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4.2 Lagrange Multiplier for Equality Constraints

4.3 Kuhn-Tucker Necessary Condition for
Inequality Constraints

Naval Architecture & Ocean Engineering

4&}"‘ b Sz SYstem

lﬂﬁgg Desn n
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2013, Myung-Il Roh SW7Z ]. Laboraiory
-"' _'.h - ~ ™ 1:.- 1 | 1 _.-3 .- :;1-- : = j - '-.-- e _‘_"'- = s o a 7



4.1 Optimal Solution Using Optimality
Condition
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Optimality Conditions for Function of Single Variable
- The Maximum and Minimum of the Function (review of the Course of High School)

“=5k0| HM”(Mathematics Il) Review “6. Maximum, Minimum and Differentials” (p.104)

yA yA
1] _ _Maximum 1

AN |
N

""" Minimum

1) Maximum value: The increase of the value of the continuous function f(x) is
changed to the decrease of that at X = x*.

2) Minimum value: The decrease of the value of the continuous function f(x) is
changed to the increase of that at X = x*.

f'(x)=0

%k
(Necessary condition for X = X to be a maximum or minimum)
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Optimality Conditions for Function of Single Variable

- First-Order Necessary Conditions

*
» First-order necessary condition for the function of a single variable: f'(x ) =0

Proof) The Taylor series expansion of f(x) at the point x" is as follows.

f(x)zf(x*)+df(x)(x x)+1df(x)(x xR
dx 2 dx’ Lo
Remainder
Let x - x" = d, the equation is as follows. . If the difference between
. . 1 Fo 1o » x and x" is small, the
f(x) = f(x )+ f'(x )d + _f”(x )d + R value of the remainder is
2 also very small.

From this equation, the change in the function at x*, i.e., /(x)— f(x") = Af (x)
Is given as

Af (x) = f'(x*)a’+%f"(x*)a’2 +R
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First-Order Necessary Conditions

Af(x) = f(x)= f(x)=f'(x")d +%f"(x*)a’2 + R

Af must be positive, if x* is a local minimum point.

£(x") is minimum.

v

* * *

x —d X X

£(x") is maximum.

T
QL

v

£ *
x —d X

§:z
i >
x +d
£ (x") is neither minimum nor
maximum(inflection point).

Since d(= x—x*) is small, the first-order term f'(x )d dominates other terms.

And the sign of the term f'(X )d is arbitrary.

Thus, the only way Af can be positive regardless of the sign of d in the neighborhood of x*

is /'(x')=0.

In the same way, Af must be negative if x* is a local maximum point. So, the only way Af can

be negative regardless of the sign of d in a neighborhood of x" is f'(x*) =0.
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Sufficient Conditions

% 1 * 1 " *
A (x)=f(x)=fx)=f'(x )d+5f (x)d” +R
= Now, we need a sufficient condition to determine which of the stationary points are
actually minimum for the function.

Since stationary points satisfy the necessary condition f'(x*) =0, the change in function
M) = ')+ /() + R becomes as follows.

Af(x) = %f”(x*)dz +R

Since the second-order term dominates all other higher-order terms, the term can be

positive for all d =0, if
f"(x*) > () (Sufficient condition)

Summary

= First-order necessary condition - Sufficient condition

If X is a local minimum point, /'(x ) =0. i xis a statlonary point( /'(x ) =0)

* * : "
Iff'(x )= 0, x is a stationary point(minimum, andf (x )>0, x is a local minimum point.

maximum, or inflection point).
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[Review] Taylor Series Expansion for the Function of Two Variables

— _ _ o
Taylor series expansion for the function of two variables f (x,,x,) at (x,,x,)
c o O .o :
JOxx) = f0x,x)+—— 0 —x)+——(x, - x,)
Ox, X,
1(o%f v 2 O : .0 -
T (X —x )" +2 (x, —x )%, =) +—5(x, —x,)" |+ R
2\ Ox; x,0x, Ox,
¥ Each term can be represented as follows:
i T
a9 | Oy xl—x::V NTre o
axl(x] x1)+ax2(xz X;) o Lz_xj f(x) (x=x)
ox,
1 82f(x —x,)*+2 s (x, —x) )(x —x*)+62f ~x,)’ :l_azf(x —x, )+ s (x, — X)) o’f (x —x*)+az—f(x —X,) -
20 a2 ! axox, T T a7 2| ox/ Y awax, 0 Y axex, T a7 X, — X,
Cor o
1T * x| 8)612 6)616)62 X, _’xl*
=TT L TX5 2 2 .
2" 1 0f  0f |x,—x
| Ox,0x, ox3 |

