttt

n Reduction of the interval of uncertainty by comparing function values at aa and ab

— We consider two points symmetrically located from either end as shown in the figure – points 
aa and ab are located at a distance of t I(k) from either end of the interval.

n Reduction of the interval of uncertainty by comparing function values at aa and ab

— We consider two points symmetrically located from either end as shown in the figure – points 
aa and ab are located at a distance of t I(k) from either end of the interval.

1.  f(aa) will be used for the next interval of uncertainty I(k+1) .
2. aa can be equal to aa¢ or ab¢ of the next interval of 
uncertainty I(k+1).

1.  f(aa) will be used for the next interval of uncertainty I(k+1) .
2. aa can be equal to aa¢ or ab¢ of the next interval of 
uncertainty I(k+1).

¢= aa aa

tI(k+1)(1 - t)I(k+1)
aa¢

)1()( )1()1( +-=- kk II tt
)()( )1()1( kk II ttt -=-

)()( kk II t=

3-1. Assume that aa is equal to aa¢ .3-1. Assume that aa is equal to aa¢ .

Because t =1, this assumption is wrong.

3-2. Assume that aa is equal to ab¢ .3-2. Assume that aa is equal to ab¢ .
¢= ba aa

)1()()1( +=- kk II tt
)()()1( kk II ××=- ttt

01 2 =-+tt
618.1,618.0 -=t 618.0

ab

3.2 Golden Section Search Method 
- Phase 2: Local Search (2/3)
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3.2 Golden Section Search Method 
- Phase 2: Local Search (3/3)

If f(aa) > f(ab), then minimum 
point  lies between aa and au.

tI(k+1) (1 - t)I(k+1)

ab¢

(1 - t)I(k) tI(k)

(1 - t)I(k)tI(k)
ab

I(k+1) =tI(k)

al¢ au¢
(b)

0)1( )()( =--× kk II ttt

¢= bb aa

tI(k+1)(1 - t)I(k+1)

aa¢

)1()( )1()1( +-=- kk II tt
)()( )1()1( kk II ttt -=-

)()( kk II t=

3-1. Assume that ab is equal to ab¢ .3-1. Assume that ab is equal to ab¢ .

Because t =1, this assumption is wrong.

3-2. Assume that ab is equal to aa¢ .3-2. Assume that ab is equal to aa¢ .
¢= ab aa

)1()()1( +=- kk II tt
)()()1( kk II ××=- ttt

01 2 =-+tt
618.1,618.0 -=t 618.0

I(k)

al au
(a)

aa

1.  f(ab) will be used for the next interval of uncertainty I(k+1) .
2. ab can be equal to aa¢ or ab¢ of the next interval of 
uncertainty I(k+1).

1.  f(ab) will be used for the next interval of uncertainty I(k+1) .
2. ab can be equal to aa¢ or ab¢ of the next interval of 
uncertainty I(k+1).

n Reduction of the interval of uncertainty by comparing function values at aa and ab

— We consider two points symmetrically located from either end as shown in the figure – points 
aa and ab are located at a distance of t I(k) from either end of the interval.

n Reduction of the interval of uncertainty by comparing function values at aa and ab

— We consider two points symmetrically located from either end as shown in the figure – points 
aa and ab are located at a distance of t I(k) from either end of the interval.
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3.2 Golden Section Search Method: Summary (1/3) 

n Step 1: For a chosen small number   , let    be the smallest integer
to satisfy                                      where           , and       are
calculated from                                 . The upper and lower
bounds on    (the optimum value for    ) are given as follows.

n Step 2 : Compute         and         where                      and

(interval of uncertainty               ). 

n Step 3 : Compute         and        , and go to Step 4, Step 5 or Step 6.

