Computer Aided Ship Design Lecture Note

Computer Aided Ship Design

Part I. Optimization Method Ch. 3 Unconstrained Optimization Method

> September, 2013 Prof. Myung-Il Roh

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering



Ch. 3 Unconstrained Optimization Method

3.1 Gradient Method

3.2 Golden Section Search Method

3.3 Direct Search Method

Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

- **1. Steepest Descent Method**
- 2. Conjugate Gradient Method
- 3. Newton's Method
- 4. Davidon-Fletcher-Powell(DFP) Method
- 5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method

Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

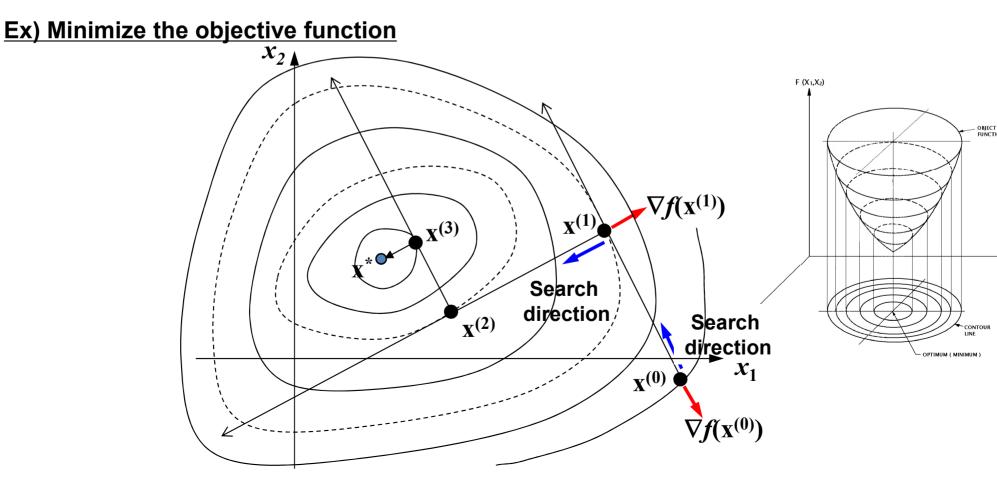
1. Steepest Descent Method (1/6)

- Step 1: The search direction(d) is taken as the negative of the gradient of the objective function(/) at current iteration since the objective function decrease mostly rapidly.
- The direction of gradient vector of f, $\nabla f(\mathbf{x})$, is the direction of maximum increase of f at \mathbf{x}

Search direction $\mathbf{d} = -\mathbf{c} \equiv -\nabla f(\mathbf{x})$

Ref) Appendix A.1: Directional Derivative & Gradient Vector

• Step 2: Iterate successively to find the optimum design point.

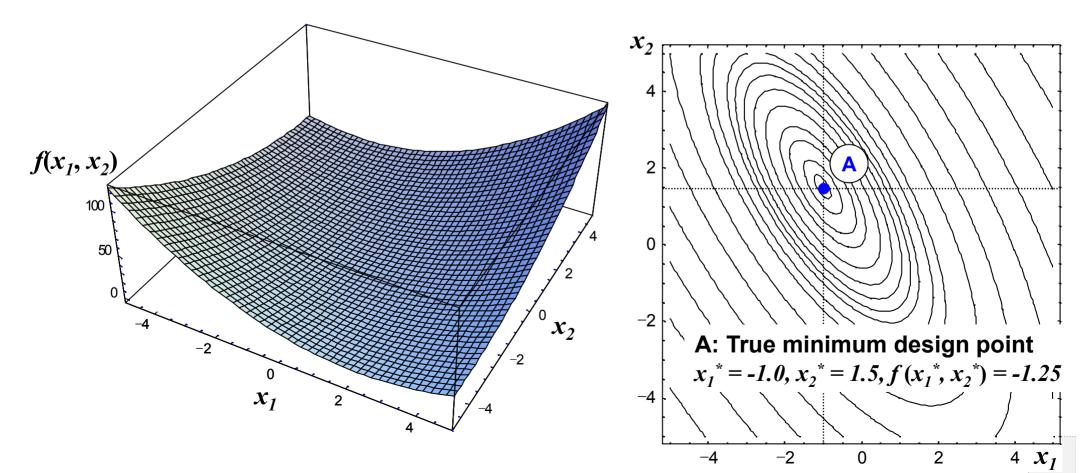


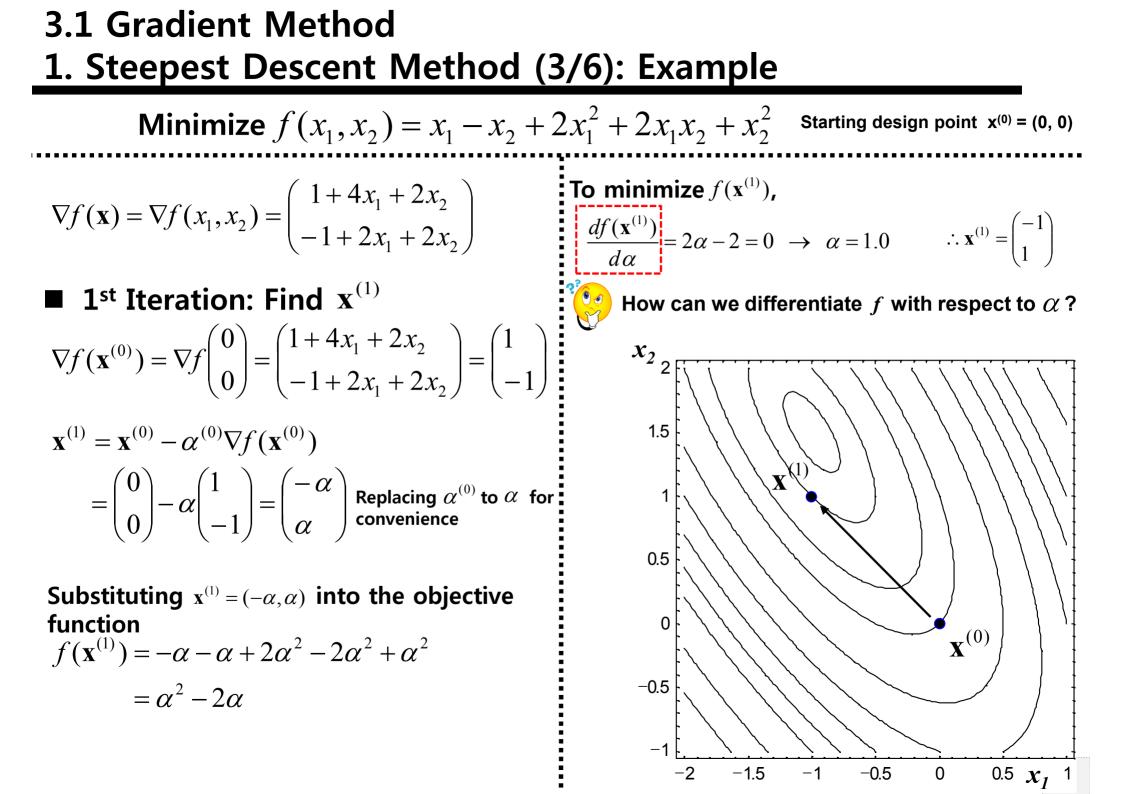
1. Steepest Descent Method (2/6): Example

☑ By using the steepest descent method, find the minimum design point for the following function of 2-variables.

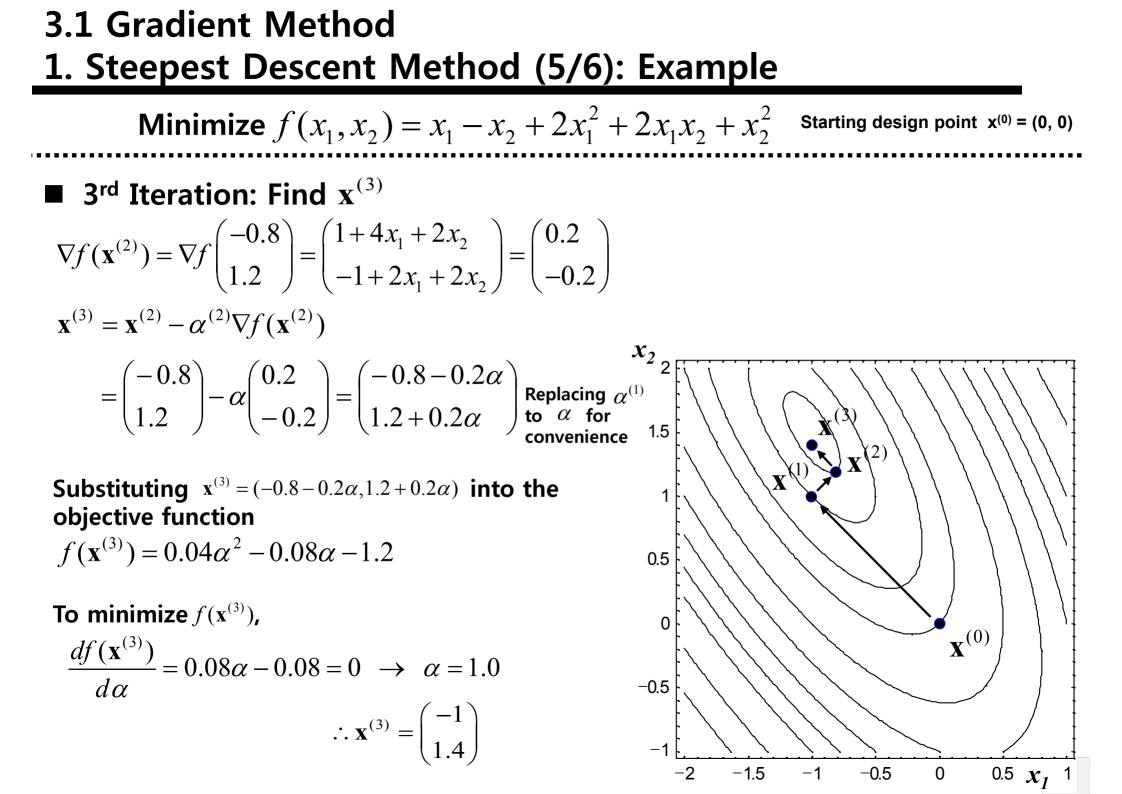
Given: Starting design point $x^{(0)} = (0, 0)$, convergence tolerance $\varepsilon = 0.001$ Find: $x^{(1)}$, $x^{(2)}$

Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ \Rightarrow Optimization problem with two unknown variables





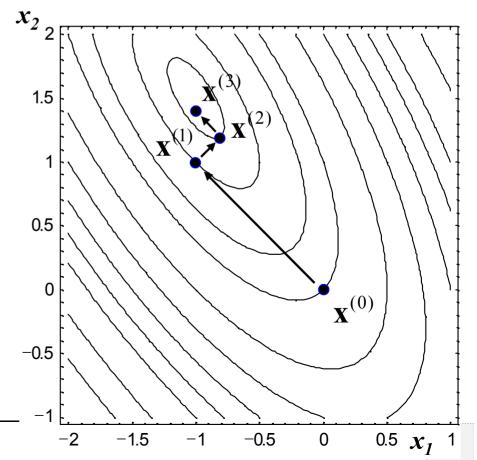
3.1 Gradient Method 1. Steepest Descent Method (4/6): Example Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ Starting design point $x^{(0)} = (0, 0)$ **2**nd Iteration: Find $\mathbf{x}^{(2)}$ $\nabla f(\mathbf{x}^{(1)}) = \nabla f\begin{pmatrix} -1\\ 1 \end{pmatrix} = \begin{pmatrix} 1+4x_1+2x_2\\ -1+2x_1+2x_2 \end{pmatrix} = \begin{pmatrix} -1\\ -1 \end{pmatrix}$ $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} - \alpha^{(1)} \nabla f(\mathbf{x}^{(1)})$ x_2^{2} 2 F $= \begin{pmatrix} -1 \\ 1 \end{pmatrix} - \alpha \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 + \alpha \\ 1 + \alpha \end{pmatrix}$ Replacing $\alpha^{(1)}$ to α for convenience 1.5 (2)Substituting $\mathbf{x}^{(2)} = (-1 + \alpha, 1 + \alpha)$ into the objective 1 function $f(\mathbf{x}^{(2)}) = 5\alpha^2 - 2\alpha - 1$ 0.5 To minimize $f(\mathbf{x}^{(2)})$, 0 $\frac{df(\mathbf{x}^{(2)})}{d\alpha} = 10\alpha - 2 = 0 \quad \rightarrow \quad \alpha = 0.2$ $\mathbf{x}^{(0)}$ -0.5 $\therefore \mathbf{x}^{(2)} = \begin{pmatrix} -0.8\\ 1.2 \end{pmatrix}$ 0.5 x₁ 1 -2 -1.50 -1 -0.5



3.1 Gradient Method 1. Steepest Descent Method (6/6): Example

Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ Starting design point $x^{(0)} = (0, 0)$

4th Iteration: Find the minimum design point. To obtain the minimum design point, we have to iterate. If |x^(k+1) - x^(k)| ≤ ε, then stop the iterative process because x^(k+1) can be assumed as the minimum design point.



Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

[Reference] Differentiation of Function of x with Respect to the Another Variable

Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ Starting design point x ⁽⁰⁾ = (0, 0)	
	 <i>f</i>(<i>x</i>₁, <i>x</i>₂) = <i>f</i>(x): <i>f</i> is the function of <i>x</i>. x⁽¹⁾ = (−α, α) : x⁽¹⁾ is the function of α Substituting x ⁽¹⁾ into <i>f</i>, <i>f</i> is , then, a function of α and can be differentiated with respect to α.
	In the similar way, we can consider the followings: To minimize $f(\mathbf{x}^* + \Delta \mathbf{x})$,
	The second-order Taylor series expansion of $f(\mathbf{x}^* + \Delta \mathbf{x})$ $f(\mathbf{x}^* + \Delta \mathbf{x}) = f(\mathbf{x}^*) + \mathbf{c}^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \mathbf{H}(\mathbf{x}^*) \Delta \mathbf{x}$
Substituting $\mathbf{x}^{(1)} = (-\alpha, \alpha)$ into the objective function	$f(\mathbf{x}^* + \Delta \mathbf{x}) - f(\mathbf{x}^*) = \mathbf{c}^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \mathbf{H}(\mathbf{x}^*) \Delta \mathbf{x}$
$f(\mathbf{x}^{(1)}) = -\alpha - \alpha + 2\alpha^2 - 2\alpha^2 + \alpha^2$	In the above equation, we assume that x^* is a constant and Δx is a variable.
$= \alpha^2 - 2\alpha$	$f(\Delta \mathbf{x}) = \mathbf{c}^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \mathbf{H}(\mathbf{x}^*) \Delta \mathbf{x}$
To minimize $f(\mathbf{x}^{(1)})$, $\frac{df(\mathbf{x}^{(1)})}{d\alpha} = 2\alpha - 2 = 0 \Rightarrow \alpha = 1.0 \qquad \therefore \mathbf{x}^{(1)} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$	To minimize f , $\frac{df(\Delta \mathbf{x})}{d\Delta \mathbf{x}} = \mathbf{c} + \mathbf{H}(\mathbf{x}^*) \Delta \mathbf{x} = 0$ $\Rightarrow \mathbf{H}(\mathbf{x}^*) \Delta \mathbf{x} = -\mathbf{c}$ $\Rightarrow \Delta \mathbf{x} = -\mathbf{H}(\mathbf{x}^*)^{-1}\mathbf{c} \qquad \text{`Newton's method'}$
How can we differentiate f with respect to α ?	$ \rightarrow \Delta \mathbf{x} = -\mathbf{H}(\mathbf{x}) \mathbf{c} \text{Hewton's method} $

3.1 Gradient Method 2. Conjugate Gradient Method (1/5)

☑ This method requires only a simple modification to the steepest descent method and dramatically improves the convergence rate of the optimization process.

☑ The current steepest descent direction is modified by adding a scaled direction used in the previous iteration.

■ Step 1 : Estimate a starting design point as x⁽⁰⁾. Set the iteration counter k = 0. Also, specify a tolerance *E* for stopping criterion. Calculate

$$\mathbf{d}^{(0)} = -\mathbf{c}^{(0)} \equiv -\nabla f(\mathbf{x}^{(0)})$$

Check stopping criterion. If $\|\mathbf{c}^{(0)}\| < \varepsilon$, then stop. Otherwise, go to Step 4.

It is noted that Step 1 of the conjugate gradient method and steepest descent method is the same.

3.1 Gradient Method 2. Conjugate Gradient Method (2/5)

Step 2 : Compute the gradient of the objective function as $\mathbf{c}^{(k)} = \nabla f(\mathbf{x}^{(k)})$. If $\|\mathbf{c}^{(k)}\| < \varepsilon$, then stop; otherwise continue.

■ Step 3 : Calculate the new search direction as $\mathbf{d}^{(k)} = -\mathbf{c}^{(k)} + \beta_k \mathbf{d}^{(k-1)} \longrightarrow \text{Previous search direction}$ $\beta_k = (\|\mathbf{c}^{(k)}\| / \|\mathbf{c}^{(k-1)}\|)^2$

The current search direction is calculated by adding a scaled direction used in the previous iteration.