:%(x—x*)/H(x*)(x—x*)

/

( X= (xloxz)T )

f(x)= f(x*)+Vf(x*)T{x—x*)+%(x—x*)TH(\;*) (X—x*)+R

Element of the 2x2 Matrix




Optimality Conditions for Function of Several Variables

= Matrix form of the Taylor series expansion for the function of two variables

x )

f(x)= f(x)+Vf(x) (x — x)+ (x X)TH(X)(X X +R

\ 4

Element of the 2x2 Matrix

(X=(x1,x2) > X =(x1,x2)T,:H Eszz:)
L

= Matrix form of the Taylor series expansion for the function of several variables
: It has the same form of the function of two variables.

*
X, X, Vf : n dimension Vector
HeM,

» By defining X — X = d, the Taylor series expansion for the function of the several

variables is as follows. == ] . -1 _________ .
f(x +d) = f(x )+.Vf(x ) dﬁzd H(x )d'+R

Vf(x) =0, %d H(x)d > 0-»

\ lllllllllllllllllllllllllllllllllllllllllllllllllll

Sufficient conditions for X = X
to be a local minimum
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[Review] Hessian Matrix

» Hessian matrix: Differentiating the gradient vector once again, we obtain a matrix of
second partial derivatives for the function f(X) called the Hessian matrix.

That is, differentiating each component of the gradient vector with respectto X;, X,, -, X

we obtain ) )
o’f  of o’ f :
2 ~ Ae Al A X:(xl Xy oo xn)
Ox, Ox,0x, Ox,0x ,
2 2 5 : n-column Vector
ot |94 of o _9F
oxox | PR zez o Ox0x,
azf 82f azf * Property of the Hessian matrix
| Ox,0x;  0x,0x, ox; |

o __ I
Ox,0x,  Ox ,0x,

» Hessian matrix is denoted as Hor V° f.

Therefore, the Hessian matrix is

2
H = Q (121,2,,;@,]:192,,”)

always a symmetric matrix.
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[Review] Quadratic Form

* Quadratic form: This is a special nonlinear function having only second-order terms.

Ex) F(x,,%,,%;) = %(2x12 +2x,%, + 4x,x, — 6x; — 4x,x, + 5% )

The quadratic form can be written in the following matrix notation.

1 ) 1 o X, 7 1 A: Symmetrilc matrix
F(xl’x2’x3):5[xl x2 x3: 1 _6 _2 'XZ :EXTL45X<:> EdTHd
2 =2 5 |x

= The element of symmetric matrix A is defined as follows(a;: element of the matrix A at (i, j)).

1) The diagonal terms of the matrix are equal to the coefficient of the squared terms.

a, = (coefﬁcient of x )

2) The all terms except for diagonal terms(q;) are equal to a half of the coefficient of

1

the xx;. a, = (coefﬁcient of xl.xj)x —
2
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Quadratic form may be either positive, negative, or zero for
any X. _

A symmetric matrix A is often

referred to as a positive definite
if the quadratic form associated E (D Minimum condition for the function of the

: = Use of the form of a quadratic form

with A is positive definite. :  single variable
= Form of a quadratic form : If X is a stationary point( f'(x ) =0)
: and f/"(x )>0, x is a local minimum

1) Positive Definite

. X' Ax > 0 for any x except for X = 0.

2) PosTitive Semidefinite E|® Minimum condition for the function of the
: X' AX > 0 for all x and there exists :
at least one X # (0 with X’ Ax=0.