)()( ),()( 121 qqqq ffff aaaa << ---
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=
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=º=º
2

0
2

0
)618.1(,)618.1(

q

j

j
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q

j

j
qu daadaa

luI aa -=
)( af a )( bf a Ila 382.0+=aa

Ilb 618.0+=aa

a

d

)( af a )( bf a

(1 - t)I(k) tI(k)

aa

(1 - t)I(k)tI(k)

ab

I(k)

al au

1,q qa a -

0
(1.618) , ( 0,1,2, )

q
j

q
j

qa d
=

= =å K
*a

2qa -
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3.2 Golden Section Search Method: Summary (2/3)

n Step 4 : If                    , then minimum point      lies between
and     , i.e.,                . The new limits for the reduced interval of
uncertainty are   and          . Also,           . Compute          , 
where                                and go to Step 7.

n Step 5 : If                    , then minimum point      lies between    
and     , i.e.,                 . Similar to the procedure in Step 4, let

and           , so that           . Compute         , where
and go to Step 7.

n Step 6 : If                    , let           and           and return to Step 2.

)()( ba ff aa < *a la
ba

ll aa =' bu aa =' ab aa ='
)''(382.0'' lula aaaa -+=

)'( af a

)()( ba ff aa > *a

al aa =' uu aa =' ba aa ='
)''(618.0'' lulb aaaa -+=

aa

ua

*
l ba a a£ £

*
a ua a a£ £

)'( bf a

)()( ba ff aa = l aa a= u ba a=

tI(k+1) (1 - t)I(k+1)

ab¢

(1 - t)I(k) tI(k)

aa

(1 - t)I(k)tI(k)

ab

I(k)

al au

I(k+1) =tI(k)

al¢ au¢

tI(k+1)(1 - t)I(k+1)

aa¢

Step 4

tI(k+1) (1 - t)I(k+1)

ab¢

(1 - t)I(k) tI(k)

(1 - t)I(k)tI(k)
ab

I(k+1) =tI(k)

al¢ au¢
(b)

tI(k+1)(1 - t)I(k+1)

aa¢

I(k)

al auaa

Step 5
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3.2 Golden Section Search Method: Summary (3/3)

n Step 7 : If the new interval of uncertainty                 is small

enough to satisfy a stopping criterion (i.e.,        ), let

and stop. Otherwise, delete the primes(‘) on                 and     

and return to Step 3. 

e<'I 2/)''(*
lu aaa -=

' ' 'u lI a a= -

', ', 'l a ba a a 'ua

tI(k+1) (1 - t)I(k+1)

ab¢

(1 - t)I(k) tI(k)

aa

(1 - t)I(k)tI(k)

ab

I(k)

al au

I(k+1) =tI(k)

al¢ au¢

tI(k+1)(1 - t)I(k+1)

aa¢

Step 4

tI(k+1) (1 - t)I(k+1)

ab¢

(1 - t)I(k) tI(k)

(1 - t)I(k)tI(k)
ab

I(k+1) =tI(k)

al¢ au¢
(b)

tI(k+1)(1 - t)I(k+1)

aa¢

I(k)

al auaa

Step 5
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3.3 Direct Search Method 

1. Hooke & Jeeves Direct Search Method
2. Nelder & Mead Simplex Method
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3.3 Direct Search Method 
1. Hooke & Jeeves Direct Search Method (1/16) 

þ This method is a sequential technique, each step of which consists 
of two kinds of move, the ‘Local Pattern Search’ at a base point 
and ‘Global Pattern Move’ to the optimal design point.

1b

2b

2
0t

3
0t

3b
4b 54

0 bt Þ

1x

2x

5
0t

7

Global Pattern Move

Local Pattern Search

Base point

2. Global Pattern Move2. Global Pattern Move

3. Local Pattern Search3. Local Pattern Search

1. Base Point1. Base Point
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3.3 Direct Search Method 
1. Hooke & Jeeves Method (2/16)

1x

2x

1b

2b

2
0t

1. ‘Local Pattern Search’ at the 
base point b1

•Search in x1 direction.
- No improvement of the value of the 

objective function in x1 direction à No 
movement in x1 direction
•Search in x2 direction.
- Improvement of the value of the objective 

function in x2 direction à Movement in the 
positive x2 direction
•Move and define the base point b2.