Step 4: Compute a step size $\alpha = \alpha_k$ to minimize $f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$.

■ Step 5 : Change the design point as follows, then set k = k+1 and go to Step 2. $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$

3.1 Gradient Method 2. Conjugate Gradient Method (3/5) : Example $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ Starting design point $x^{(0)} = (0, 0)$ Minimize $\nabla f(\mathbf{x}) = \nabla f(x_1, x_2) = \begin{pmatrix} 1 + 4x_1 + 2x_2 \\ -1 + 2x_1 + 2x_2 \end{pmatrix}$ To minimize $f(\mathbf{x}^{(1)})$, $\frac{df(\mathbf{x}^{(1)})}{d\alpha} = 2\alpha - 2 = 0 \quad \rightarrow \quad \alpha = 1.0$ \blacksquare 1st Iteration: Find $\mathbf{x}^{(1)}$ Note: Step 1 of the conjugate gradient method and steepest descent method is the same. $\mathbf{X}^{(1)} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $\mathbf{d}^{(0)} = -\mathbf{c}^{(0)} = -\nabla f\left(\mathbf{x}^{(0)}\right) = -\nabla f\left(\begin{array}{c}0\\0\end{array}\right)$ x_2 $= - \begin{pmatrix} 1 + 4x_1 + 2x_2 \\ -1 + 2x_1 + 2x_2 \end{pmatrix} = - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 1.5 $\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \boldsymbol{\alpha}_0 \mathbf{d}^{(0)}$ 1 Replacing α_0 to α for $= \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -\alpha \\ \alpha \end{pmatrix}$ convenience 0.5 0 Substituting $\mathbf{x}^{(1)} = (-\alpha, \alpha)$ into the objective ${\bf x}^{(0)}$ function $f(\mathbf{x}^{(1)}) = -\alpha - \alpha + 2\alpha^2 - 2\alpha^2 + \alpha^2$ -0.5 $= \alpha^2 - 2\alpha$ -2 0.5 x₁ 1 -1.5-0.5 0 -1

3.1 Gradient Method 2. Conjugate Gradient Method (4/5): Example

Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$

■ 2nd Iteration-Find x⁽²⁾

Compute the gradient of the objective function as

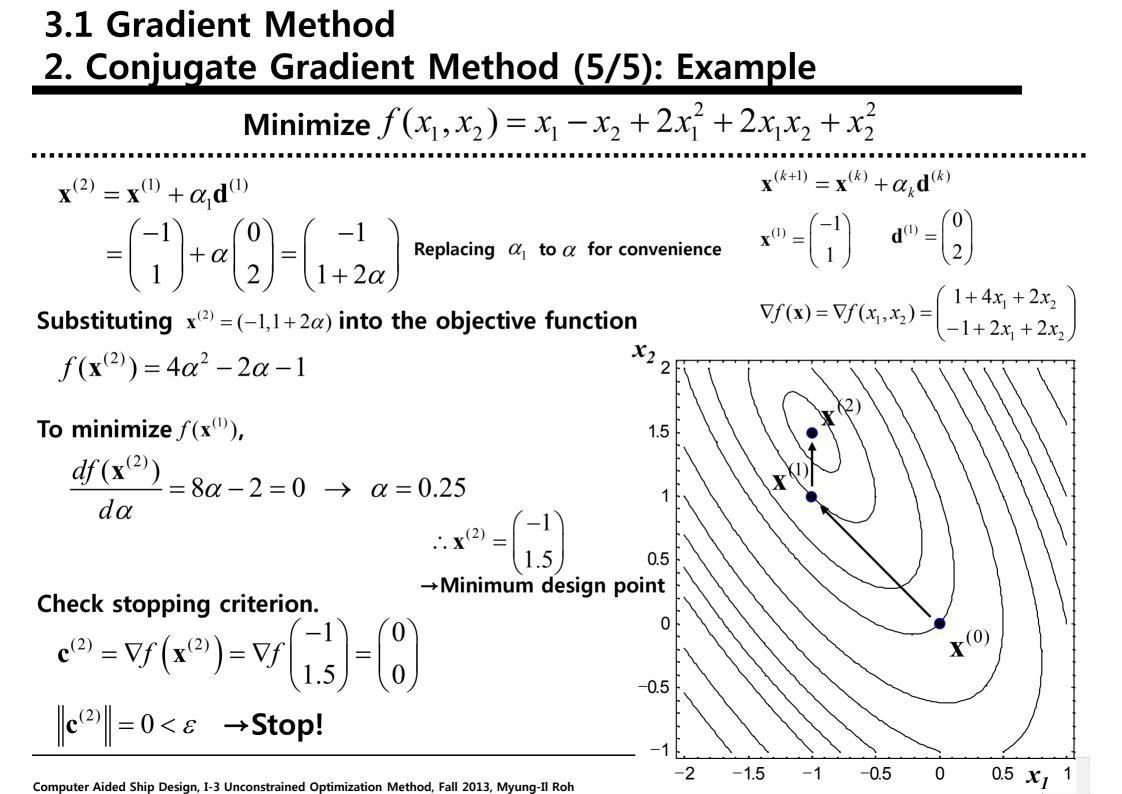
 $\mathbf{c}^{(1)} = \nabla f\left(\mathbf{x}^{(1)}\right) \\ = \nabla f\begin{pmatrix}-1\\1\end{pmatrix} = \begin{pmatrix}1+4x_1+2x_2\\-1+2x_1+2x_2\end{pmatrix} = \begin{pmatrix}-1\\-1\end{pmatrix}$

Calculate the new search direction as

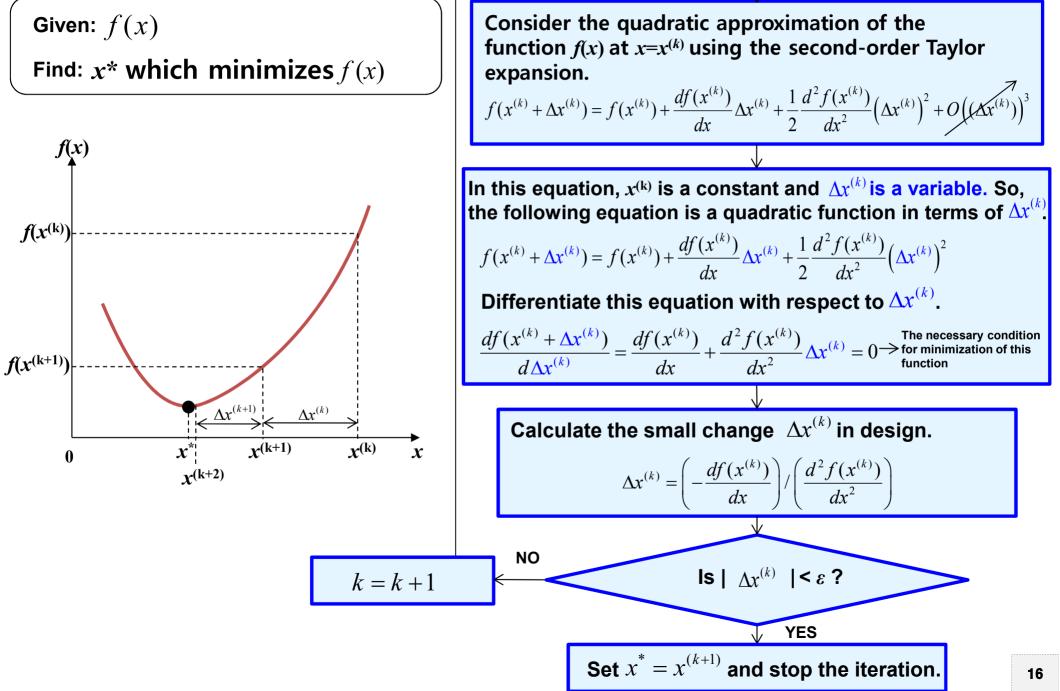
$$\mathbf{d}^{(1)} = -\mathbf{c}^{(1)} + \beta_1 \mathbf{d}^{(0)} = -\mathbf{c}^{(1)} + \frac{\left\|\nabla f\left(\mathbf{x}^{(1)}\right)\right\|^2}{\left\|\nabla f\left(\mathbf{x}^{(0)}\right)\right\|^2} \mathbf{d}^{(0)}$$
$$= -\binom{-1}{-1} + \frac{2}{2}\binom{-1}{1} = \binom{0}{2}$$

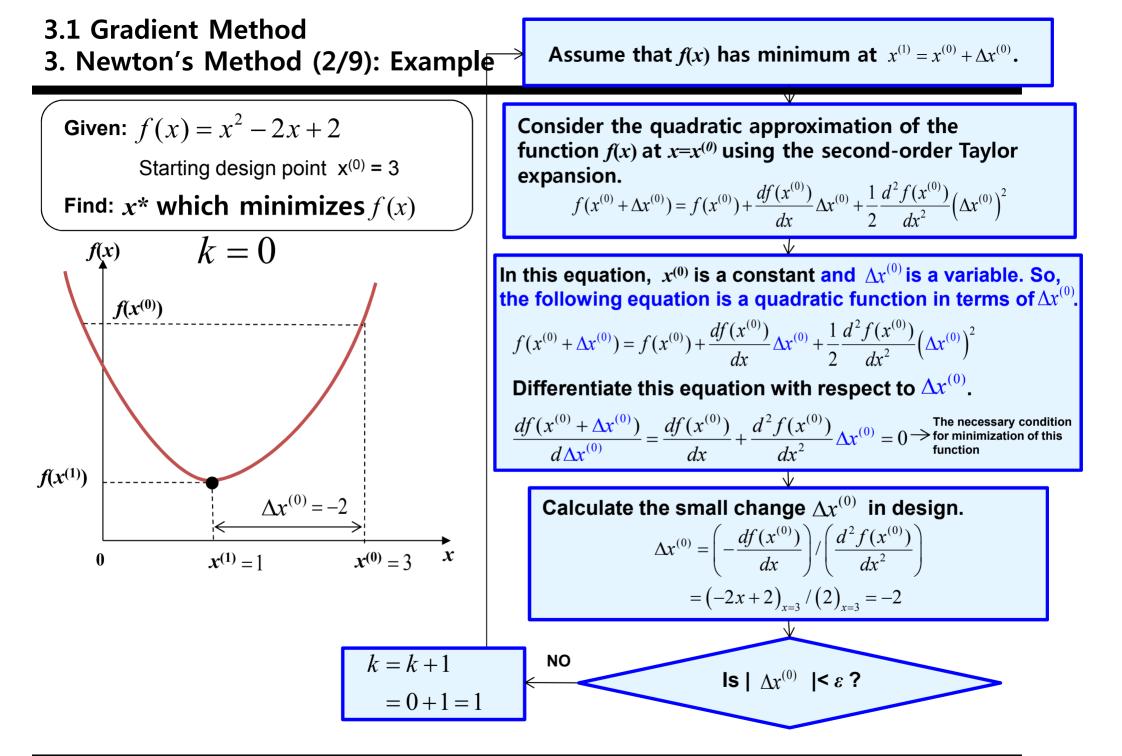
 $\mathbf{x}^{(1)} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $\mathbf{d}^{(0)} = -\nabla f \left(\mathbf{x}^{(0)} \right) = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $\mathbf{d}^{(k)} = -\mathbf{c}^{(k)} + \beta_k \mathbf{d}^{(k-1)}$ $\beta_k = \left(\left\| \mathbf{c}^{(k)} \right\| / \left\| \mathbf{c}^{(k-1)} \right\| \right)^2$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$



Assume that f(x) has minimum at $x^{(k+1)} = x^{(k)} + \Delta x^{(k)}$.



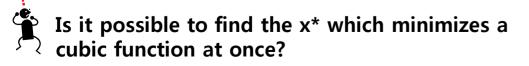


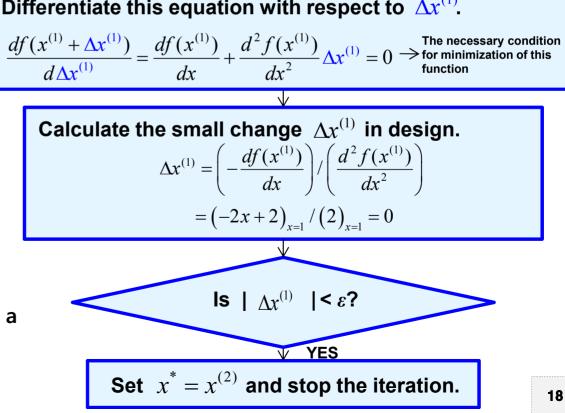
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

3.1 Gradient Method 3. Newton's Method (3/9): Example

Assume that f(x) has minimum at $x^{(2)} = x^{(1)} + \Delta x^{(1)}$.

Given: $f(x) = x^2 - 2x + 2$ Consider the quadratic approximation of the function f(x) at $x=x^{(1)}$ using the second-order Taylor Starting design point $x^{(0)} = 3$ expansion. $f(x^{(1)} + \Delta x^{(1)}) = f(x^{(1)}) + \frac{df(x^{(1)})}{dx} \Delta x^{(1)} + \frac{1}{2} \frac{d^2 f(x^{(1)})}{dx^2} \left(\Delta x^{(1)}\right)^2$ Find: x^* which minimizes f(x)k = 1f(x)In this equation, $x^{(1)}$ is a constant and $\Delta x^{(1)}$ is a variable. So, the following equation is a quadratic function in terms of $\Delta x^{(1)}$ $f(x^{(0)})$ $f(x^{(1)} + \Delta x^{(1)}) = f(x^{(1)}) + \frac{df(x^{(1)})}{dx} \Delta x^{(1)} + \frac{1}{2} \frac{d^2 f(x^{(1)})}{dx^2} \left(\Delta x^{(1)}\right)^2$ Differentiate this equation with respect to $\Delta x^{(1)}$. $f(x^{(1)})$ $\Delta x^{(0)} = -2$ $x^{(0)} = 3$ x $x^{(1)} = 1$ 0 x^*





3. Newton's Method (4/9): Example

function f(x) at $x=x^{(0)}$ using the second-order Taylor

 $f(x^{(0)} + \Delta x^{(0)}) = f(x^{(0)}) + \frac{df(x^{(0)})}{dx} \Delta x^{(0)} + \frac{1}{2} \frac{d^2 f(x^{(0)})}{dx^2} \left(\Delta x^{(0)}\right)^2 + O\left((\Delta x^{(0)})\right)^3$

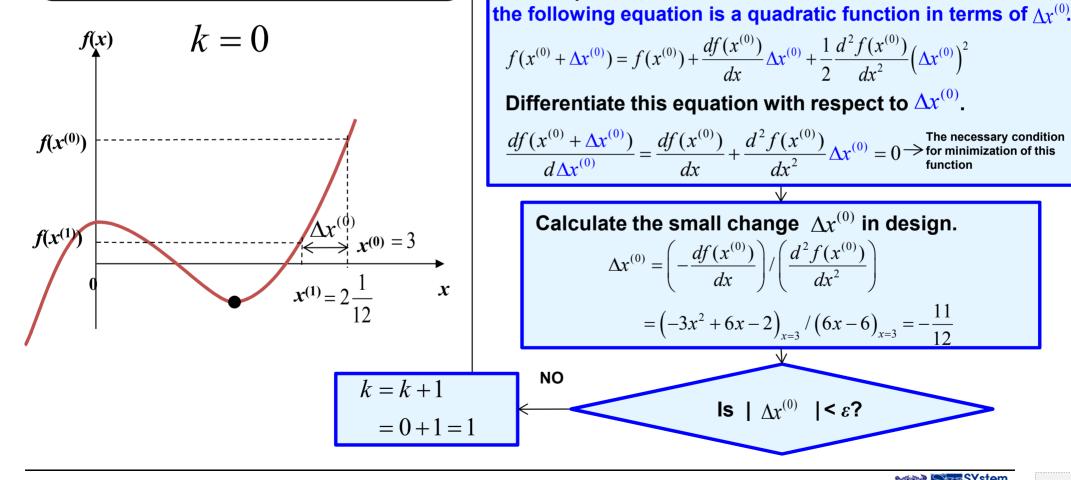
In this equation, $x^{(0)}$ is a constant and $\Delta x^{(0)}$ is a variable. So,

Consider the quadratic approximation of the

expansion.