3) Negative Definite :
. X" AX < 0 for all x except for X =0.

point.

several variables

If X is a stationary point( VF(x')=0)
and d'H(x)d >0, i.e., the quadratic form
is positive definite, X is a local minimum

4) Negative Semidefinite point.

X AX <0 for all x and there exists To be dTH(x*)d > () at X*,
T : % oo o o
atleastone X # 0 with X’ Ax=0_. :| H(x ) must be positive definite.
5) Indefinite :
: The quadratic form is positive for E Ref) KREYSZIG E., Advanced Engneering Mathematics, WILEY, 2006,

some vectors X and negative for others- : 8.4. EigenbaSis. Diagona"zation. Quadratic forms.
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[Theorem] Methods for Checking Positive Definiteness
or Semi-definiteness of a Quadratic Form or a Matrix

Let A,i=1,...,n be n eigenvalues of a symmetric 7Xx7n matrix A associated

. . |
with the quadratic form F(x) :ExTAx.

1) F(X) is positive definite if and only if all eigenvalues of A are strictly positive, i.e.,
A >0,i=1,...,n

2) F(x) is positive semi-definite if and only if all eigenvalues of A are nonnegative, i.e.,
A 20,i=1...n

3) F/(X) is negative definite if and only if all eigenvalues of A are strictly negative, i.e.,
A <0,i=1,...,n

4) F(X) is negative semi-definite if and only if all eigenvalues of A are nonpositive, i.e.,

A, <0,i=1,...,n

5) I'(X) is indefinite if some 4. <0 and some other 4, >0 .

< ‘%% STSYstem ‘
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Eigenvalue of a Symmetric Matrix A

Associated with the guadratic Form

For a given matrix A, the eigenvalue problem is defined as AV = ﬂ,V
, Where ﬂ, is an eigenvalue and V is the corresponding eigenvector.

How to determine the eigenvalues:

Av=Av » (A-Al)v=0 = det(A-AI)=0
Determine the eigenvalues and the form of the following matrix.
(4 2 2]
4
2

2 4 2

detf 2 4-4 2 [=2-2)>B-1)=0

. A =2(equal root), 8

Since all eigenvalues of A are positive, this matrix is positive definite.
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[Summary] Optimality Conditions for Function of Several Variables

= The Taylor series expansion of f(X), which is the function of n variables, gives

fxX)=f(x)+Vf(x)d+ %dTH(x*)d +R

* From this equation, the change in the function at X*, i.e, Af (x)= f(x)- f(x), is given as
% 1 %
A =VFf(x)'d +EdTH(x yd+ R

£
= |[f we assume a local minimum is at X , then Af must be positive.

1) the first-order necessary condition:

0 (X . *
fVA(x')=0,ie, fa L0, (i=12m) , X is a stationary point(minimum,

maximum, or inflection point).
2) the sufficient condition:
If d"H(x")d >0, then the stationary point (V/(x')" =0 = Vf(x)=0) is a local
minimum.

Tobe d"H(x )d >0, H(X ) must be positive definite.
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Necessary Condition for a Stationary Point: Total Derivative df= 0 % grad f= 0

| of ‘

fx +Ax,,x, +Axy) gy The symbol “d” refers to the infinitesimal
15%2 2 5 y
N /0 change. By definition of “d”, we can write
S (%5%) A the change in functi :
ge in function f as follows:
’’’’’’’’’ Y the change of the
//”” Y df v function in x, direction
/Y, 7/ 40 R N I [t v
0| ) of of
2 ~Slope =—— 5
o . OX, X,
ope = 1 N1 @ B  Ssssasssssssssssssssssss 82 DrsnaNsssssssEsssEsssEsEmENE
X the change of the function in
X, directi
dx, ﬁd | | direction
5)61 *
4 If df =0, then X is a stationary point.
Ax, = dx,
X, _/ To be df =0 regardless of the sign of

The change in the function f(x,, x,) can be expressed |dx, anddx,, of / ox,and df / Ox, must be zero.
using Taylor expansion as follows |

U ne s & pe OS2y O e i : :
M=o Mt et [ AN 2 oy, AnAn G A J*R It means that the gradient of function f