2. ‘Global Pattern Move’ at the 
base point b2

•Find a temporary base point t0
2 by 

symmetrical displacement of b1 to b2.
•Because the value of the objective 
function at t0

2 is better than that at b2, 
perform the ‘Local Pattern Search’ at t0

2.

2. Global Pattern Move2. Global Pattern Move

3. Local Pattern Search3. Local Pattern Search

1. Base Point1. Base Point



53
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

3.3 Direct Search Method
1. Hooke & Jeeves Method (3/16)

1x

2x

1b

2b

2
0t

3
0t

3b

3. ‘Local Pattern Search’ at the 
temporary base point t0

2

•Search in x1 direction.
- Improvement of the value of the objective 

function in x1 direction à Movement in the 
positive x1 direction
•Search in x2 direction.
- Improvement of the value of the objective 

function in x2 direction à Movement in the 
positive x2 direction
•Move and define the base point b3.

4. ‘Global Pattern Move’ at the 
base point b3

•Find a temporary base point t0
3 by

symmetrical displacement of b2 to b3.
•Because the value of the objective 
function at t0

3 is not better than that at b3,
perform the ‘Local Pattern Search’ at b3.

2. Global Pattern Move2. Global Pattern Move

3. Local Pattern Search3. Local Pattern Search

1. Base Point1. Base Point
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3.3 Direct Search Method
1. Hooke & Jeeves Method (4/16)

1x

2x

1b

2b

2
0t

3
0t

3b

4b
4
0t

5. ‘Local Pattern Search’ at the 
base point b3

•Search in x1 direction.
- Improvement of the value of the objective 

function in x1 direction à Movement in the 
positive x1 direction
•Search in x2 direction.
- No improvement of the value of the objective 

function in x2 direction à No movement in x2
direction
•Move and define the base point b4.

6. ‘Global Pattern Move’ at the 
base point b4

•Find a temporary base point t0
4 by 

symmetrical displacement of b3 to b4.
•Because the value of the objective 
function at t0

4 is better than that at b4, 
perform the ‘Local Pattern Search’ at t0

4 .

2. Global Pattern Move2. Global Pattern Move

3. Local Pattern Search3. Local Pattern Search

1. Base Point1. Base Point
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3.3 Direct Search Method
1. Hooke & Jeeves Method (5/16)

1x

2x

1b

2b

2
0t

3
0t

3b

4b
4
0t

7. ‘Local Pattern Search’ at the 
temporary base point t0

4

•Search in x1 direction.
- No improvement of the value of the objective 

function in x1 direction à No movement in x1
direction
•Search in x2 direction.
- No improvement of the value of the objective 

function in x2 direction à No movement in x2
direction
•Because there is no improvement of the 
value of the objective function in x1 and 
x2 direction, the current base point is 
defined as the base point b5.

8. ‘Global Pattern Move’ at the 
base point b5

•Find a temporary base point t0
5 by 

symmetrical displacement of b4 to b5.
•Because the value of the objective 
function at t0

5 is not better than at b5, 
perform the ‘Local Pattern Search’ at b5.

5= b 5
0t

2. Global Pattern Move2. Global Pattern Move

3. Local Pattern Search3. Local Pattern Search

1. Base Point1. Base Point
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3.3 Direct Search Method
1. Hooke & Jeeves Method (6/16)

1x

2x

1b

2b

2
0t

3
0t

3b

4b
4
0t

9. ‘Local Pattern Search’ at the 
base point b5

•Search in x1 direction.
- No improvement of the value of the 

objective function in x1 direction à No 
movement in x1 direction

•Search in x2 direction.
- No improvement of the value of the 

objective function in x2 direction à No 
movement in x2 in x2 direction

•Because there is no improvement of the 
value of the objective function in x1 and 
x2 direction, the current base point 
defined as base point b6.

•Because b5 = b6, reduce the step size by 
half and perform the ‘Local Pattern 
Search’ at b6.