Given:
$$f(x) = x^3 - 3x^2 + 2x$$

Starting design point $x^{(0)} = 3$
Find: x^* which minimizes $f(x)$



3. Newton's Method (5/9): Example

function f(x) at $x=x^{(1)}$ using the second-order Taylor

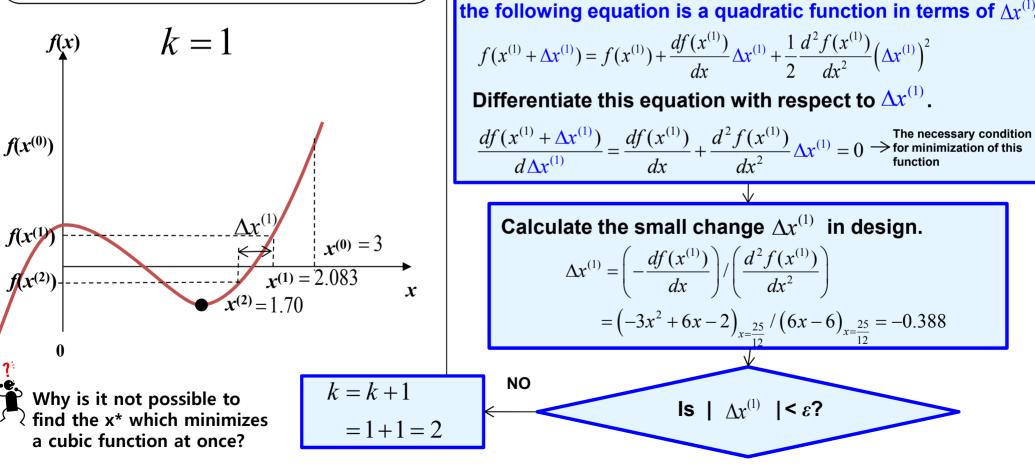
 $f(x^{(1)} + \Delta x^{(1)}) = f(x^{(1)}) + \frac{df(x^{(1)})}{dx} \Delta x^{(1)} + \frac{1}{2} \frac{d^2 f(x^{(1)})}{dx^2} \left(\Delta x^{(1)}\right)^2 + O\left((\Delta x^{(1)})\right)^3$

In this equation, $x^{(1)}$ is a constant and $\Delta x^{(1)}$ is a variable. So,

Consider the quadratic approximation of the

Is it possible to find the x* which minimizes a cubic function at once?

Given: $f(x) = x^3 - 3x^2 + 2x$ Starting design point $x^{(0)} = 3$ Find: x^* which minimizes f(x)



Since the second-order Taylor expansion is just an approximation for f(x) at the point $x^{(0)}$ or $x^{(1)}$, $x^{(1)}$ or $x^{(2)}$ will probably not be the precise minimum design point of f(x).

expansion.

3.1 Gradient Method 3. Newton's Method (6/9): Example of Function of Two Variables

Minimize $f(\mathbf{x}) = f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$, Starting design point $\mathbf{x}^{(0)} = (0, 0)$

$$\nabla f(\mathbf{x}) = \nabla f(x_1, x_2) = \begin{pmatrix} f_{x_1} \\ f_{x_2} \end{pmatrix} = \begin{pmatrix} 1 + 4x_1 + 2x_2 \\ -1 + 2x_1 + 2x_2 \end{pmatrix}, \quad \mathbf{H}(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix}$$

■ 1st Iteration: Find **x**⁽¹⁾

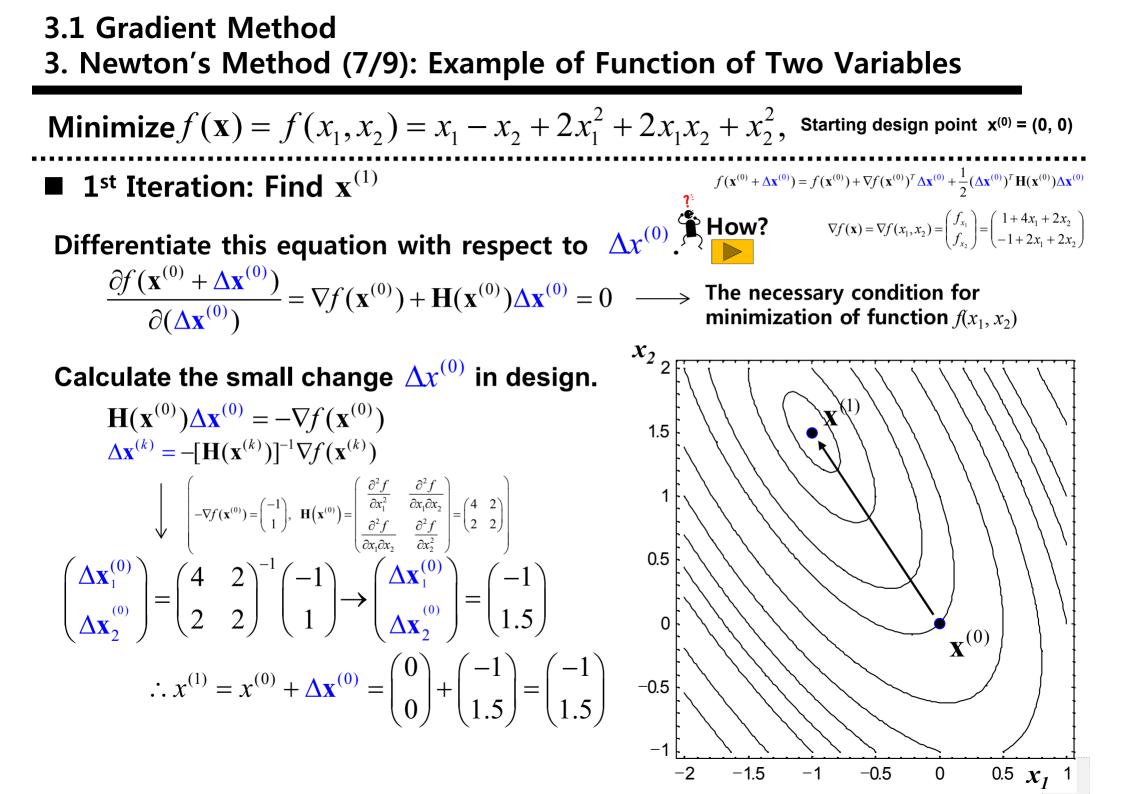
Assume that f(x) has minimum at $\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \Delta \mathbf{x}^{(0)}$.

Consider the quadratic approximation of the function $f(\mathbf{x})$ at $\mathbf{x}=\mathbf{x}^{(0)}$ using the second-order Taylor expansion.

$$f(\mathbf{x}^{(0)} + \Delta \mathbf{x}^{(0)}) = f(\mathbf{x}^{(0)}) + \nabla f(\mathbf{x}^{(0)})^T \Delta \mathbf{x}^{(0)} + \frac{1}{2} (\Delta \mathbf{x}^{(0)})^T \mathbf{H}(\mathbf{x}^{(0)}) \Delta \mathbf{x}^{(0)}$$

In this equation, $\mathbf{x}^{(0)}$ is a constant and $\Delta \mathbf{x}^{(0)}$ is a variable. So, the following equation is a quadratic function in terms of $\Delta \mathbf{x}^{(0)}$.

$$f(\mathbf{x}^{(0)} + \Delta \mathbf{x}^{(0)}) = f(\mathbf{x}^{(0)}) + \nabla f(\mathbf{x}^{(0)})^T \Delta \mathbf{x}^{(0)} + \frac{1}{2} (\Delta \mathbf{x}^{(0)})^T \mathbf{H}(\mathbf{x}^{(0)}) \Delta \mathbf{x}^{(0)}$$



3.1 Gradient Method 3. Newton's Method (8/9): Example of Function of Two Variables

Minimize $f(\mathbf{x}) = f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$, Starting design point $\mathbf{x}^{(0)} = (0, 0)$

2nd Iteration-Find $\mathbf{x}^{(2)}$

In the same way as 1st Iteration,

Assume that f(x) has minimum at $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + \Delta \mathbf{x}^{(1)}$.

Consider the quadratic approximation of the function f(x) at $x=x^{(1)}$ using the second-order Taylor expansion.

$$f(\mathbf{x}^{(1)} + \Delta \mathbf{x}^{(1)}) = f(\mathbf{x}^{(1)}) + \nabla f(\mathbf{x}^{(1)})^T \Delta \mathbf{x}^{(1)} + \frac{1}{2} (\Delta \mathbf{x}^{(1)})^T \mathbf{H}(\mathbf{x}^{(1)}) \Delta \mathbf{x}^{(1)}$$

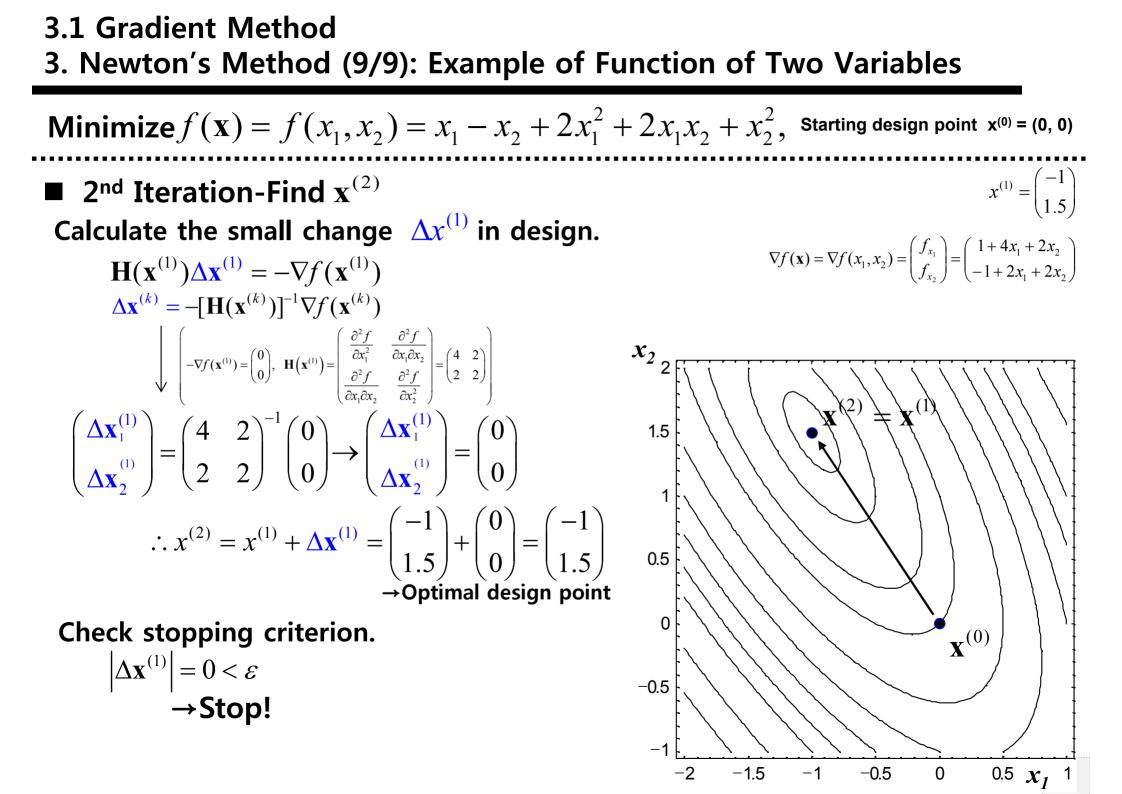
In this equation, $x^{(1)}$ is a constant and $\Delta x^{(1)}$ is a variable. So, the following equation is a quadratic function in terms of $\Delta x^{(1)}$.

$$f(\mathbf{x}^{(1)} + \Delta \mathbf{x}^{(1)}) = f(\mathbf{x}^{(1)}) + \nabla f(\mathbf{x}^{(1)})^T \Delta \mathbf{x}^{(1)} + \frac{1}{2} (\Delta \mathbf{x}^{(1)})^T \mathbf{H}(\mathbf{x}^{(1)}) \Delta \mathbf{x}^{(1)}$$

Differentiate this equation with respect to $\Delta x^{(1)}$.

$$\frac{\partial f(\mathbf{x}^{(1)} + \Delta \mathbf{x}^{(1)})}{\partial (\Delta \mathbf{x}^{(1)})} = \nabla f(\mathbf{x}^{(1)}) + \mathbf{H}(\mathbf{x}^{(1)}) \Delta \mathbf{x}^{(1)} = 0 \qquad \longrightarrow \begin{array}{l} \text{The necessary condition} \\ \text{for minimization of} \\ \text{function } f(x_1, x_2) \end{array}$$

 $x^{(1)} = \begin{pmatrix} -1 \\ 1.5 \end{pmatrix}$



3. Modified Newton's Method (1/2)

- ☑ In this method, we treat $\Delta \mathbf{x}^{(k)} = -[\mathbf{H}(\mathbf{x}^{(k)})]^{-1}\nabla f(\mathbf{x}^{(k)})$ of the Newton's method as the search direction and use any of the one-dimensional search methods to calculate the step size in the search direction.
 - Step 1 : Estimate a starting design point $\mathbf{x}^{(0)}$. Set iteration counter k = 0. Specify a tolerance \mathcal{E} for the stopping criterion.
 - Step 2 : Calculate $c_i^{(k)} = \partial f(\mathbf{x}^{(k)}) / \partial x_i$ for i = 1 to n. If $\|\mathbf{c}^{(k)}\| < \varepsilon$, then stop the iterative process. Otherwise, continue.

■ Step 3 : Calculate the Hessian matrix $\mathbf{H}^{(k)}$ at current design point $\mathbf{x}^{(k)}$. $\mathbf{H}(\mathbf{x}^{(k)}) = \left[\frac{\partial^2 f}{\partial x_i \partial x_i}\right], \quad i = 1, \dots, n; \quad j = 1, \dots, n$

3.1 Gradient Method 3. Modified Newton's Method (2/2)

Step 4 : Calculate the search direction as follows:

 $\mathbf{d}^{(k)} = \Delta \mathbf{x}^{(k)} = -\mathbf{H}^{-1} \mathbf{c}^{(k)}$ When $f(\mathbf{x}^* + \Delta \mathbf{x}) = f(\mathbf{x}^*) + \mathbf{c}^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \mathbf{H}(\mathbf{x}^*) \Delta \mathbf{x}$, the necessary condition for minimization of this function is as follows: $df(\Delta \mathbf{x})/d\Delta \mathbf{x} = \mathbf{c} + \mathbf{H}(\mathbf{x}^*)\Delta \mathbf{x} = 0$ $\Rightarrow \mathbf{H}(\mathbf{x}^*) \Delta \mathbf{x} = -\mathbf{c} \Rightarrow \Delta \mathbf{x} = -\mathbf{H}(\mathbf{x}^*)^{-1}\mathbf{c}$

Step 5 : Update the design point as $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}$, where α is calculated to minimize $f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$. Any one-dimensional search method may be used to calculate α .

Step 6 : Set k = k + 1 and go to Step 2.

3.1 Gradient Method
<u>3. Disadvantages of the Newton's Method</u>

The Newton's method is **not very useful in practice**, due to following features of the method:

- **1.** It requires the storing of the $n \times n$ matrix $H(\mathbf{x}^{(k)})$.
- 2. It becomes very difficult and sometimes, impossible to compute the elements of the matrix $H(x^{(k)})$.
- 3. It requires the inversion of the matrix $H(\mathbf{x}^{(k)})$ at each iteration.
- 4. It requires the evaluation of the quantity $H(\mathbf{x}^{(k)})^{-1}\nabla f(\mathbf{x}^{(k)})$ at each iteration.

3.1 Gradient Method 4. Davidon-Fletcher-Powell(DFP) Method (1/6)

\square This method builds an approximation for the inverse of the Hessian matrix of $f(\mathbf{x})$ using only the first derivatives.

■ Step 1 : Estimate a starting design point $\mathbf{x}^{(0)}$. Choose a symmetric positive definite $n\mathbf{x}n$ matrix $\mathbf{A}^{(0)}$ as an approximation for the inverse of the Hessian matrix of the objective function. In the absence of more information, $\mathbf{A}^{(0)} = \mathbf{I}$ may be chosen. Also, specify a tolerance \mathcal{E} for the stopping criterion. Set k = 0 and compute the gradient vector as $\mathbf{d}^{(0)} = -\mathbf{c}^{(0)} \equiv -\nabla f(\mathbf{x}^{(0)})$.

Step 2 : Calculate the norm of the gradient vector as ||c^(k)||.
 If ||c^(k)|| < ε, then stop the iterative process. Otherwise, continue.
 It is noted that Step 1 and 2 of this method and the steepest descent method are the same.

3.1 Gradient Method 4. Davidon-Fletcher-Powell(DFP) Method (2/6)

Step 3 : Calculate the search direction as follows:

 $\mathbf{d}^{(k)} = -\mathbf{A}^{(k)}\mathbf{c}^{(k)}$

Newton's method $\Delta \mathbf{x}^{(k)} = -[\mathbf{H}(\mathbf{x}^{(k)})]^{-1} \nabla f(\mathbf{x}^{(k)})$ $\therefore \mathbf{d}^{(k)} = -(\mathbf{H}^{(k)})^{-1} \mathbf{c}^{(k)}$

Here, the matrix A is used as an estimate for the inverse of the Hessian matrix H^{-1} of the objective function.

Step 4 : Compute optimum step size $\alpha_k = \alpha$ to minimize $f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$.

Step 5: Update the design point as $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$.