X, Ox, 2 5 8x12 Ox,0x, x;
If Ax — 0.Ax. — 0 ‘must be equal to zero.
1 > 2 H f
- o of : |
- Ax !
the first-order term ox Ax, + o, dominates other terms.: @f - @f

2 5 L0 P =0 E:> Vf=0
Therefore, Af can be approximated as 4/ zaiAx1 +le2,§ X X5

X, X, 16



Definition of Stationary Point

Given: Minimize f(x,, x,)

Find: Stationary point (x,*, x,*)

S(x,x,)

A

OBJECT
FUNCTION

X, (x, X))

\ OPTIMUM ( MINIMUM ) /

The change in function(df) at the point(x,*,

x,*) with the change in variables(dx,, dx, ) is
as follows.

df = f ——dx, + g ——dx,

X1 Ox,

The point at which the change in

function(dy) is zero is called stationary
point.

It includes the minimum, maximum, and
inflection(saddle) point.

Note: In the general engineering optimization

problem, the optimum point (x) is more important

than the optimum value (f).

[Example] Principal dimensions of a ship (L, B, D, Cg)

to minimize the shipbuilding cost is more important

than the shipbuilding cost itself.
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4.2 Lagrange Multiplier
for Equality Constraints
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Stationary Point for Unconstrained Optimization Problem

Given: Minimize f(x,,x,,x;)

Find: Stationary point(x,*, x,*, x;*)

df :za’x1 9 ——dx, + g ——dx,

Ox, Ox, Ox,

At the stationary point, the change in the function(df) is zero.

The gradient of the function at the stationary point must be zero, because the change in the
function(df) can be only zero regardless of the sign of dx,, dx,, and dx;.

of of of 0o Because ‘Minimize f/’is formulated

ox,  ox, ox, as an eqyatio.n(df= 0), the number
of equations is equal to the

> V=0 number of unknown variables.
(Determinate problem)
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Stationary Point for Constrained Optimization Problem (1/3)

A g Method:
Problem: Minimize f(x,,x,,x;) 1. Express / (equality constraint) as an explicit function of x,.
Subject to h(xl,xz,x3) =0 |2. Substitute x, into /" and find the stationary point by
using df = 0.
Find: Stationary point(x,*, x,*, x;*)
In many problem, it may not be possible to Is there any method to obtain the

express / (equality constraint) as an explicit

function of x,. stationary point if the equality

constraint can not be expressed as an

Example) It is difficult to express the following equality explicit function?

constraint as an explicit function.
— X3 __
ex) h(x,,x,,x;)=tanx, +cosx,+e> =0

Solution) . .
df=0 at the stationary point. | Since i(x,,x,x;)=0, dh is also zero.
df =~ P+ L, + L e, =0 0 | dh=Loar + Lo, + e =0 ®
Ox, ox, Ox, Ox, ox, Ox,

Since equation @ and (@ are equal to zero, the following equation is always satisfied.

df + 2’ ) dh — O , where ﬂ, is an undetermined coefficient ‘Lagrange multiplier’.

‘%3 bTSYsiem |
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Stationary Point for Constrained Optimization Problem (2/3)

of of of
iven: Minimi O df =——dx,+—dx,+—dx, =0
Given: Minimize f(x,,x,,x;) f = ox, ox, 2 ox, 3
Subject to h(x,,x,,x,)=0
g (5, %, %) © dh=ax + M g+ Mgy, =0
Find: Stationary point(x,*, x,*, x;*) O, 0x, Ox,

Because of the equality constraint 4,
dx,, dx,, and dx; are not independent.

df ﬁ, . dh — O A Undetermined Coefficient ‘Lagrange multiplier’

This equation can be rearranged as follows.

za’x1 fdx2 fdx3+ﬂ, %dxl+%dx2+@dx3 =0

Ox, Ox, OX, Ox, Ox, OX,

af+/’t— dx, + 9 +l— dx, + 9 +i— dx, =0

Ox, Ox, ox, ox, OX, OX,

‘% bTSYsiem |
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Stationary Point for O df =L v+ L e + P —0