5= b 5
0t

6= b

2. Global Pattern Move2. Global Pattern Move

3. Local Pattern Search3. Local Pattern Search

1. Base Point1. Base Point
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3.3 Direct Search Method 
1. Hooke & Jeeves Method (7/16): Rule of the ‘Local Pattern Search’ (1)

Rule ① Search in the positive xi direction.

- If the value of the 
objective function 
is increased
(Fail)

Rule of the ‘Local Pattern Search’

- If the value of the 
objective function 
is decreased
(Success)

- Move the exploratory point in the positive 
xi direction and evaluate the value of the 
objective function at that point.

bk

- Come back to the previous point 
and search in the negative xi
direction.

bk
F

- Search in the xi+1 direction at the 
current point.

bk
S

Rule ② Search in the negative xi direction.

- If the search in the positive xi direction is 
failed, move the exploratory point in the 
negative  xi direction and evaluate the 
value of the objective function at that point.

bk
F

- If the value of the 
objective function 
is increased
(Fail)

- If the value of the 
objective function 
is decreased
(Success)

- Come back to the previous point 
and search in xi+1 direction.

bk
F

- Search in the xi+1 direction at the 
current point.

bk
F

F

S

- This process of the ‘Local Pattern Search’ is continued for i = 1,…, n.
- After searching in xn direction, the current point is defined as new base point bk+1.

(F: Fail, S: Success)
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bk

§ Rule of the Local Pattern Search
<Case 1> <Case 2>

(F: Fail, S: Success)

F F

S

bk
S

S <Case 3>

bk
F F

F

F

bk

Step/2bk+1 bk+1

1b

2b

2
0t

3
0t

3b
4b 54

0 bt Þ

1x

2x

5
0t

7

Global Pattern Move

Local Pattern Search

Base point

Case 1

Case 2

Case 3

* Super script ‘k’ means the number of step.

3.3 Direct Search Method 
1. Hooke & Jeeves Method (8/16): Rule of the ‘Local Pattern Search’ (2)



59
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

Example of the ‘Local Pattern Search’ 
in the problem with 

two design variables(x1, x2)
(Search in x1 direction)

Example of the ‘Local Pattern Search’ 
in the problem with 

two design variables(x1, x2)
(Search in x1 direction)

3.3 Direct Search Method
1. Hooke & Jeeves Method (9/16): Algorithm Summary (1)

1b

1. Compute the value of the objective function at 
the starting base point b1.

2. Compute the value of the objective function at 
b1±δ1, where δ1 is input step size and a vector 
with n elements(δ1 = [δ1, 0, 0, …, 0]T). If the value 
of the objective function is decreased, b1±δ1 is 
adopted as t1

1 and the search is continued.

3. Compute the value of the objective function at 
t1

1±δ2, where δ2 is also input step size and a 
vector with n elements( δ2 = [0, δ2, 0, …, 0]T). If 
the value of the function is decreased, t1

1±δ2 is 
adopted as t2

1.

1x

2x 1
1= t

Example of the ‘Local Pattern Search’ 
in the problem with 

two design variables(x1, x2)
(Search in x2 direction)

Example of the ‘Local Pattern Search’ 
in the problem with 

two design variables(x1, x2)
(Search in x2 direction)

1b

1x

2x 1
1= t

1
2t

1) Local Pattern Search (Problem with n design variables)1) Local Pattern Search (Problem with n design variables)
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3.3 Direct Search Method
1. Hooke & Jeeves Method (10/16): Algorithm Summary (2)

4. After the ‘Local Pattern Search’ for all design variables, new base point is 
defined. (new base point b2 = tn

1)

5. Perform the ‘Global Pattern Move’ from the previous base point along the line 
from the previous to current base point.