Step 6 : Update the matrix A^(k) - approximation for the inverse of the Hessian matrix of the objective function - as follows:

$$\mathbf{A}^{(k+1)} = \mathbf{A}^{(k)} + \mathbf{B}^{(k)} + \mathbf{C}^{(k)} ; \quad n \times n \text{ matrix}$$

where, the correction matrices $\mathbf{B}^{(k)}$ and $\mathbf{C}^{(k)}$ are calculated as below.

$$\mathbf{B}^{(k)} = \frac{\mathbf{s}^{(k)}(\mathbf{s}^{(k)})^{T}}{(\mathbf{s}^{(k)} \cdot \mathbf{y}^{(k)})} \quad ; \quad n \times n \text{ matrix} \quad \mathbf{C}^{(k)} = \frac{-\mathbf{z}^{(k)}(\mathbf{z}^{(k)})^{T}}{(\mathbf{y}^{(k)} \cdot \mathbf{z}^{(k)})} \quad ; \quad n \times n \text{ matrix} \\ \mathbf{s}^{(k)} = \alpha_{k} \mathbf{d}^{(k)} \quad : \quad n \times 1 \text{ matrix} \\ \mathbf{y}^{(k)} = \mathbf{c}^{(k+1)} - \mathbf{c}^{(k)} \quad : \quad n \times 1 \text{ matrix} \\ \mathbf{c}^{(k+1)} = \nabla f(\mathbf{x}^{(k+1)}) \quad : \quad n \times 1 \text{ matrix} \\ \mathbf{z}^{(k)} = \mathbf{A}^{(k)} \mathbf{y}^{(k)} \quad : \quad [n \times n][n \times 1] = [n \times 1] \text{ matrix} \end{cases}$$

Step 7 : Set k = k + 1 and go to Step 2.

3.1 Gradient Method 4. Davidon-Fletcher-Powell(DFP) Method (4/6): Example Minimize $f(\mathbf{x}) = f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$, Starting design point $\mathbf{x}^{(0)} = (0, 0)$. Substitute $\mathbf{x}^{(1)} = (-\alpha, \alpha)$ into the objective $\nabla f(\mathbf{x}) = \nabla f(x_1, x_2) = \begin{pmatrix} 1 + 4x_1 + 2x_2 \\ -1 + 2x_1 + 2x_2 \end{pmatrix}$ function $f(\mathbf{x}^{(1)}) = \alpha^2 - 2\alpha$ **1**st Iteration: Find $\mathbf{x}^{(1)}$ To minimize $f(\mathbf{x}^{(1)})$, $\frac{df(\mathbf{x}^{(1)})}{d\alpha} = 2\alpha - 2 = 0 \quad \Rightarrow \quad \alpha = 1.0 \qquad \therefore \mathbf{x}^{(1)} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $\mathbf{x}^{(0)} = \begin{pmatrix} 0\\ 0 \end{pmatrix}, \ \mathbf{A}^{(0)} = \mathbf{I}$ $\mathbf{c}^{(0)} = \nabla f(\mathbf{x}^{(0)}) = \begin{pmatrix} 1+4\cdot 0+2\cdot 0\\ -1+2\cdot 0+2\cdot 0 \end{pmatrix} = \begin{pmatrix} 1\\ -1 \end{pmatrix}$ \boldsymbol{x}_2 1.5 Check stopping criterion. $\|\mathbf{c}^{(0)}\| = \sqrt{1^2 + (-1)^2} = \sqrt{2} > \varepsilon$ 0.5 $\mathbf{d}^{(0)} = -\mathbf{A}^{(0)}\mathbf{c}^{(0)} = -\mathbf{I}\,\mathbf{c}^{(0)} = -\mathbf{c}^{(0)} = \begin{pmatrix} -1\\1 \end{pmatrix}$ 0 $\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \boldsymbol{\alpha}_0 \mathbf{d}^{(0)}$ $\mathbf{x}^{(0)}$ $= \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -\alpha \\ \alpha \end{pmatrix}$ Replacing α_0 to α for convenience -0.5

-2

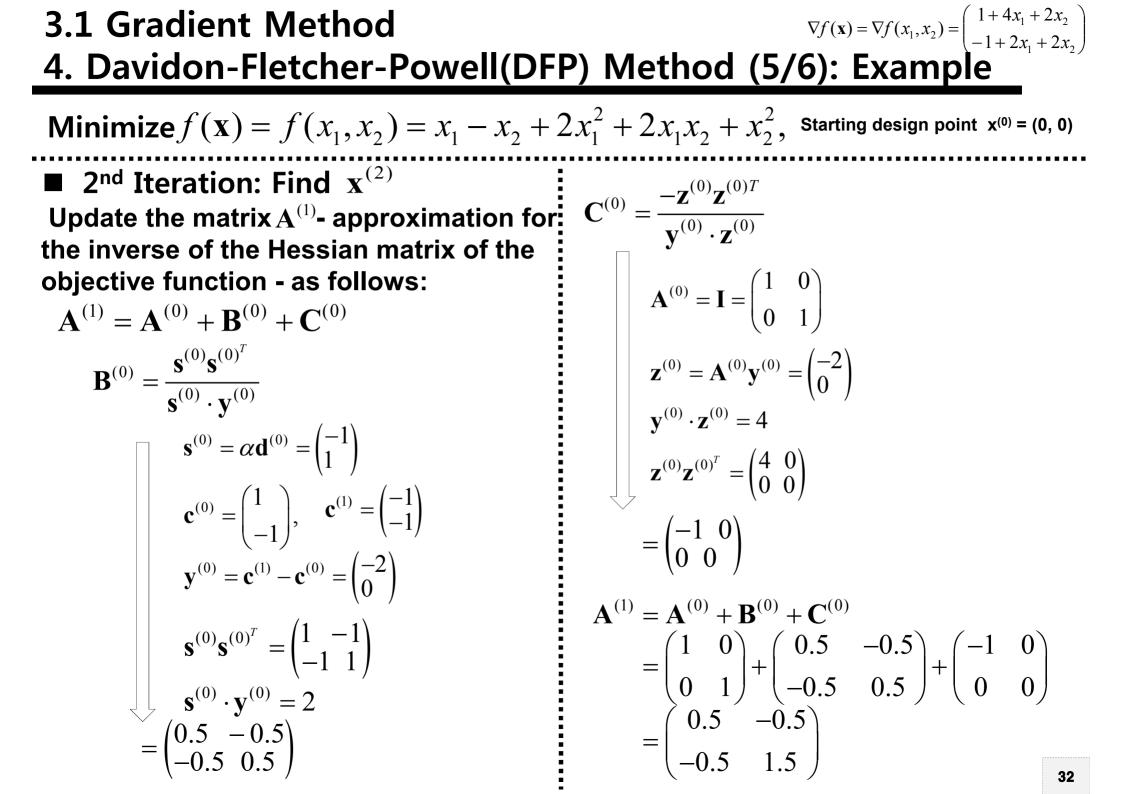
-1.5

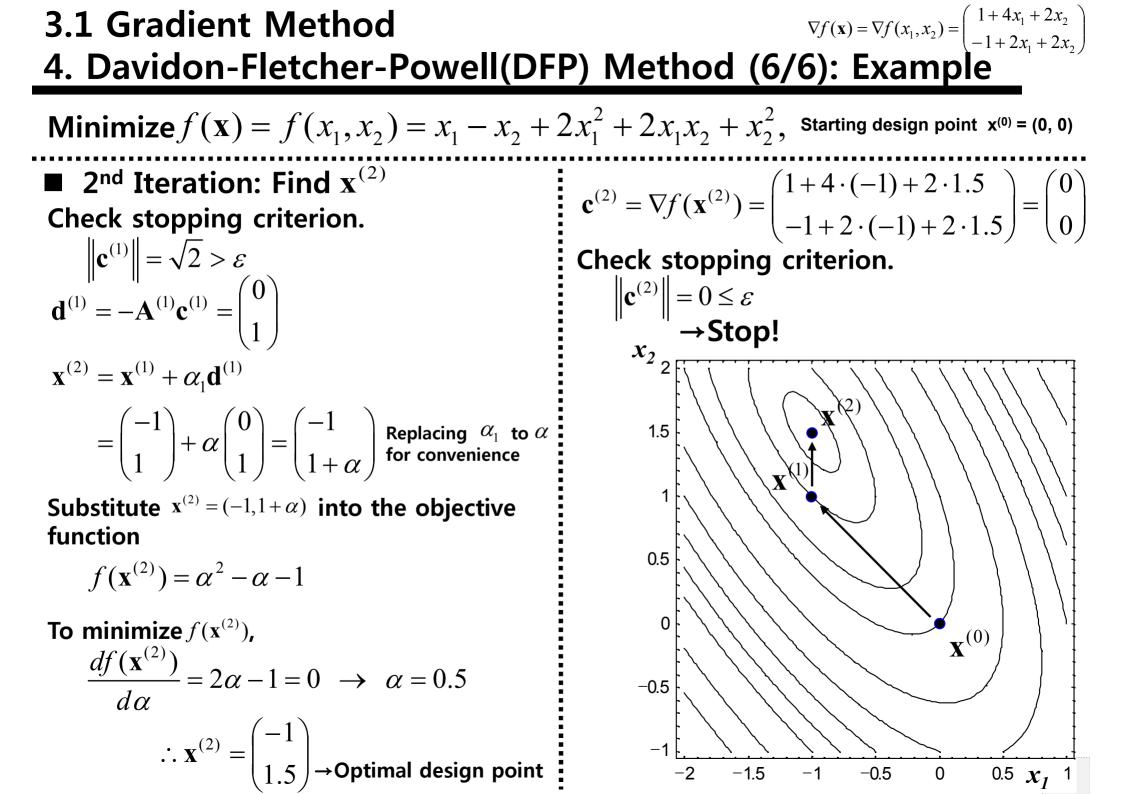
-1

-0.5

0

 $0.5 \chi_1$





☑ This method updates the Hessian matrix rather than its inverse at every iteration.

 Step 1 : Estimate a starting design point x⁽⁰⁾. Choose a symmetric positive definite *nxn* matrix H
⁽⁰⁾ as an approximation for the Hessian matrix of the objective function. In the absence of more information, let H
⁽⁰⁾ = I. Specify a tolerance ε for the stopping criterion. Set k = 0, and compute the gradient vector as c⁽⁰⁾ = ∇f(x⁽⁰⁾).

Step 2 : Calculate the norm of the gradient vector as ||c^(k)||.
 If ||c^(k)|| < ε, then stop the iterative process. Otherwise, continue.
 It is noted that Step 1 and 2 of this method and the steepest descent method are the same.

Step 3 : Solve the linear system of the following equation to obtain the search direction.
Newton's method

 $\mathbf{d}^{(k)} = -(\mathbf{\tilde{H}}^{(k)})^{-1} \mathbf{c}^{(k)}$

This equation looks like $d^{(k)} = -(H^{(k)})^{-1}c^{(k)}$ of the Newton's method, but $\tilde{H}^{(k)}$ is an approximated Hessian matrix $H^{(k)}$, comprised of the first order derivatives.

Step 4 : Compute optimum step size $\alpha_k = \alpha$ to minimize $f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$.

Step 5 : Update the design point as
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$
.

 $\Delta \mathbf{x}^{(k)} = -[\mathbf{H}(\mathbf{x}^{(k)})]^{-1} \nabla f(\mathbf{x}^{(k)})$

 $\therefore \mathbf{d}^{(k)} = -(\mathbf{H}^{(k)})^{-1} \mathbf{c}^{(k)}$

3.1 Gradient Method 5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (3/6)

Step 6 : Update the matrix $\tilde{\mathbf{H}}^{(k)}$ - approximation for the Hessian matrix of the objective function - as follows:

$$\tilde{\mathbf{H}}^{(k+1)} = \tilde{\mathbf{H}}^{(k)} + \mathbf{D}^{(k)} + \mathbf{E}^{(k)}$$
 : $n \times n$ matrix

where, the correction matrices $D^{(k)}$ and $E^{(k)}$ are given as below.

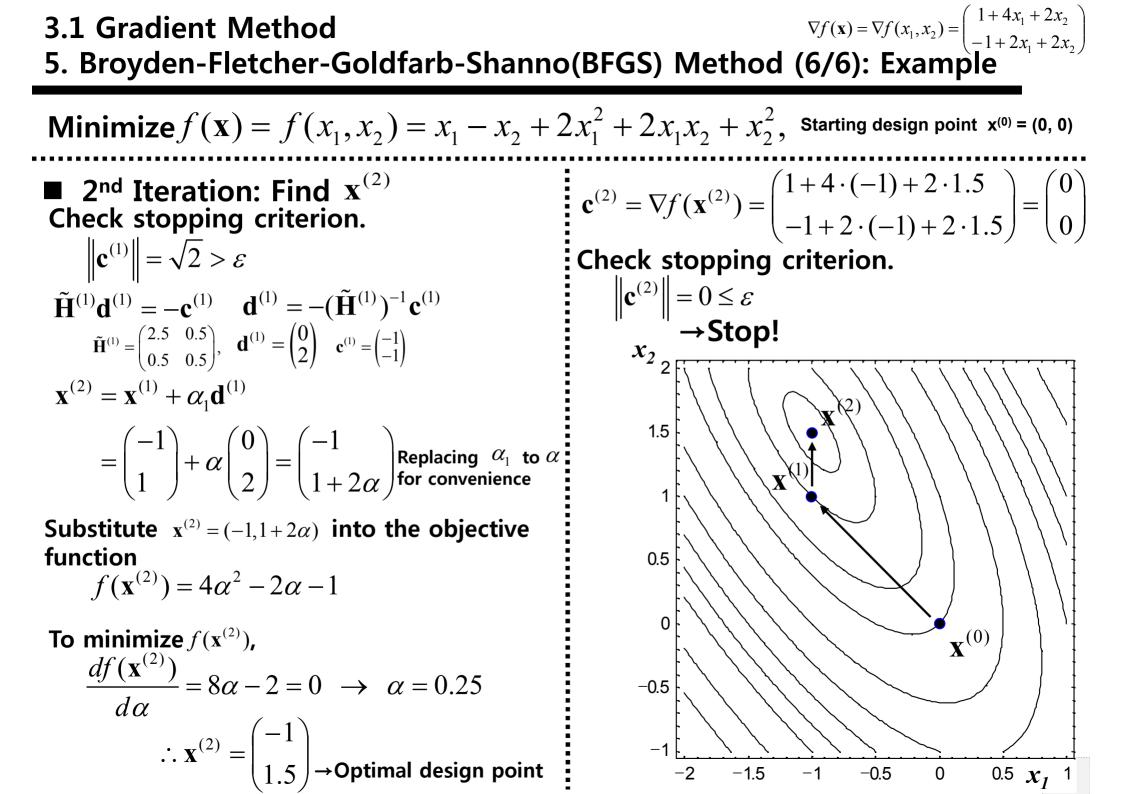
$$\mathbf{D}^{(k)} = \frac{\mathbf{y}^{(k)} \mathbf{y}^{(k)^{T}}}{(\mathbf{y}^{(k)} \cdot \mathbf{s}^{(k)})}; \qquad \mathbf{E}^{(k)} = \frac{\mathbf{c}^{(k)} \mathbf{c}^{(k)^{T}}}{(\mathbf{c}^{(k)} \cdot \mathbf{d}^{(k)})}; \\ \mathbf{s}^{(k)} = \alpha_{k} \mathbf{d}^{(k)} \qquad : \text{change in design} \\ \mathbf{y}^{(k)} = \mathbf{c}^{(k+1)} - \mathbf{c}^{(k)} \qquad : \text{change in gradient} \qquad \qquad \mathbf{d}^{(k)} \qquad : \text{search direction} \\ \alpha^{(k)} \qquad : \text{optimum step size} \\ \mathbf{c}^{(k+1)} = \nabla f(\mathbf{x}^{(k+1)}) \end{cases}$$

Step 7 : Set k = k + 1 and go to Step 2.