Constrained Oetimization Problem (3/3H o, 0x, © dy

@ a’h—%a’x1 oh a’x2+%a’x3 =0

ox, ox, OX,

Given: Minimi
Minimize f(xl > X2 X3) Because of the equality constraint ,

dx,, dx, and dx, are not independent.
df +A-dh=0

A Undetermined Coefficient

Subject to h(x,,x,,x;,) =0

Find: Stationary point(x,*, x,*, x;*)

0 oh 0 oh 0O oh ‘Lagrange multiplier’
f+ —— |dx, + f+/1 dx, + f+l dx, =0
Oox, Oox, Ox, ox, Ox, ox,

If the dx;, dx,, and dx; were all independent of each other, all terms in the brackets will be zero. This
however, is not the case because of the equality constraint A. Let’s try to make the first term to be zero
by determining a proper value of /, so that the following equation is satisfied without considering the
dx,.

/Ay YL A (/A YL A
ox, Oox, Ox, OX,

Since dxz and dx; are independent, the terms in the brackets must be zero to satisfy the equation.

T2 o, | Lia oo | Lo
ax] 8x1 ox, ox, Ox, Ox,

Therefore, the point (xl, Xy, X3, A) that satisfies the following equations is a stationary point.

=74 4 A oh _ o, =2 + A oh O 4 Unknown variables: (x,, x,, x;, 1)
Ox, Ox, ox, Oox, 4E i
or 57 quations

ox, - ox, 0. flx.x.x)=0 There exists an unique solution. 22



Lagrange Multiplier for Equality Constraints
i —

The point( X, X,, X5, 4 ) that satisfies the
following equations is a stationary point.

G a0y T 0
Ox, Ox, Ox, Ox,

S

i+/1%= 0, h(x,x,,x)=0
OX, OX,

It is convenient to write these equations in terms of a Lagrange function, L, defined as
L(xlaxzaxfia/l) — f(x19x29x3) +2“h(x19x29x3)
VL(x,,x,,%,,A)=0

Constrained optimization problem is transformed to an unconstrained
optimization problem.

8L26f+/16h20 8L:6f+/18h20

ox, Ox ox, ox, Ox, OX,

oL 0 oh 4 : Lagrange Multiplier
N a +2 =0 oL :h(xlnxzaxs):() J J P

ox, oOx,  ox, EY L : Lagrange Function



[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (1/5)

Optimization Problem
a N

Minimize f(x19x29x3) = (D Number of variables: 3
Subject to h(x,%,,x)=0 == @

hz(x1axzax3) =0 = @
NG %

Number of equation: 2

Necessary condition that minimize f is df = 0.
df = 0 corresponds to Eq. @' as follows.

4 ) i
df_ of dx, + af dx, + sf dx, =0 = 1)’ <j Because ‘Minimize 1’ |
o, 2 *s formulated as an equatlon(df
Subjectto  /(x;, %, %) =0 - @ = 0), the number of equations
(X, %y, %) =0 = ) is equal to the number of
_ unknown variables.
Number of variables: 3 .
Number of equations: 3 (Determlnate problem)
®» We can solve this.
N J
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[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (2/5)

Optimization Problem
a N

Minimize f(x19x29x3) = (D Number of variables: 3
Subject to h(x,%,,%)=0 == @
hy(X,%,,%,)=0 == 3

\_ /)

Necessary condition that minimize f is df = 0.
df = 0 corresponds to Eq. @' as follows.

Number of equation: 2

4 N
df = 9 —dx, + 9 ——dx, + 9 ——dx; =0 = (1)’
Ox, Ox, Ox, 4 of of of N
Subjectto /1, (x,x,,%,)=0 . @ df :8—xldxl L ox, dx, +—— ox, dx; =0 e (@)
00,2, %)=0 @ > oh . oh ok
dhy =—Ldx, +— dx, +—dx; =0 . @)’
To find the relationships among dx,, dx,, dx;, ax, o% 0x,
we modify the equation @ and ® to the form
of total derivative dhl,dhz. dh2 8h d ahz dx2 +%dx3 -0 ... ®,
OX, 8x2 Ox,
N J N J