1) Local Pattern Search (Problem with n design variables)1) Local Pattern Search (Problem with n design variables)
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3.3 Direct Search Method
1. Hooke & Jeeves Method (11/16): Algorithm Summary (3)

2) Global Pattern Move2) Global Pattern Move

1. Define the temporary base point located the same distance between the 
previous and current base point(obtained from ‘Local Pattern Search’) from 
the current base point (‘Global Pattern Move’), and calculate the value of the 
objective function at this point. The temporary base point is calculated by 
‘Global Pattern Move’ as follows.

kkkkkk bbbbbt -=-+= +++ 111
0 2)(2

2b

2
0t

3
0t

3b
4b

Example of the ‘Global Pattern Move’ in the 
problem with two design variables(x1, x2)

when the value of the objective function at 
the temporary base point is not improved.

Example of the ‘Global Pattern Move’ in the 
problem with two design variables(x1, x2)

when the value of the objective function at 
the temporary base point is not improved.

2. If the result of the temporary base point is a better point 
than the previous base point, perform the ‘Local Pattern 
Search’ at the temporary base point. Otherwise, come 
back to the previous base point and perform the ‘Local 
Pattern Search’.
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3.3 Direct Search Method
1. Hooke & Jeeves Method (12/16): Algorithm Summary (4)

2b

2
0t

3
0t

3b
4b

3) Closing Condition (Stopping Criterion)3) Closing Condition (Stopping Criterion)

1. When even this ‘Local Pattern Search’ fails(bk+1 = bk, there is no 
improvement), reduce the step sizes δi by half, δi/2, and resume the 
‘Local Pattern Search’.

Example of the ‘Global Pattern Move’ in the 
problem with two design variables(x1, x2)

when the value of the objective function at 
the temporary base point is not improved.

Example of the ‘Global Pattern Move’ in the 
problem with two design variables(x1, x2)

when the value of the objective function at 
the temporary base point is not improved.

2. If the step size δi is smaller than εi, stop the iteration 
and current base point is the optimal design point.
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3.3 Direct Search Method
1. Hooke & Jeeves Method (13/16): Example

þ If the contour line of the objective function of shipbuilding cost with two 
design variables, L/B and CB, is given as shown in the Figure, find the 
optimal value of the L/B and CB to minimize the shipbuilding cost by using 
the ‘Hooke & Jeeves Direct Search Method’ and plot the procedures in the 
graph.
n Hooke & Jeeves Direct Search Method

l Starting design point: L/B = 7.0, CB = 0.2
l Step size at the starting design point: D(L/B) = 0.5, D(CB) = 0.1

CB

L/B

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Contour line of the objective function(f = const.) 

Optimization problem Å
with two unknown variables
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BCxBLx == 21   ,/

• Iteration 1  : Local Pattern Search 1

1
2t

1
2

1 tb =

•Iteration 2  : Global Pattern Move 1
0 1

2
0

Define the temporary base point by using  and  
(6,   0.4)® =

b b
t

2
0t

CB

L/B

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0b1
1t

2
0t
1
2t

1b

Because the value of the objective 
function at    is improved, this point is 
adopted as a new base point.

0
1 2

1 0
0

1 1
0 1 1
1 1
1 2 2

(7,   0.2),   0.5,   0.1,

Search from in  direction (6.5, 0.2)
Search from in  direction (6.5, 0.3)

x x

x
x

= D = D =

=

- ® =

+ ® =

b
t b

t t
t t

Because the value of the objective function at    is improved, perform the ‘Local Pattern 
Search’ at this point.

3.3 Direct Search Method
1. Hooke & Jeeves Method (14/16): Example
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Because the value of the objective function at    is improved, this point is adopted as 
a new base point.

•Iteration 3  :  Local Pattern Search 2

2
2

2 tb =
•Iteration 4  : Global Pattern Move 2

1 2

3
0

Define the temporary base point by using  and  
(4.5,   0.7)® =

b b
t

•Iteration 5  : Local Pattern Search 3

3
2

3 tb =

CB

L/B

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0b1
1t

1b

2
0t2

1t

3
0t 3

1t

2
2t

2b
3
2t

3b

2 2
0 1 1
2 2
1 2 2

Search from  in  direction (5.5,   0.4)
Search from  in  direction (5.5,   0.5)

x
x

- ® =

+ ® =

t t
t t

2
2t

Because the value of the objective 
function at    is improved, this point is 
adopted as a new base point.