3.1 Gradient Method5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (4/6): Example

$$\begin{aligned} & \text{Minimize } f(\mathbf{x}) = f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2, \text{ Starting design point } \mathbf{x}^{(0)} = (0, 0) \\ & \nabla f(\mathbf{x}) = \nabla f(x_1, x_2) = \begin{pmatrix} 1 + 4x_1 + 2x_2 \\ -1 + 2x_1 + 2x_2 \end{pmatrix} \\ & \text{Substitute } \mathbf{x}^{(1)} = (-\alpha, \alpha) \text{ into the objective } \\ & \mathbf{function} \\ f(\mathbf{x}^{(1)}) = \alpha^2 - 2\alpha \end{aligned}$$

3.1 Gradient Method
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (5/6): Example
Minimize
$$f(\mathbf{x}) = f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$
, starting design point $\mathbf{x}^{(0)} = (0, 0)$
a 2nd Iteration: Find $\mathbf{x}^{(2)}$
Update the matrix $\mathbf{H}^{(0)}$ approximation for
the Hessian matrix of the objective
function - as follows:
 $\mathbf{\tilde{H}}^{(1)} = \mathbf{\tilde{H}}^{(0)} + \mathbf{D}^{(0)} + \mathbf{E}^{(0)}$
 $\mathbf{D}^{(0)} = \frac{\mathbf{y}^{(0)}\mathbf{y}^{(0)'}}{\mathbf{y}^{(0)} \cdot \mathbf{s}^{(0)}}$
 $\mathbf{y}^{(0)} = \mathbf{c}^{(1)} - \mathbf{c}^{(1)} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
 $\mathbf{y}^{(0)} = \mathbf{c}^{(1)} - \mathbf{c}^{(1)} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
 $\mathbf{y}^{(0)} = \mathbf{c}^{(1)} - \mathbf{c}^{(1)} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
 $\mathbf{y}^{(0)} \mathbf{y}^{(0)''} = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$
 $\mathbf{y}^{(0)} \cdot \mathbf{s}^{(0)} = 2$
 $= \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$
 $\mathbf{z}^{(0)} = \begin{pmatrix} 2 \\ -0 \\ 0 \end{pmatrix}$
 $\mathbf{z}^{(0)} = \begin{pmatrix} 2 \\ -0 \\ 0 \end{pmatrix}$



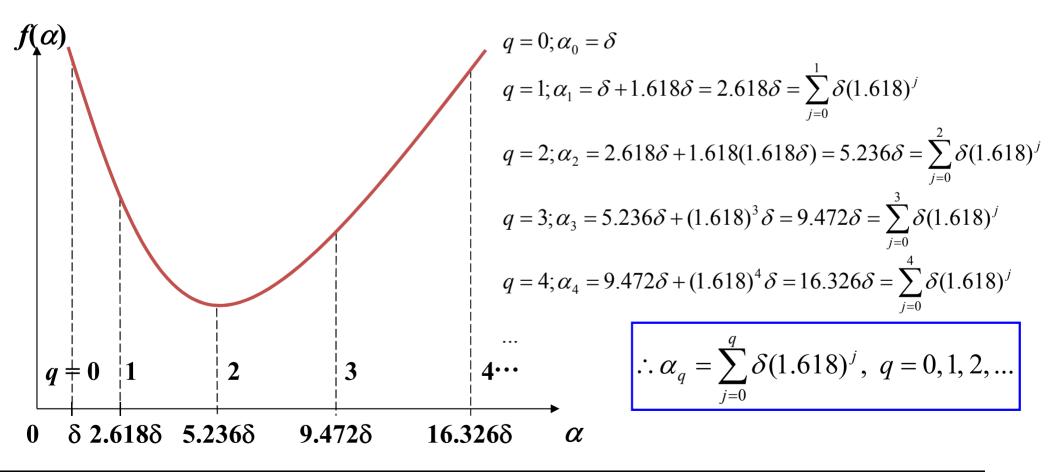
3.2 Golden Section Search Method (One Dimensional Search Method)

Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

3.2 Golden Section Search Method

- Phase 1: Global Search (1/2)

- ☑ Searching for the interval in which the minimum lies
 - In the figure, starting at q = 0, we evaluate $f(\alpha)$ at $\alpha = \delta$, where $\delta > 0$ is a small number. If the value $f(\delta)$ is smaller than the value f(0), we then take an increment of 1.618δ in the step size(i.e., the increment is 1.618 times the previous increment δ). (See Fibonacci sequence)

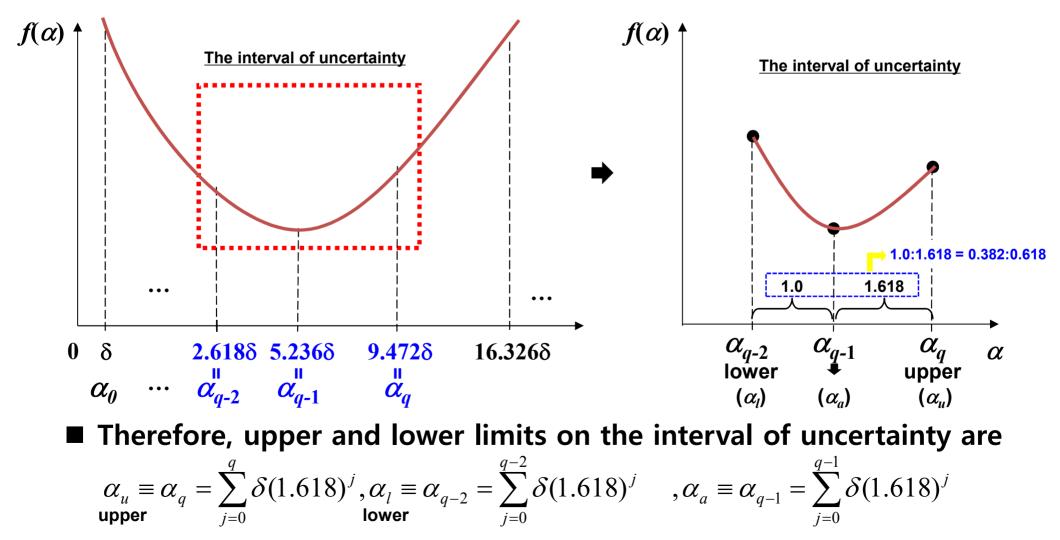


3.2 Golden Section Search Method

- Phase 1: Global Search (2/2)

■ If the function at α_{q-1} is smaller than that at the previous point α_{q-2} and the next point α_q , (i.e., $f(\alpha_{q-1}) < f(\alpha_{q-2})$, $f(\alpha_{q-1}) < f(\alpha_q)$) the minimum point lies between α_q and α_{q-2} .

(The interval in which the minimum lies is called the interval of uncertainty.)



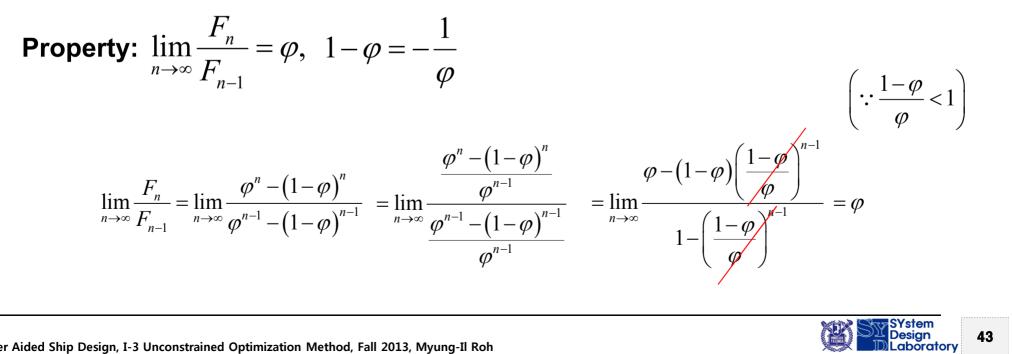
[Reference] Fibonacci Sequence

Fibonacci sequence defined as

$$F_0 = 0; \quad F_1 = 1; \qquad F_n = F_{n-1} + F_{n-2}, \quad n = 2, 3, \cdots$$

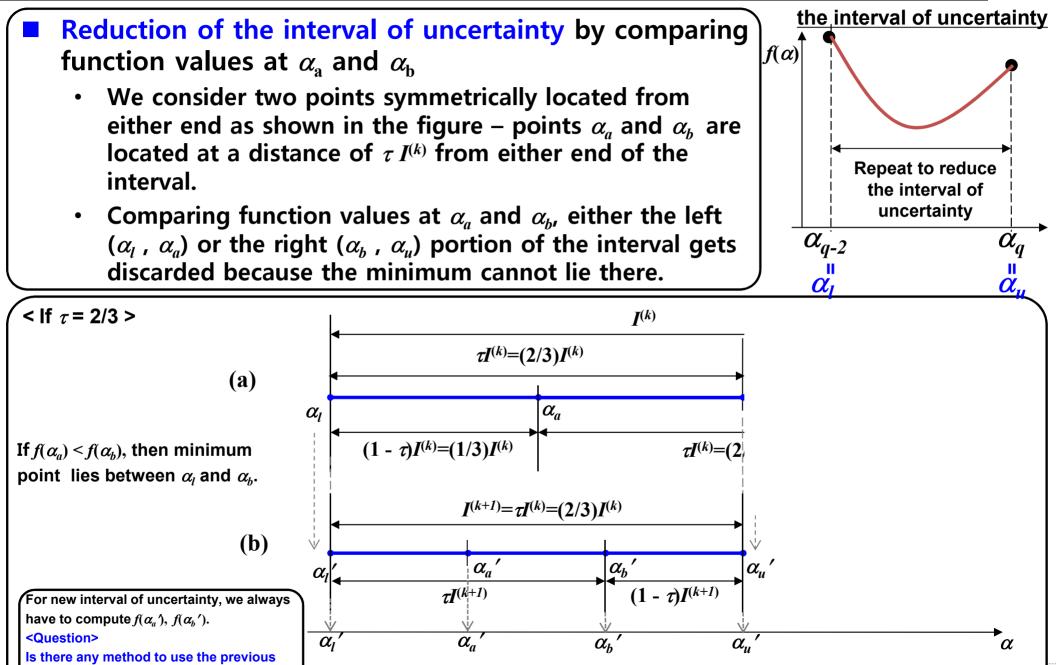
Any number of the Fibonacci sequence for n(>1) is obtained by adding the previous two numbers, so the sequence is given as follows.

General term:
$$F_n = \frac{\varphi^n - (1 - \varphi)^n}{\sqrt{5}}, \quad \varphi = \frac{1 + \sqrt{5}}{2} \approx 1.6180339887 \cdots$$



3.2 Golden Section Search Method

- Phase 2: Local Search (1/3)



3.2 Golden Section Search Method - Phase 2: Local Search (2/3)

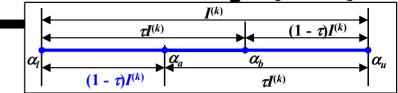
Reduction of the interval of uncertainty by comparing function values at α_a and α_b We consider two points symmetrically located from either end as shown in the figure – points α_a and α_b are located at a distance of $\tau I^{(k)}$ from either end of the interval. $\mathbf{J}(k)$ $\tau I^{(k)}$ **(a)** α_a α α_h $(1 - \tau)I^{(k)}$ If $f(\alpha_a) < f(\alpha_b)$, then minimum $I^{(k+1)} = \tau I^{(k)}$ point lies between α_i and α_b . $(1 - \tau)I^{(k+1)}$ $\tau I^{(k+1)}$ **(b)** α_{u}' α_{h}' $\alpha_{\rm I}$ α_a' $(1 - \tau)I^{(k+1)}$ $\tau I^{(k+1)}$ **1.** $f(\alpha_n)$ will be used for the next interval of uncertainty $I^{(k+1)}$. 2. α_a can be equal to α_a' or α_b' of the next interval of 3-2. Assume that α_a is equal to α_b' . $\alpha_a = \alpha_b'$ uncertainty *I*^(*k*+1). $(1-\tau)I^{(k)} = \tau I^{(k+1)}$ **3-1.** Assume that α_a is equal to α_a' . $\qquad \alpha_a = \alpha_a$ $(1-\tau)I^{(k)} = \tau \cdot \tau \cdot I^{(k)}$ $(1-\tau)I^{(k)} = (1-\tau)I^{(k+1)}$ $\tau \cdot \tau I^{(k)} - (1 - \tau) I^{(k)} = 0$ $(1-\tau)I^{(k)} = (1-\tau)\tau I^{(k)}$ $\tau^2 + \tau - 1 = 0$ $I^{(k)} = \tau I^{(k)}$ $\Rightarrow \tau = 0.618, -1.618 \implies 0.618$ Because $\tau = 1$, this assumption is wrong.

3.2 Golden Section Search Method

- Phase 2: Local Search (3/3)

Reduction of the interval of uncertainty by comparing function values at α_a and α_b We consider two points symmetrically located from either end as shown in the figure – points α_a and α_b are located at a distance of $\tau I^{(k)}$ from either end of the interval. $\mathbf{J}(k)$ $\tau I^{(k)}$ **(a)** α_{μ} α α_{h} $(1 - \tau)I^{(k)}$ If $f(\alpha_a) > f(\alpha_b)$, then minimum point lies between α_a and α_a . $\mathbf{I}^{(k+1)} = \tau \mathbf{I}^{(k)}$ $\tau I^{(k+1)}$ $(1 - \tau)I^{(k+1)}$ **(b)** α_{a}' α_{b}' α_{u}' $\alpha_{\rm I}$ $\tau I^{(k+1)}$ $(1 - \tau)I^{(k+1)}$ 1. $f(\alpha_{k})$ will be used for the next interval of uncertainty $I^{(k+1)}$. 2. α_b can be equal to α_a' or α_b' of the next interval of 3-2. Assume that α_b is equal to α_a' . $\alpha_b = \alpha_a'$ uncertainty *I*^(*k*+1). $(1-\tau)I^{(k)} = \tau I^{(k+1)}$ 3-1. Assume that α_b is equal to α_b' . $\alpha_h = \alpha_h$ $(1-\tau)I^{(k)} = \tau \cdot \tau \cdot I^{(k)}$ $(1-\tau)I^{(k)} = (1-\tau)I^{(k+1)}$ $\tau \cdot \tau I^{(k)} - (1 - \tau) I^{(k)} = 0$ $(1-\tau)I^{(k)} = (1-\tau)\tau I^{(k)}$ $\tau^2 + \tau - 1 = 0$ $I^{(k)} = \tau I^{(k)}$ $\Rightarrow \tau = 0.618, -1.618 \implies 0.618$ Because $\tau = 1$, this assumption is wrong.

3.2 Golden Section Search Method: Summary (1/3)



Step 1: For a chosen small number δ , let q be the smallest integer to satisfy $f(\alpha_{q-1}) < f(\alpha_{q-2}), f(\alpha_{q-1}) < f(\alpha_q)$ where α_q, α_{q-1} , and α_{q-2} are calculated from $\alpha_q = \sum_{q=0}^{d} \delta(1.618)^{j}$, (q = 0, 1, 2, ...). The upper and lower bounds on α^* (the optimum value for α) are given as follows.

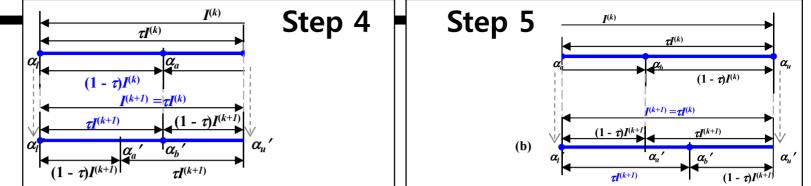
$$\alpha_u \equiv \alpha_q = \sum_{j=0}^q \delta(1.618)^j, \alpha_l \equiv \alpha_{q-2} = \sum_{j=0}^{q-2} \delta(1.618)^j$$

Step 2 : Compute $f(\alpha_a)$ and $f(\alpha_b)$ where $\alpha_a = \alpha_l + 0.382I$ and $\alpha_b = \alpha_l + 0.618I$ (interval of uncertainty $I = \alpha_u - \alpha_l$).

Step 3 : Compute $f(\alpha_a)$ and $f(\alpha_b)$, and go to Step 4, Step 5 or Step 6.

47

3.2 Golden Section Search Method: Summary (2/3)

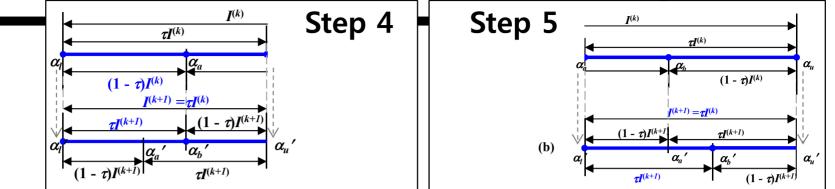


Step 4 : If $f(\alpha_a) < f(\alpha_b)$, then minimum point α^* lies between α_l and α_b , i.e., $\alpha_l \le \alpha^* \le \alpha_b$. The new limits for the reduced interval of uncertainty are $\alpha_l '= \alpha_l$ and $\alpha_u '= \alpha_b$. Also, $\alpha_b '= \alpha_a$. Compute $f(\alpha_a')$, where $\alpha_a '= \alpha_l '+0.382(\alpha_u '-\alpha_l ')$ and go to Step 7.

■ Step 5 : If $f(\alpha_a) > f(\alpha_b)$, then minimum point α^* lies between α_a and α_u , i.e., $\alpha_a \le \alpha^* \le \alpha_u$. Similar to the procedure in Step 4, let $\alpha_l = \alpha_a$ and $\alpha_u = \alpha_u$, so that $\alpha_a = \alpha_b$. Compute $f(\alpha_b)$, where $\alpha_b = \alpha_l + 0.618(\alpha_u - \alpha_l)$ and go to Step 7.

Step 6 : If $f(\alpha_a) = f(\alpha_b)$, let $\alpha_l = \alpha_a$ and $\alpha_u = \alpha_b$ and return to Step 2.

3.2 Golden Section Search Method: Summary (3/3)



Step 7 : If the new interval of uncertainty $I' = \alpha_u' - \alpha_l'$ is small enough to satisfy a stopping criterion (i.e., $I' < \varepsilon$), let $\alpha^* = (\alpha_u' - \alpha_l')/2$ and stop. Otherwise, delete the primes(') on α_l' , α_a' , α_b' and α_u' and return to Step 3.