‘%3 bTSYsiem |
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[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (3/5)

Optimization Problem of of of )
' ~ df = 3 ——dlx, +8 dx, +8 dx; =0 . ()
X X X
Minimize  f(X;,%,,X;) O i — | : :
Subjectto f (x,x,,x,)=0 -+ @ dn =M 2 Mg (Mg o @
OX, OX, Ox,
5 Iy (%%, %) =0 e @
)
dh, = o, —=2dx, 8h2 dx, + —= oy dx, =0 ... @’
OX, 8x2 Ox,
o J
7 Are the equation @, @’, and @’ differential equations with respect to f, i, 4, ?
Ci‘; Answer: If the problem were given as follows:
- Given: za’x1 +idx2 8f o dx, 6h1 —Ldkx, 4—%61%3 =0, %dxl oy dx, + —= ohy dx, =0,
Oox, Oox, 6x3 " ox, 8x2 Ox, OX, Oox, Ox,

- Find: Function f; ,, h,

Then the equation @, @, and ®’ would be differential equations.

However, the function f, k,, and h,(equation @, @, ®) are given and differential quantities of dx;,, dx,,
and dx; are to find, the equation @', @', and ®' are algebraic equations for the variables x,, x,, and x;.

Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2013, Myung-Il Roh
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[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (4/5)

Optimization Problem )
- P N > *df—afd + fdx2 afdx3=0---®’
ox X X
Minimize  f (X, X,,X;) - D 1 i 3
Subject to h(x,%,,%,)=0 - @ dhlz%dxﬁ%dxz hldx3_() Q)
OX, OX, Ox,
5 1y (%%, %) =0 e @
/
dn, = g 1 g e g g . )
OX, 8x2 Ox,
We multiply the equation @’and ®’by 4, and 4,, respectively \_ J

and add it to the equation @®":

* Since dx,, dx,, and dx; are not independent

because of the equality constraints , and #,.

.
df + Adh + A,dh, =0

a9

4O

~

E>(af+m%

OX, OX,

=) - @
» Determine 1, 4, so that
the first term in the brackets

becomes zero*.
(to eliminate dx,)

+A,— Ohy dx, +
6x11 0

X,

+/12% dx, + 218}11 +1,—= oh, dx, =0
OX, Ox, 8x3 Ox, ox,

=05 Y=()@

» Determine /1, 4, so that » Since dx; is an

the second term in the brackets independent variable
becomes zero*.

(to eliminate dx,)

5 variables: (x;, x,, x5, 4, , 4,) There exists a

5 equations: 2,3,4,5,6

unique solution.

27



[Summary] Stationary Point for a Constrained Optimization Problem
- Solution for a Constrained Optimization problem by using the Lagrange Multiplier (5/5)

|
The point(x , x,, x;, 4, 1)) that satisfies the following
equations is a stationary point.

g—Fﬂl%-l‘ﬁ %:O, i‘l‘/’h%‘l‘ﬂ?%:o

Ox, ox,  ox Ox, Ox, Ox,

ai+ﬂq%+lz%zoah1(xlaxzax3) :O, h2(x19'x2’x3) :O
OX, OX, OX,

It is convenient to write these equations in terms of a Lagrange function, L, defined as

L(xlaxbx?,aﬂ’laﬂ“z) :f(x19x29x3)+ﬂ’lh’l(x19x29x3)+/12h2(x13x29x3)

VL(x,,%,,x;,4,4,)=0 4 : Lagrange Multiplier
@ L : Lagrange Function
a—L=z+}t1a—h+ﬂuz%=0 ....... @ or _ + A4, o, + A4, on, =0 " ®
ox, Ox ox, Ox, Ox, Ox, Ox, Ox,
oL
OL — af_i_/flqa_hl_i_lz%:o @ a_hl(xlaxzax3)_0 @
ox, Ox, Ox, OX, oL
87:}12(_)51,)52,_)53):0 @
2

The Lagrange function gives us a simple way of formulating the equations
that have to be satisfied at a stationary point.