3 0
0 1 1
3 3
1 2 2

Search from  in +  direction (5,   0.7)
Search from  in -  direction (5,   0.6)

x
x

® =

® =

t t
t t

3
2t

3.3 Direct Search Method
1. Hooke & Jeeves Method (15/16): Example
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•Iteration  6  : Global Pattern Move 3

•Iteration 7  : Local Pattern Search 4

•Iteration  8  : Global Pattern Move 4

•Iteration  9 : Stopping the iteration of search

CB

L/B

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0b1
1t

1b

2
0t2

1t
2b

3
0t 3

1t
3b

4
0t

4 3
0 =t b

4
0t

Because the value of the objective 
function at    is not improved, 

2 3

4
0

Define the temporary base point by using  and  
(4.5,   0.7)® =

b b
t

4 4 4
2 1 0= =t t t

4
0t

Because there is no improvement of 
the value of the objective function 
from the temporary base design point      

in x1 direction and x2 direction,

4 3
1 2

5 4
0

  0.25,   0.05,x x= ® D = D =

=

b b
t b

Because there is no improvement of the value of the objective function from base design 
point                                      in x1 direction and x2 direction by performing the ‘Local 
Pattern Search’ and ‘Global Pattern Move’, the optimal design point is                       ./ 5.0,   0.6BL B C= =

1 2( , ) ( / , ) (5.0, 0.6)Bx x L B C= =

3.3 Direct Search Method
1. Hooke & Jeeves Method (16/16): Example
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method (1/14)

1x

2x
1. This method uses n+1 points in 

the function of n design 
variables.
Ex) If the number of the design 
variables is two, this method 
use three points, i.e., triangle.

2. The simplex is reflected in the 
direction where the value of the 
objective function is improved.

3. If the value of the objective 
function is improved, the 
simplex is expanded. Otherwise, 
the simplex is reduced.

þ This method is used to find optimal design point by successively 
reflecting, expanding, contracting, and reducing the simplex with 
(n+1) corners in the function of n design variables.
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method (2/14)

þ The following figure shows various operations (Reflection, 
Expansion, Contraction, Reduction) for 2-dimensional case.

xh: Simplex point having the largest objective function value
xl: Simplex point having the smallest objective function value
xb: Center point between x1 and x2

Reflection
to xr when

xh

xb

xr

Reflection

x2 xl(= xl)

Original
Simplex

xh

xb
xl

Reduction
toward xl when

Reduction

x2

f(xc) ³ f(xh)

=

=

=
xe

New Simplex
Expansion
to xe when

xh

xb

xr

x2

f(xr) < f(xl) & f(xe) < f(xl)

xl

Expansion

=
=xc

Contraction
to xc when

)()( hr ff xx ³

xh

xb

Contraction

x2

=
=

xr
Contraction
to xc when

)()( hr ff xx <

xh

xb xlxlxc

x2

f(xr) ³ f(xl) &
f(xr) < f(x2)
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method (3/14)

þ Step 1 : Calculate the value of the objective function f at the n+1 corners 
of the simplex.

þ Step 2 : Establish the corners which yield the highest, xh, and lowest, xl, of 
f(x) in the current simplex.

þ Step 3 : Calculate the value of the objective function f at the centroid(xb)
of all xi except xh , i.e.,

1

1

1 (with   excluded)
n

b i h
in

+

=

= åx x x

xh

xb
xl

x2 2
21 xxx +

=b

Example)
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=

=

3.3 Direct Search Method
2. Nelder & Mead Simplex Method (4/14)

þ Step 4 : Test stopping criterion:

n If the stopping criterion is satisfied, stop and return f(xl) as minimum. 
Otherwise, continue.

þ Step 5 : Reflection
n Reflect xh through xb to give                    .