3.3 Direct Search Method

Hooke & Jeeves Direct Search Method Nelder & Mead Simplex Method

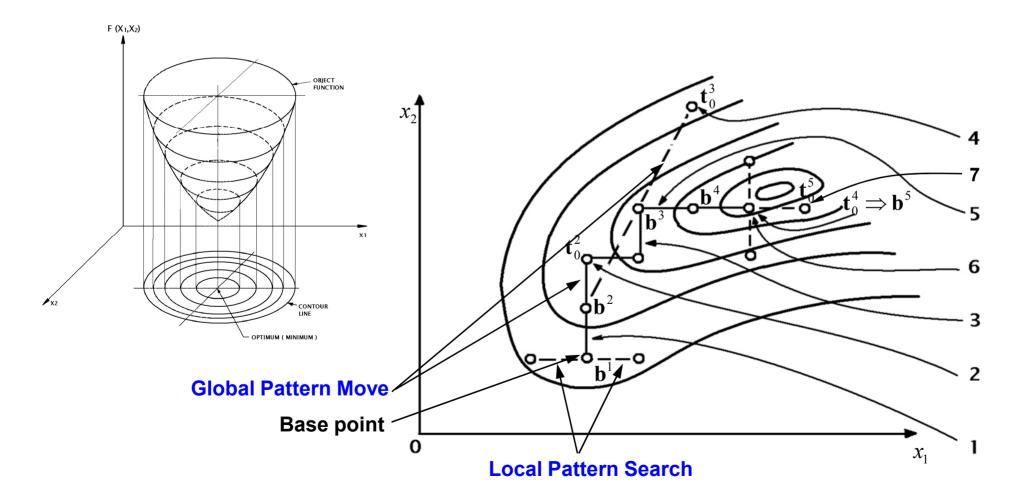
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

Ocean Engineering

3

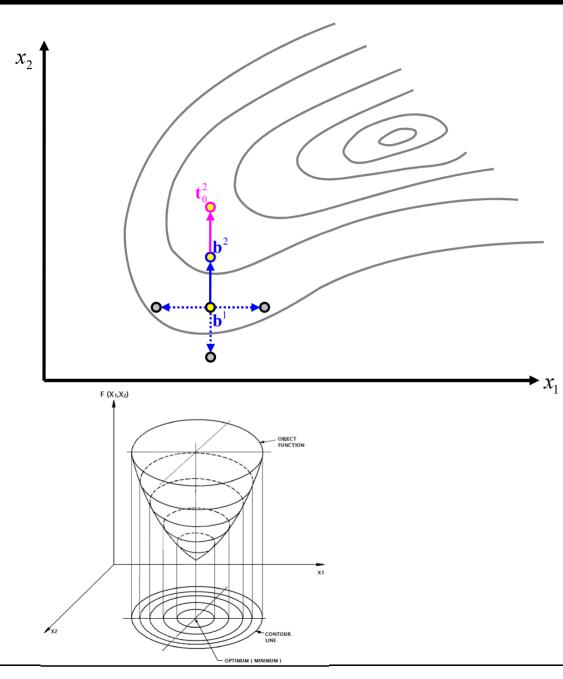
Naval Architecture

- 3.3 Direct Search Method 1. Base Point 1. Base Point 2. Global Pattern Move 3. Local Pattern Search
 - ☑ This method is a sequential technique, each step of which consists of two kinds of move, the 'Local Pattern Search' at a base point and 'Global Pattern Move' to the optimal design point.



51

3.3 Direct Search Method 1. Hooke & Jeeves Method (2/16)



1. Base Point 2. Global Pattern Move 3. Local Pattern Search

1. 'Local Pattern Search' at the base point **b**¹

•Search in x₁ direction.

- No improvement of the value of the objective function in x_1 direction \rightarrow No movement in x_1 direction

•Search in x₂ direction.

- Improvement of the value of the objective function in x_2 direction \rightarrow Movement in the positive x_2 direction

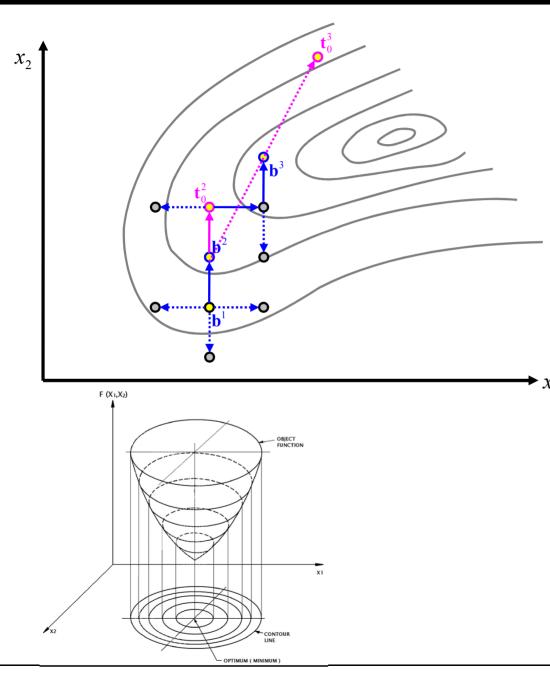
•Move and define the base point b².

2. 'Global Pattern Move' at the base point b²

- •Find a temporary base point t₀² by symmetrical displacement of b¹ to b².
- •Because the value of the objective function at t_0^2 is better than that at b^2 , perform the 'Local Pattern Search' at t_0^2 .

52

3.3 Direct Search Method 1. Hooke & Jeeves Method (3/16)



1. Base Point
 2. Global Pattern Move
 3. Local Pattern Search

3. 'Local Pattern Search' at the temporary base point t₀²

•Search in x₁ direction.

- Improvement of the value of the objective function in x_1 direction \rightarrow Movement in the positive x_1 direction

•Search in x2 direction.

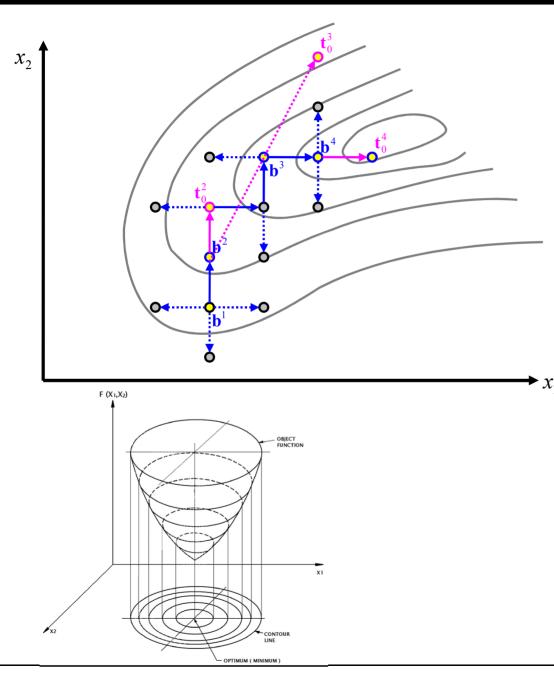
- Improvement of the value of the objective function in x_2 direction \rightarrow Movement in the positive x_2 direction

• Move and define the base point b^3 .

4. 'Global Pattern Move' at the base point **b**³

- Find a temporary base point t₀³ by symmetrical displacement of b² to b³.
- •Because the value of the objective function at t₀³ is not better than that at b³, perform the 'Local Pattern Search' at b³.

3.3 Direct Search Method 1. Hooke & Jeeves Method (4/16)



5. 'Local Pattern Search' at the base point **b**³

1. Base Point

2. Global Pattern Move

3. Local Pattern Search

•Search in x₁ direction.

- Improvement of the value of the objective function in x_1 direction \rightarrow Movement in the positive x_1 direction

•Search in x₂ direction.

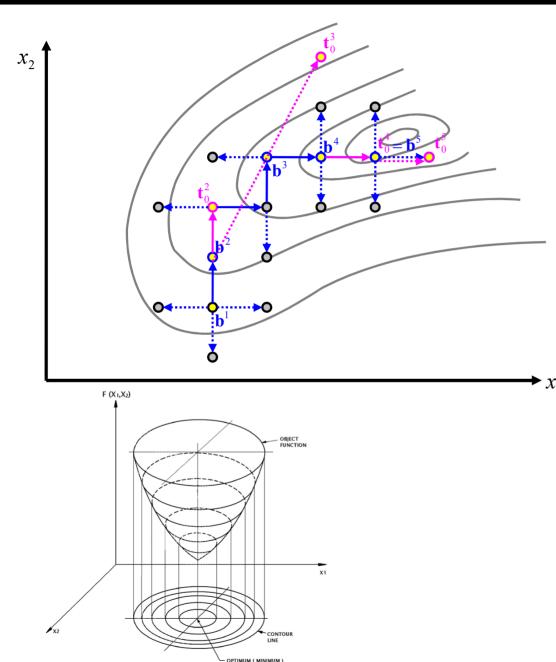
- No improvement of the value of the objective function in x_2 direction \rightarrow No movement in x_2 direction

•Move and define the base point b⁴.

6. 'Global Pattern Move' at the base point **b**⁴

- Find a temporary base point t₀⁴ by symmetrical displacement of b³ to b⁴.
- •Because the value of the objective function at t_0^4 is better than that at b^4 , perform the 'Local Pattern Search' at t_0^4 .

3.3 Direct Search Method 1. Hooke & Jeeves Method (5/16)



1. Base Point 2. Global Pattern Move 3. Local Pattern Search

7. 'Local Pattern Search' at the temporary base point t₀⁴

•Search in x₁ direction.

- No improvement of the value of the objective function in x_1 direction \rightarrow No movement in x_1 direction

•Search in x₂ direction.

- No improvement of the value of the objective function in x_2 direction \rightarrow No movement in x_2 direction

 Because there is no improvement of the value of the objective function in x₁ and

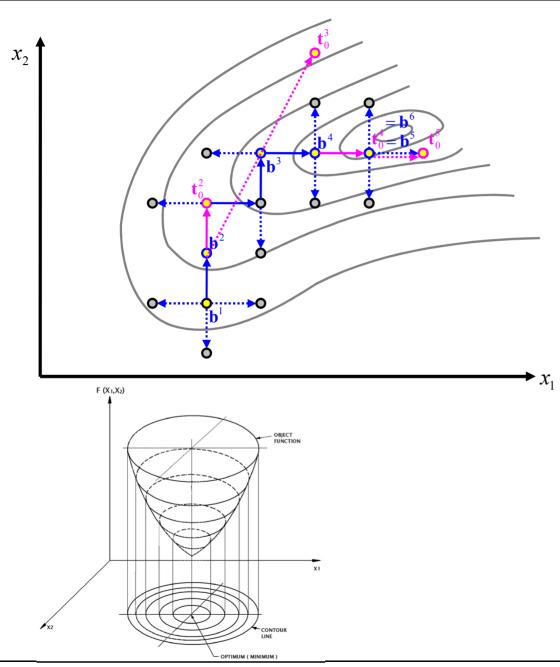
 x_2 direction, the current base point is defined as the base point b^5 .

8. 'Global Pattern Move' at the base point **b**⁵

- •Find a temporary base point t₀⁵ by symmetrical displacement of b⁴ to b⁵.
- •Because the value of the objective function at t₀⁵ is not better than at b⁵, perform the 'Local Pattern Search' at b⁵.

55

3.3 Direct Search Method 1. Hooke & Jeeves Method (6/16)



1. Base Point
2. Global Pattern Move
3. Local Pattern Search

9. 'Local Pattern Search' at the base point **b**⁵

•Search in x₁ direction.

- No improvement of the value of the objective function in x_1 direction \rightarrow No movement in x_1 direction

•Search in x₂ direction.

- No improvement of the value of the objective function in x_2 direction \rightarrow No movement in x_2 in x_2 direction

•Because there is no improvement of the value of the objective function in x1 and x2 direction, the current base point defined as base point b⁶.

 Because b⁵ = b⁶, reduce the step size by half and perform the 'Local Pattern Search' at b⁶.

56

3.3 Direct Search Method

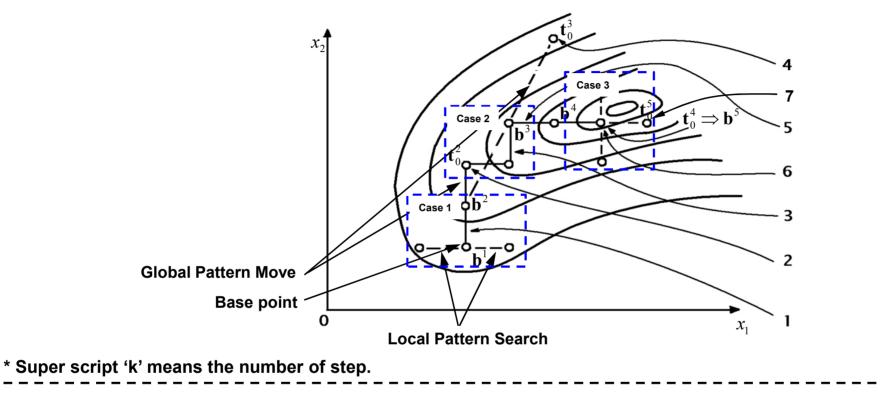
1. Hooke & Jeeves Method (7/16): Rule of the 'Local Pattern Search' (1)

e of the 'Local Pattern Search'	_(F: Fail, S: Success)	
Rule (1) Search in the positive x_i direction.		
- Move the exploratory point in the positive x_i direction and evaluate the value of the objective function at that point.	- If the value of the objective function is increased (Fail)	- Come back to the previous point and search in the negative x _i direction. ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
o→ b ^k	- If the value of the objective function is decreased (Success)	- Search in the x_{i+1} direction at the current point.
Rule ② Search in the negative x_i direction.		•
- If the search in the positive x_i direction is failed, move the exploratory point in the negative x_i direction and evaluate the value of the objective function at that point.	- If the value of the objective function is increased (Fail)	- Come back to the previous point and search in x_{i+1} direction. F $o^{>} - o^{-} o^{-} F$ b ^k
←o⊙F b ^k	- If the value of the objective function is decreased (Success)	- Search in the x_{i+1} direction at the current point. S \odot F

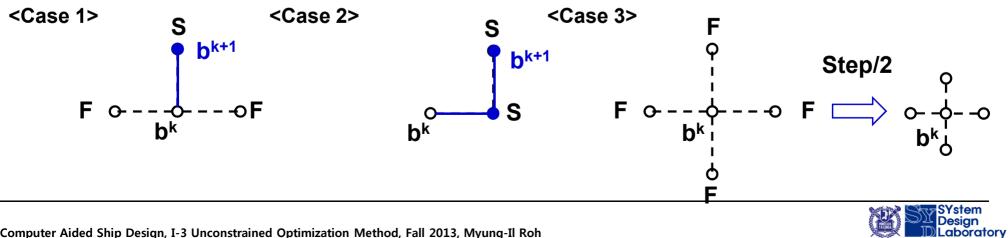
- This process of the 'Local Pattern Search' is continued for i = 1, ..., n.
- After searching in x_n direction, the current point is defined as new base point b^{k+1} .

3.3 Direct Search Method

1. Hooke & Jeeves Method (8/16): Rule of the 'Local Pattern Search' (2)



Rule of the Local Pattern Search(F: Fail, S: Success)



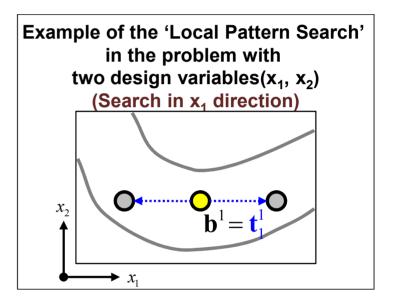
58

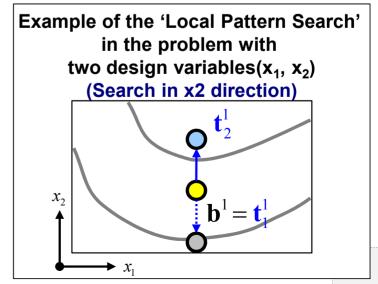
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh

3.3 Direct Search Method 1. Hooke & Jeeves Method (9/16): Algorithm Summary (1)

1) Local Pattern Search (Problem with n design variables)

- 1. Compute the value of the objective function at the starting base point b^1 .
- 2. Compute the value of the objective function at $b^1 \pm \delta_1$, where δ_1 is input step size and a vector with n elements ($\delta_1 = [\delta_1, 0, 0, ..., 0]^T$). If the value of the objective function is decreased, $b^1 \pm \delta_1$ is adopted as t_1^1 and the search is continued.
- 3. Compute the value of the objective function at $t_1^1 \pm \delta_2$, where δ_2 is also input step size and a vector with n elements($\delta_2 = [0, \delta_2, 0, ..., 0]^T$). If the value of the function is decreased, $t_1^1 \pm \delta_2$ is adopted as t_2^1 .





3.3 Direct Search Method 1. Hooke & Jeeves Method (10/16): Algorithm Summary (2)

1) Local Pattern Search (Problem with n design variables)

- 4. After the 'Local Pattern Search' for all design variables, new base point is defined. (new base point $b^2 = t_n^{-1}$)
- 5. Perform the 'Global Pattern Move' from the previous base point along the line from the previous to current base point.

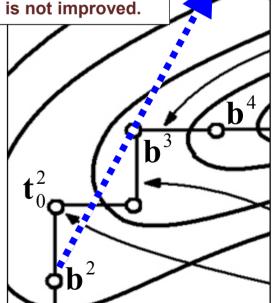
2) Global Pattern Move

1. Define the temporary base point located the same distance between the previous and current base point(obtained from 'Local Pattern Search') from the current base point ('Global Pattern Move'), and calculate the value of the objective function at this point. The temporary base point is calculated by 'Global Pattern Move' as follows.

$$\mathbf{t}_0^{k+1} = \mathbf{b}^k + 2(\mathbf{b}^{k+1} - \mathbf{b}^k) = 2\mathbf{b}^{k+1} - \mathbf{b}^k$$

Example of the 'Global Pattern Move' in the problem with two design variables(x_1, x_2) when the value of the objective function at the temporary base point is not improved.