[Example] Lagrange Multiplier for Equality Constraints| Quadratic programming problem

- Quadratic Programming Problem (1/2) - Objective function: quadratic form
- Constraint: linear form

1 Original Problem

Minimize f(x,,x,)=(x,—1.5)* +(x, —1.5)

Subjectto h(x,x,)=x+x,—2=0

Lagrange Function

Minimize L(x,,x,,A)= f(x,,x,)+Ah(x,X,)
=(x, —1.5) +(x, —1.5)°
+ A(x, +x,—2) X

£=0.75

Necessary Condition: VL(x,,x,,4)=0
oL

2 = 2(x —1.5)+A=0
P (©)
& )=0.5,4(C) = 0.0
L
a—=2(x2—1.5)+/1=0 14
Oox,
oL

a—/1:x1+x2—220

I
1
1

= x, =x, =1,4" =1 (The point C is the stationary
point.)

> X,
2 \i(x.3,) =0
ol R
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[Example] Lagrange Multiplier for Equality Constraints| Quadratic programming problem
- Quadratic Programming Problem (2/2)

- Objective function: quadratic form
- Constraint: linear form

Vf(X) : The direction where f (x)

is increased
V /1(X) : The direction where /(x)

is increased

" Original Problem

Minimize f(x)=(x,—1.5)> +(x,-1.5)°
Subjectto h(x)= X, +x,—-2=0

| Lagrange Function

Minimize L(X, v)= f(X)+VAi(Xx)
=(x,—1.5)> +(x, - 1.5)°

£(D)=0.75,A(D) = 0.0
+V(X1+x2_2) : >x1
mgm * * 1 2\
-4 Necessary Condition: VL(x ,v )=0 | Vf(D){_IOTJ o
VIx)+v'VAa(x')=0 N
—Vf(x*) _ V*Vh(x*) At the candidate minimum C, the meaning of —V/(x ) =v VAi(x') is
2x, —1.5) 1 The gradient vector of the objective function and constraint
Vf(x) :{ b } , Vh(x) :{ } are on the same line and proportional to each other, and the
2(x, —1.5) 1 Lagrange multiplier v* is the proportionality constant.
—2(x, =1.5)=v", =2(x, -1.5)=v « VF(C —1 VA(C 1 '
* * = ) - ) vV =
x +x,—2=0 J(©) —1 (©) 1

— x =x, =1,v" =1 (The point C is But the point D is not a candidate minimum, because the
the stationary point.) | gradient vector of the objective function and constraint are
not on the same line.




[Example] Solving Nonlinear Constrained Optimization
Problem bx Using the Lagrange Multielier (1/4)
vl There is a sphere whose center is (0, 0, 0) and radius is c.

vl Determine the maximum volume of the rectangular solid
which is circumscribed* in the sphere.

* To draw a geometric figure around another figure so that the two are in contact but do not intersect.
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[Example] Solving Nonlinear Constrained Optimization

Problem bx Using the Lagrange Multielier (2/4)

M Mathematical Modeling

The volume of the rectangular sold fis
Sy, %y, x3) = 2, - 2, - 2,
Because the vertices of the rectangular
solid are on the surface of the sphere,
h(x,%,,%)=x +x, +x; —c’ =0

cf’) equation for a sphere:x" +y* +z° =r’

-

Maximize f(x,,x,,%;) =2x,-2x, - 2x,

. = 8X,X, X,
Subject to

2 2 2 2

O

Minimize f (x,,x,,X;) = —8x,X,x,
Subject to

2 2 2 2

| 32



[Example] Solving Nonlinear Constrained Optimization

Problem bx Usmg the Lagrange Multielier (3/4)

M Solution(1/2)

Minimize f(x,,x,,x;) = —8x,x,X,

Subject to

2 2 2 2
h(x;,x,,x)=x; +x;, +x; —c =0

Lagrange function for this problem is as follow.
L(x,x,,%;,A) = f(x;,%,,%;) + Ah(x, x,,X;)