Calculate the value of the objective function f at xr

and change the simplex as following conditions.

e£-
+ å

+

=

2/12
1

1
})]()([

1
1{ b

n

i
i ff

n
xx

hbr xxx -= 2

Reflection
to xr

Original
Simplex

xh

xb
xl

xr

x2

xh

xb

x2 xl(= xl)

Average of the distance 
between each corners and xb
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method (5/14)

þ Step 6 : Expansion
n Step 6-1 : If f(xr) < f(xl), reflect xb through xr to give                   .

And then, calculate f(xe) and compare f(xe) and f(xl). 

l Step 6-1-1 : If f(xe) < f(xl), replace xh by xe(expansion)
and return to Step 2.

l Step 6-1-2 : If f(xe) ³ f(xl), replace xh by xr(reflection)
and return to Step 2. =

=

=

=

=

bre xxx -= 2

xe ß xh

Original
Simplex

xh

xb
xl

xr

x2

Original
Simplex

xh

xb
xl

x2

xr ß xh

Æ Step 6-1-1
f(xe) < f(xl)

Æ Step 6-1-2
f(xe) ³ f(xl)
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=

=

3.3 Direct Search Method
2. Nelder & Mead Simplex Method (6/14)

þ Step 6 : Expansion
n Step 6-2 : If f(xr) ³ f(xl),

l Step 6-2-1 : test f(xr) < f(xi) for all xi except xh.
If true, replace xh by xr(reflection)
and return to Step 2.

l Step 6-2-2 : If false, continue. 

Original
Simplex

xh

xb
xl

x2

xr,ßxh

Æ Step 6-2-1
For all xi except xh

f(xr) < f(xi)
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method (7/14)

þ Step 7 : Contraction
n Step 7-1 : If f(xr) < f(xh),

calculate the value of the objective function f
at                           .

n Step 7-2 : If f(xr) ³ f(xh),
calculate the value of the objective function f
at                           .

=
=

=
=

2/)( brc xxx +=

2/)( bhc xxx +=
xc

xr

xh

xh

xb

xb

xl

xlxc

x2

x2

Æ Step 7-1
f(xr) < f(xh)

Æ Step 7-2
f(xr) ³ f(xh)

2/)( brc xxx +=

2/)( bhc xxx +=
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=
=

=
=

3.3 Direct Search Method
2. Nelder & Mead Simplex Method (8/14)

þ Step 8 : Reduction
n Step 8-1 : If f(xc) < f(xh),

replace xh by xc (contraction) 
and return to Step 2.

n Step 8-2 : If f(xc) ³ f(xh),
reduce the simplex toward xl using                         
(reduction) and return to Step 2. 

xh

xb
xl(= xl)

Reduction
toward xl

x2

2/)( lii xxx +=
Æ Step 8-2

f(xc) ³ f(xh)

xr

xh

xb xlxcßxh

x2

xcßxh

xh

xb
xl

x2or

Æ Step 8-1
f(xc) < f(xh)
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method (9/14): Example

þ If the contour line of the objective function of shipbuilding cost with two 
design variables, L/B and CB, is given as shown in Fig, find the value of the 
L/B and CB to minimize the shipbuilding cost by using the ‘Nelder & Mead 
Simplex Method’ and plot the procedures in the graph.
n Nelder & Mead Simplex Method

l Starting corners of the simplex: (L/B, CB) = (1, 0.1), (1.5, 0.1), (1.5, 0.2)
l Stopping criterion: 0.01

CB

L/B

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Contour line of the objective function(f = const.) 

Optimization problem Å
with two unknown variables
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CB

L/B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

1 2,h

3
4,e

5,e

1 2 3Triangle 1 :  ,   ,   x x x

BCxBLx == 21   ,/

r

r

2 2

1 3

1 3

4,

1 3 4

Iteration 1) Because  is  reflect  
through the center between and
Because ( ) <  ( ) and ( )  
perform the expansion  

Triangle 2 :  ,   ,   

h

r

r

e

x x x
x x x

f x f x f x
x

x x x

®

®

®

,

.