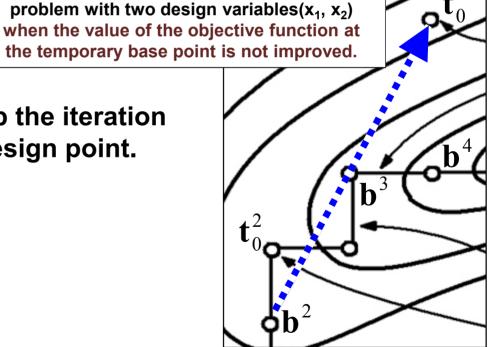
2. If the result of the temporary base point is a better point than the previous base point, perform the 'Local Pattern Search' at the temporary base point. Otherwise, come back to the previous base point and perform the 'Local Pattern Search'.



3.3 Direct Search Method 1. Hooke & Jeeves Method (12/16): Algorithm Summary (4)

- 3) Closing Condition (Stopping Criterion)
 - When even this 'Local Pattern Search' fails(b^{k+1} = b^k, there is no improvement), reduce the step sizes δ_i by half, δ_i/2, and resume the 'Local Pattern Search'.

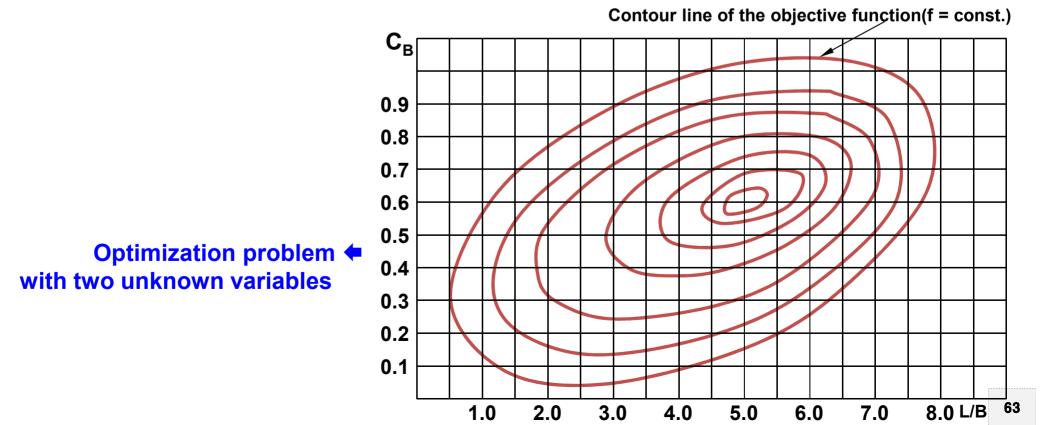
the temporary base point is not improved. 2. If the step size δ_i is smaller than ϵ_i , stop the iteration and current base point is the optimal design point.



Example of the 'Global Pattern Move' in the

3.3 Direct Search Method 1. Hooke & Jeeves Method (13/16): Example

- ☑ If the contour line of the objective function of shipbuilding cost with two design variables, L/B and C_B, is given as shown in the Figure, find the optimal value of the L/B and C_B to minimize the shipbuilding cost by using the 'Hooke & Jeeves Direct Search Method' and plot the procedures in the graph.
 - Hooke & Jeeves Direct Search Method
 - Starting design point: L/B = 7.0, $C_B = 0.2$
 - Step size at the starting design point: $\Delta(L/B) = 0.5$, $\Delta(C_B) = 0.1$



3.3 Direct Search Method 1. Hooke & Jeeves Method (14/16): Example

 $x_1 = L / B, \ x_2 = C_B$

• Iteration 1 : Local Pattern Search 1

 $\mathbf{b}^0 = (7, 0.2), \Delta x_1 = 0.5, \Delta x_2 = 0.1,$ $\mathbf{t}_0^1 = \mathbf{b}^0$

Search from \mathbf{t}_0^1 in $-x_1$ direction $\rightarrow \mathbf{t}_1^1 = (6.5, 0.2)$ Search from \mathbf{t}_1^1 in $+x_2$ direction $\rightarrow \mathbf{t}_2^1 = (6.5, 0.3)$

Because the value of the objective function at \mathbf{t}_2^1 is improved, this point is adopted as a new base point.

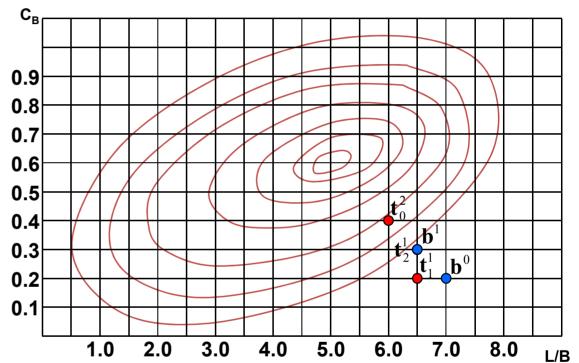
$$\mathbf{b}^1 = \mathbf{t}_2^1$$

•Iteration 2 : Global Pattern Move 1

Define the temporary base point by using \mathbf{b}^0 and \mathbf{b}^1

$$\rightarrow \mathbf{t}_0^2 = (6, \ 0.4)$$

Because the value of the objective function at \mathbf{t}_0^2 is improved, perform the 'Local Pattern Search' at this point.



3.3 Direct Search Method 1. Hooke & Jeeves Method (15/16): Example

•Iteration 3 : Local Pattern Search 2

Search from \mathbf{t}_0^2 in $-x_1$ direction $\rightarrow \mathbf{t}_1^2 = (5.5, 0.4)$ Search from \mathbf{t}_1^2 in $+x_2$ direction $\rightarrow \mathbf{t}_2^2 = (5.5, 0.5)$

Because the value of the objective function at t_2^2 is improved, this point is adopted as a new base point.

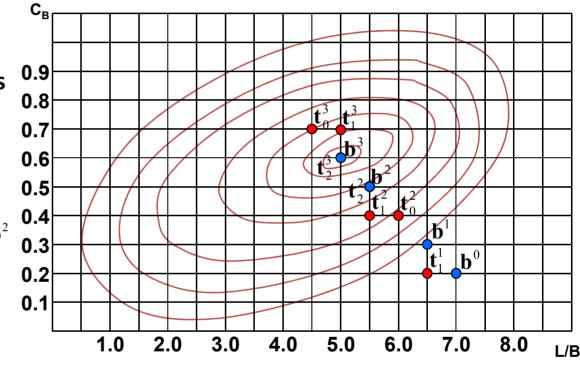
$$\mathbf{b}^2 = \mathbf{t}_2^2$$

•Iteration 4 : Global Pattern Move 2 Define the temporary base point by using \mathbf{b}^1 and \mathbf{b}^2 $\rightarrow \mathbf{t}_0^3 = (4.5, 0.7)$

•Iteration 5 : Local Pattern Search 3 Search from \mathbf{t}_0^3 in $+x_1$ direction $\rightarrow \mathbf{t}_1^0 = (5, 0.7)$ Search from \mathbf{t}_1^3 in $-x_2$ direction $\rightarrow \mathbf{t}_2^3 = (5, 0.6)$

Because the value of the objective function at t_2^3 is improved, this point is adopted as a new base point.

$$\mathbf{b}^3 = \mathbf{t}_2^3$$



65

3.3 Direct Search Method 1. Hooke & Jeeves Method (16/16): Example

•Iteration 6 : Global Pattern Move 3

Define the temporary base point by using \mathbf{b}^2 and \mathbf{b}^3

 \rightarrow **t**₀⁴ = (4.5, 0.7)

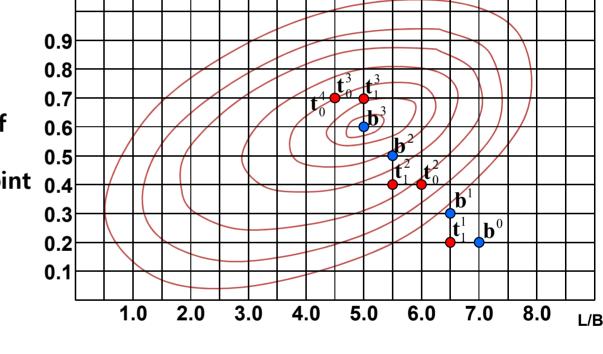
Because the value of the objective function at \mathbf{t}_0^4 is not improved,

 $\mathbf{t}_0^4 = \mathbf{b}^3$

- •Iteration 7 : Local Pattern Search 4 0.7 Because there is no improvement of 0.6 the value of the objective function 0.5 from the temporary base design point 0.4 t_0^4 in x_1 direction and x_2 direction, 0.3 $t_2^4 = t_1^4 = t_0^4$ 0.2
- •Iteration 8 : Global Pattern Move 4 $\mathbf{b}^4 = \mathbf{b}^3 \rightarrow \Delta x_1 = 0.25, \Delta x_2 = 0.05,$ $\mathbf{t}_0^5 = \mathbf{b}^4$
- •Iteration 9 : Stopping the iteration of search

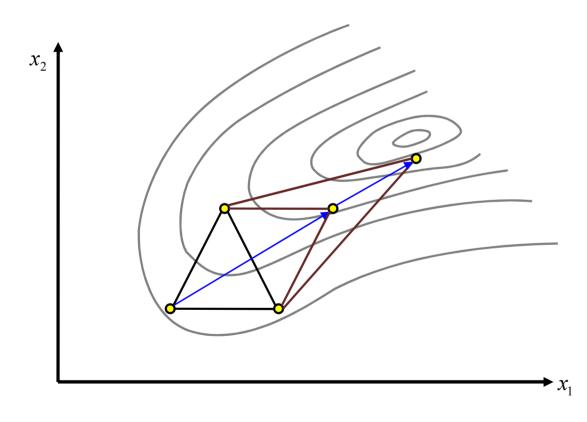
Because there is no improvement of the value of the objective function from base design point $(x_1, x_2) = (L/B, C_B) = (5.0, 0.6)$ in x_1 direction and x_2 direction by performing the 'Local Pattern Search' and 'Global Pattern Move', the optimal design point is L/B = 5.0, $C_B = 0.6$.

 C_B



3.3 Direct Search Method 2. Nelder & Mead Simplex Method (1/14)

 \square This method is used to find optimal design point by successively reflecting, expanding, contracting, and reducing the simplex with (n+1) corners in the function of n design variables.



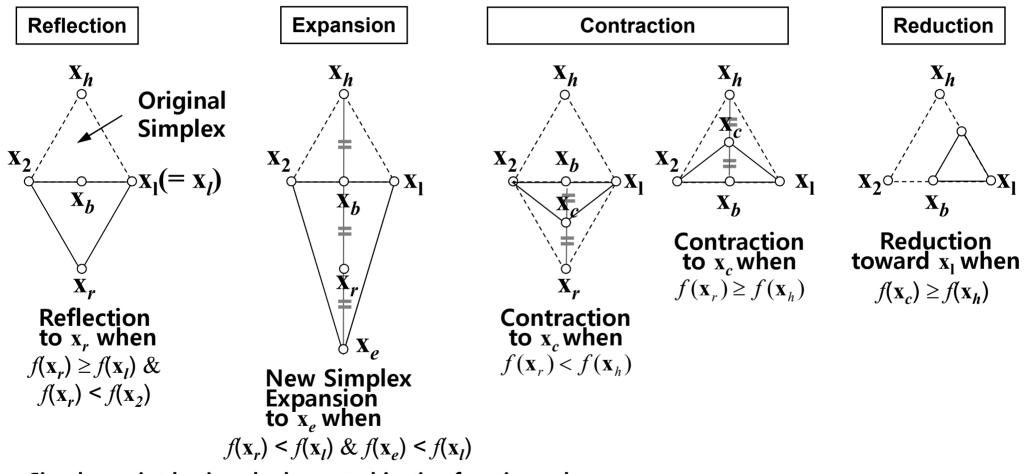
1. This method uses *n*+1 points in the function of *n* design variables.

Ex) If the number of the design variables is two, this method use three points, i.e., triangle.

- 2. The simplex is reflected in the direction where the value of the objective function is improved.
- 3. If the value of the objective function is improved, the simplex is expanded. Otherwise, the simplex is reduced.

3.3 Direct Search Method 2. Nelder & Mead Simplex Method (2/14)

☑ The following figure shows various operations (Reflection, Expansion, Contraction, Reduction) for 2-dimensional case.

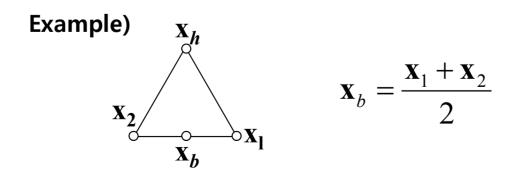


 x_h : Simplex point having the largest objective function value x_l : Simplex point having the smallest objective function value x_b : Center point between x_1 and x_2

3.3 Direct Search Method 2. Nelder & Mead Simplex Method (3/14)

- **Step 1 :** Calculate the value of the objective function f at the n+1 corners of the simplex.
- Step 2 : Establish the corners which yield the highest, x_h , and lowest, x_l , of f(x) in the current simplex.
- Step 3 : Calculate the value of the objective function f at the centroid(x_b) of all x_i except x_h , i.e.,

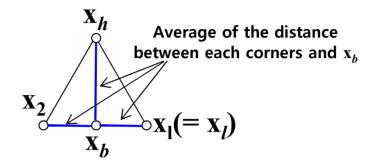
$$\mathbf{x}_b = \frac{1}{n} \sum_{i=1}^{n+1} \mathbf{x}_i \text{ (with } \mathbf{x}_h \text{ excluded)}$$



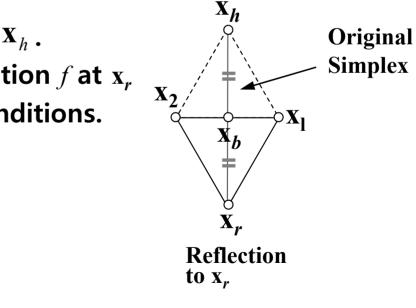
3.3 Direct Search Method 2. Nelder & Mead Simplex Method (4/14)

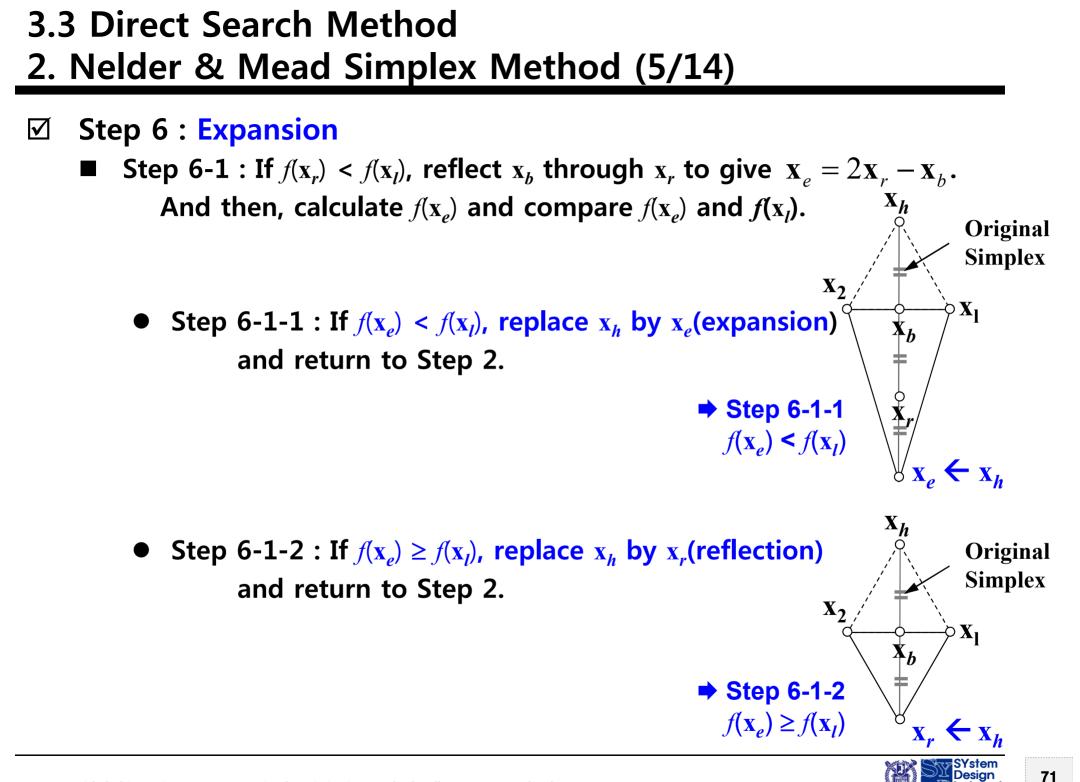
☑ Step 4 : Test stopping criterion:

$$\left\{\frac{1}{n+1}\sum_{i=1}^{n+1}\left[f(\mathbf{x}_i) - f(\mathbf{x}_b)\right]^2\right\}^{1/2} \le \varepsilon$$

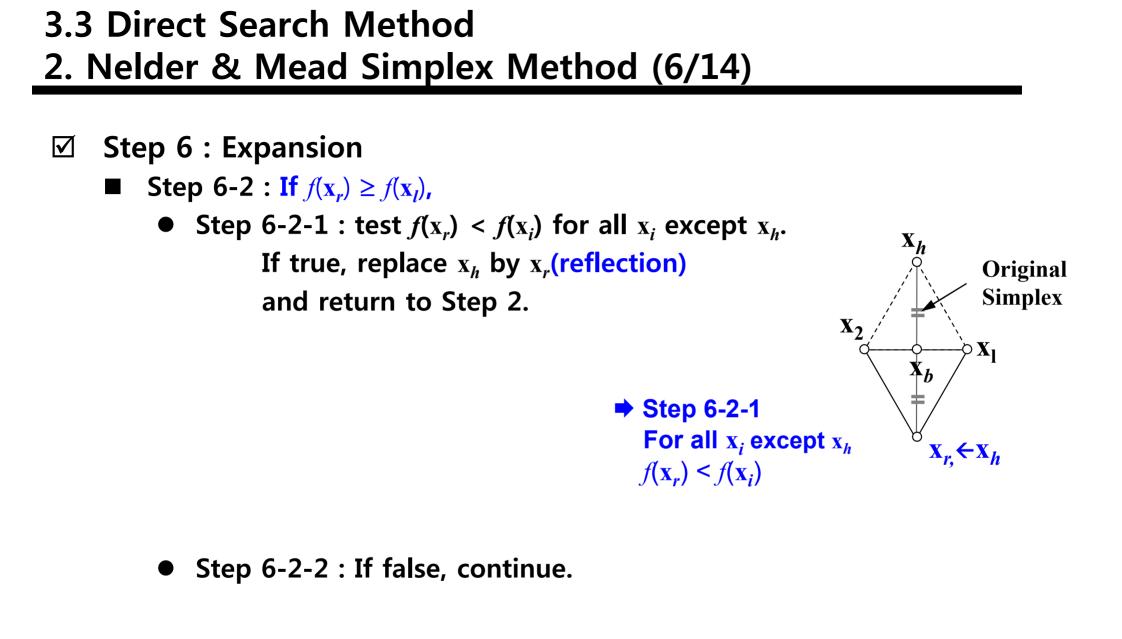


- If the stopping criterion is satisfied, stop and return f(x_l) as minimum. Otherwise, continue.
- ☑ Step 5 : Reflection
 - Reflect \mathbf{x}_h through \mathbf{x}_b to give $\mathbf{x}_r = 2\mathbf{x}_b \mathbf{x}_h$. Calculate the value of the objective function f at \mathbf{x}_r and change the simplex as following conditions.