,

1 1

3 4

3 4

5,

3 4 5

Iteration 2) Because  is  reflect  
through the center between and
Because ( ) <  ( ) and ( )  
perform the expansion  

Triangle 3 :  ,   ,   

h

r

r

e

x x x
x x x

f x f x f x
x

x x x

®

®

®

,

.

,

3.3 Direct Search Method
2. Nelder & Mead Simplex Method (10/14): Example 

ixNumber means the index ‘i’ of      .

ixAlphabet means the kind of       .

h: maximum point of the 
corner in the simplex(triangle)
r: reflection
e: expansion
c: contraction
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CB

L/B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

3
4,e

5,e

6,e

7,r

r

3 3

4 5

4 5

6,

4 5 6

Iteration 3) Because  is  reflect  
through the center between and
Because ( ) <  ( ) and ( )  
perform the expansion  

Triangle 4 :  ,   ,   

h

r

r

e

x x x
x x x

f x f x f x
x

x x x

®

®

®

,

.

,

4 4

5 6 7,

7, 6

5 6 7

Iteration 4) Because  is  reflect  
through the center between and
Because ( ) >  ( ),go to the next iteration.

Triangle 5 :  ,   ,   

h

r

r

x x x
x x x

f x f x
x x x

®

®

,

.

3.3 Direct Search Method
2. Nelder & Mead Simplex Method (11/14): Example 

BCxBLx == 21   ,/
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CB

L/B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

5

6

7

8,c

9,c

5 5

6 7

5 6 7

8,

6 7 8

Iteration 5) Because  is  reflect  
through the center between and
Because ( ) >  ( ),  ( ) and ( ),
perform the constraction.  

Triangle 6 :  ,   ,   

h

r

r

c

x x x
x x x

f x f x f x f x
x

x x x

®

®

®

,

.
r

r

7 7

6 8

6 8 7

9,

6 8 9

Iteration 6) Because  is  reflect  
through the center between and
Because ( ) >  ( ),  ( ) and  ( ) < ( ),
contract the simplex toward x  

Triangle 7 :  ,   ,   

h

r

r r

r c

x x x
x x x

f x f x f x f x f x
x

x x x

®

®

®

,

.

3.3 Direct Search Method
2. Nelder & Mead Simplex Method (12/14): Example
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CB

L/B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

6 8,c

9,c10,e

11,c

r

r

8 8

6 9

6 9

10,

6 9 10

Iteration 7) Because  is  reflect  
through the center between and
Because ( ) <  ( ),  ( ),
preforme the expansion  

Triangle 8 :  ,   ,   

h

r

r

c

x x x
x x x

f x f x f x
x

x x x

®

®

®

,

.

9, 9,

6 10

6 10 9

11,

6 10 11

Iteration 8) Because  is  reflect  
through the center between and
Because ( ) >  ( ),  ( )and ( ) <  ( )
contract the simplex toward  

Triangle 9 :  ,   ,   

c h c

r

r r

r c

x x x
x x x

f x f x f x f x f x
x x

x x x

®

®

®

,

.

3.3 Direct Search Method
2. Nelder & Mead Simplex Method (13/14): Example



80
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

)1.0  ,7(1x

)2.0  ,5.7(3x

)475.0  ,375.7(5x

)9125.0  ,8125.6(7x

)5375.0  ,4375.6(9x

)66875.0  ,21875.5(11x

)1.0  ,5.7(2x

)25.0  ,75.6(4x

)6875.0  ,1875.6(6x

)6375.0  ,9375.6(8x

)5625.0  ,0625.5(10x

)5796875.0  ,6171875.4(12x

Performing 10 times iterations, we can recognize that the simplex(triangle) has the 
tendency to approach the result obtained by the ‘Hooke & Jeeves direct search 
method’.
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Iteration 9) Because  is  reflect  
through the center between and
Because ( ) >  ( ),  ( )and ( ) <  ( )
contract the simplex toward  

Triangle 10 :  ,   ,   
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method (14/14): Example 