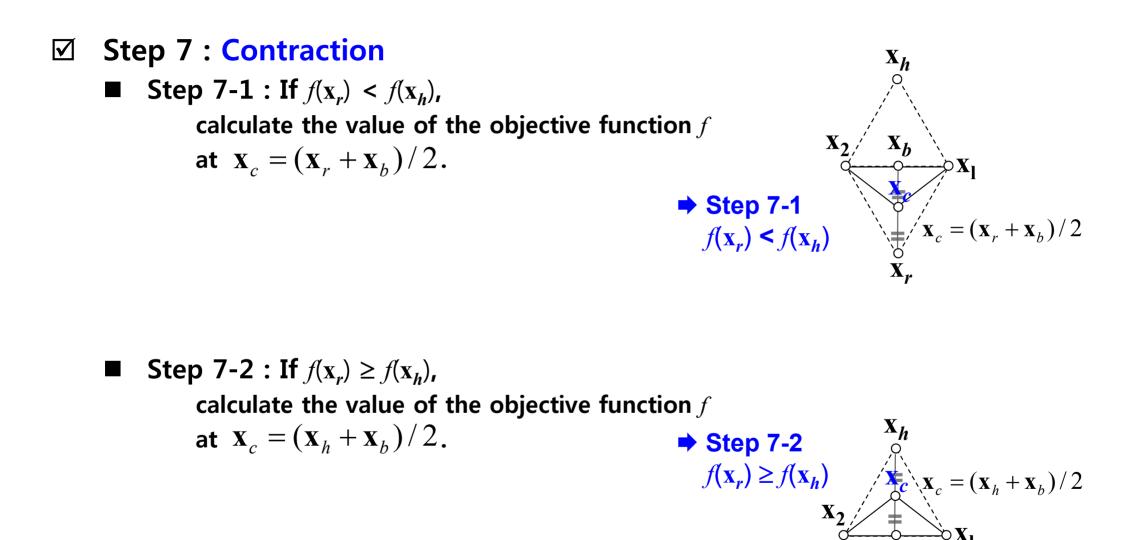


Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh



72

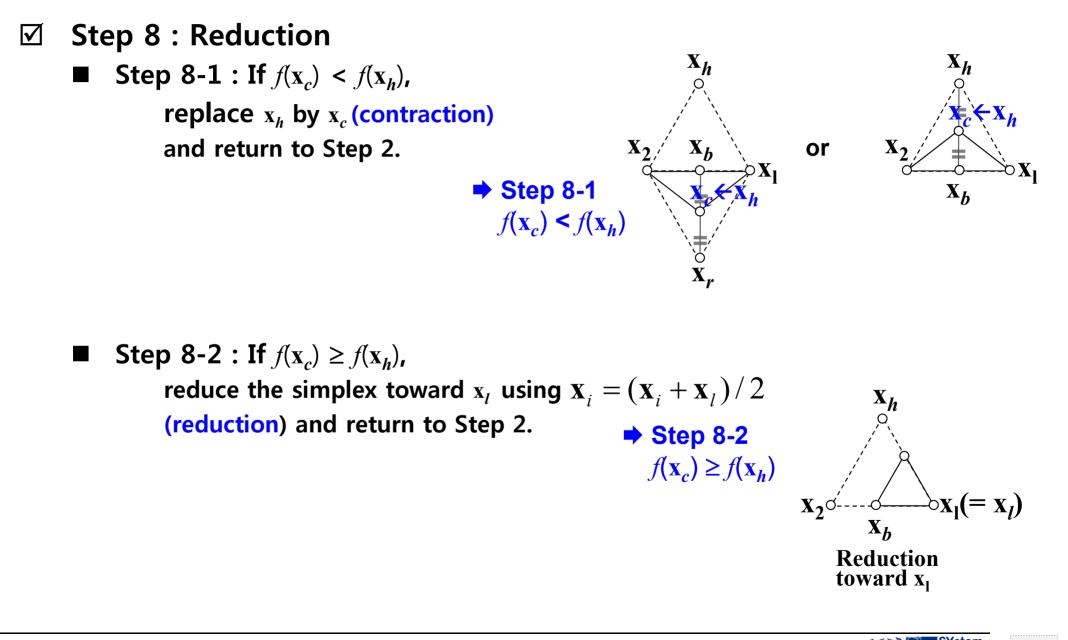
3.3 Direct Search Method 2. Nelder & Mead Simplex Method (7/14)



73

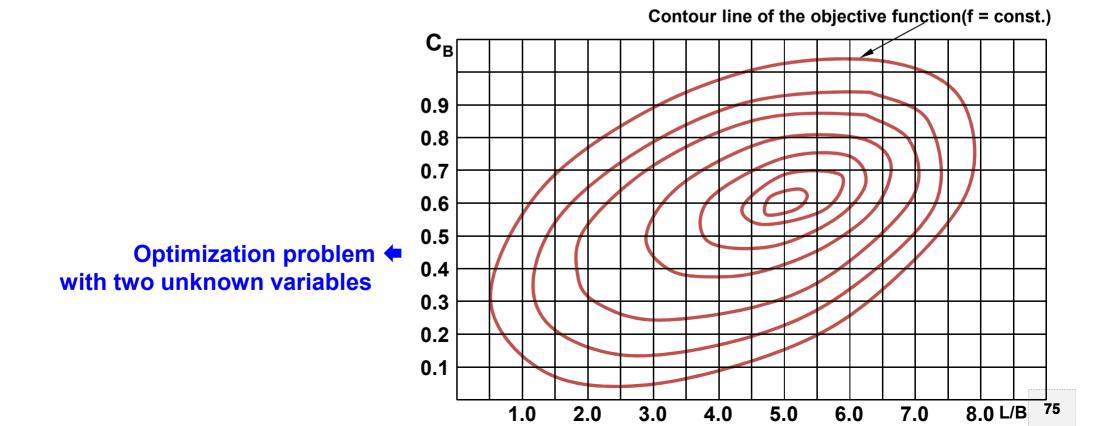
X_h

3.3 Direct Search Method 2. Nelder & Mead Simplex Method (8/14)



3.3 Direct Search Method2. Nelder & Mead Simplex Method (9/14): Example

- ☑ If the contour line of the objective function of shipbuilding cost with two design variables, L/B and C_B, is given as shown in Fig, find the value of the L/B and C_B to minimize the shipbuilding cost by using the 'Nelder & Mead Simplex Method' and plot the procedures in the graph.
 - Nelder & Mead Simplex Method
 - Starting corners of the simplex: (L/B, CB) = (1, 0.1), (1.5, 0.1), (1.5, 0.2)
 - Stopping criterion: 0.01

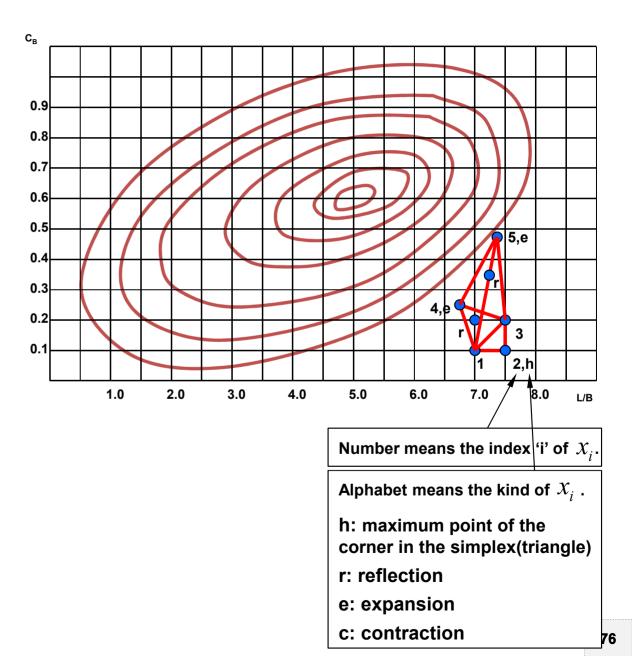


3.3 Direct Search Method 2. Nelder & Mead Simplex Method (10/14): Example

 $x_1 = L / B, \ x_2 = C_B$

Triangle 1 : x_1 , x_2 , x_3 Iteration 1) Because x_2 is x_h , reflect x_2 through the center between x_1 and x_3 . $\rightarrow x_r$ Because $f(x_r) < f(x_1)$ and $f(x_3)$, perform the expansion $\rightarrow x_{4,e}$ \rightarrow Triangle 2 : x_1 , x_3 , x_4

Iteration 2) Because x_1 is x_h , reflect x_1 through the center between x_3 and $x_4 \rightarrow x_r$ Because $f(x_r) < f(x_3)$ and $f(x_4)$, perform the expansion $\rightarrow x_{5,e}$ \rightarrow Triangle 3 : x_3, x_4, x_5

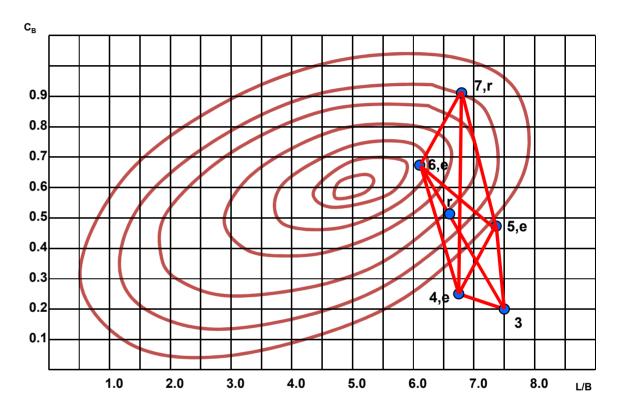


3.3 Direct Search Method 2. Nelder & Mead Simplex Method (11/14): Example

 $x_1 = L / B, \ x_2 = C_B$

Iteration 3) Because x_3 is x_h , reflect x_3 through the center between x_4 and x_5 . $\rightarrow x_r$ Because $f(x_r) < f(x_4)$ and $f(x_5)$, perform the expansion $\rightarrow x_{6,e}$ \rightarrow Triangle 4 : x_4 , x_5 , x_6

Iteration 4) Because x_4 is x_h , reflect x_4 through the center between x_5 and x_6 . $\rightarrow x_{7,r}$ Because $f(x_{7,r}) > f(x_6)$, go to the next iteration. \rightarrow Triangle 5 : x_5 , x_6 , x_7



3.3 Direct Search Method 2. Nelder & Mead Simplex Method (12/14): Example

Iteration 5) Because x_5 is x_h , reflect x_5 through the center between x_6 and x_7 . $\rightarrow x_r$ Because $f(x_r) > f(x_5)$, $f(x_6)$ and $f(x_7)$, perform the constraction. $\rightarrow x_{8,c}$ \rightarrow Triangle 6 : x_6 , x_7 , x_8

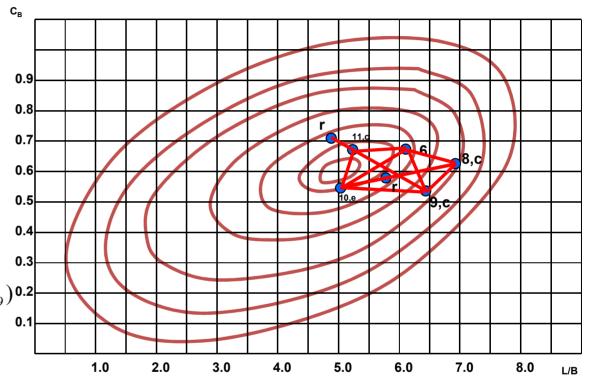
Iteration 6) Because x_7 is x_h , reflect x_7 0.6 through the center between x_6 and x_8 . $\rightarrow x_r$ 0.5 Because $f(x_r) > f(x_6)$, $f(x_8)$ and $f(x_r) < f(x_7)$, 0.4 contract the simplex toward $x_r \rightarrow x_{9,c}$ 0.3 \rightarrow Triangle 7 : x_6 , x_8 , x_9 0.2



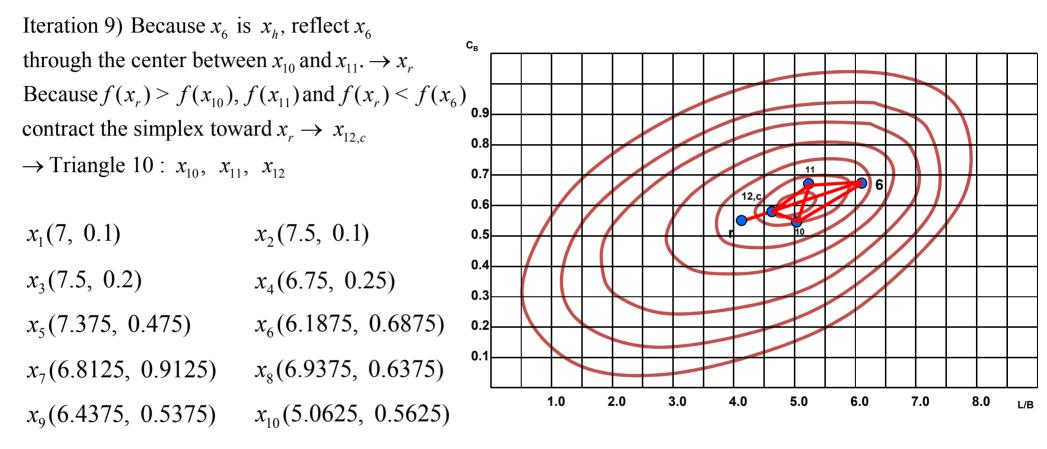
3.3 Direct Search Method 2. Nelder & Mead Simplex Method (13/14): Example

Iteration 7) Because x_8 is x_h , reflect x_8 through the center between x_6 and x_9 . $\rightarrow x_r$ Because $f(x_r) < f(x_6), f(x_9),$ preforme the expansion $\rightarrow x_{10,c}$ \rightarrow Triangle 8 : x_6, x_9, x_{10}

Iteration 8) Because $x_{9,c}$ is x_h , reflect $x_{9,c}$ 0.4 through the center between x_6 and x_{10} . $\rightarrow x_r$ 0.3 Because $f(x_r) > f(x_6)$, $f(x_{10})$ and $f(x_r) < f(x_9)^{0.2}$ contract the simplex toward $x_r \rightarrow x_{11,c}$ 0.1 \rightarrow Triangle 9 : x_6 , x_{10} , x_{11}



3.3 Direct Search Method 2. Nelder & Mead Simplex Method (14/14): Example



 $x_{11}(5.21875, 0.66875) x_{12}(4.6171875, 0.5796875)$

Performing 10 times iterations, we can recognize that the simplex(triangle) has the tendency to approach the result obtained by the 'Hooke & Jeeves direct search method'.