2 2 2 2
= —8x,x,%, + A(x; +x, +x; —¢”)

a—L:—8x2x3+12x1 =0 a—L:—8x1x3+/12x2 =0
Oox, 0x,

VL(x,,%,,%,,A)=0

oL
—=-8xx, +A2x, =0 a—L:x12+x22+x32—62=0

OX, oA

RS bTSYsiem
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[Example] Solving Nonlinear Constrained Optimization

Problem bx Using the Lagrange Multielier (4/4)

. |mmmmmm————
M Solution(2/2) L Axxx, |
XS =——=
1771
—8x2x3 + lle =0 - @® Equation ® X X7 —8x1x2x3 + 12)612 =0 : A :
4xx,x, |
—8x1x3 +/12x2 =0 - @ Equation @ X X, —8x1x2x3 +/12x22 =0 :x22 — T2 :
I ﬁ I
|
—8x,x, +A2x; =0 ® Equation @ X"x; —8X,X,X; + 2,2)622 =0 L 4xxx, :
X = I
XD X +x; =’ =0 ® <------ —------ ittt 273 1
| Substitute these into the equation @ Lmm e s
|
v 24x7x,x c’
. 14243 2_ &
4x1j1c2x3 N 4x1;2X3 N 4xlzzx3 20 8x, X, +—c2 0 X 3
C
3x? X = T—=
12x,x,%, 2 —8x, X, ( —C—;j =0 J3
A Because x, is a length, it must be

If x, or x; are zero 0, the positive.

12x,x,%, 1 volume of the rectangular
2 T ® solid is zero and the x, and x; are found in the same way.
solution is trivial. Therefore, c c c
Substitute the equation ® into the 3y2 X =y Xy ==, Xy = =
equation @ 1——2l =0 \/§ \/§ \/§
12x,x,x ¢ ' '
—8x,x, + 122 30x =0 3y So, the maX|ml;m volume is
c 1 =] g &
c X Xp Xy =

J3 34



[Summary] Constrained Optimization Method by Using
the Lagrange Multiplier

MConstrained Optimization Problem

o o e — - Determination of the propeller principal
Minimize f(X) .f(xl 2 x2 > *** 9 xn ) dimensions by using the Lagrange multiplier >
Subject to hl, (X) = () ,

. - Determination of the principal dimension
[ = 1 . p of a ship by using the Lagrange multiplier

MDefinition of the Lagrange function(L)

L(X,V) = f(x)+2vh(x) w1

—f(X)+VTh(X) L L

v; are the Lagrange multipliers for the equality constraints and are free in sign,
i.e., they can be positive, negative, or zero.

<Reason>
The solution does not change, even if the equality constraint is multiplied by the minus sign.
bTSYsiem
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Comparison between Newton’s Method

and Method of Lagrange Multieliers

Newton’ Method for Unconstrained Optimization Problem
Given: Minimize f(x) Find: Local minimum design point

________________

Necessary condition for 5 1 Sufficient conditions for X = X
X=X tobea Vf(X ) =0, Ed H(X )d O»to be a local minimum

candidate local minimum i e
(stationary point)

Method of Lagrange Multipliers for Constrained Optimization Problem

Given: Minimize f(X) Find: Local candidate minimum design point
h(x,x,,x,)=0

df\ —I— ﬂ, ¢ dh — O ﬂ,' Undetermined Coefficient ‘Lagrange multiplier’

Define Lagrange function, L =df + 1-dh
Necessary condition for X = X
to be a candidate local minimum =» VL =0

(stationary point) 36




[Reference] Constrained Optimization Method for Candidate

Minimum bx Using the Lagrange MultiEIier

Minimize f(x,,x,), Subjectto h(x,,x,)=0
By using /(x,, x,) =0, x, can be expressed as the function of x,, i.e., S (x,x,) = f(x,0(x))
To determine the local candidate minimum of the function of the single variable,
Of (x5, %), (1) df (x, x,) _9f (%, %))  Of (%, x,) dx, _

df (x,,x,)/dx, =0, But, because df(xl,xz)=a—xl X, +8—x2 e o o, dx,
If we assume that x' = (x,, x,)is the local candidate minimum,
a x* x* a x* x* d X . NN EEE NN IEEEIEEEIEEEEEEEEREEEREEEREEERREEE
J (4, %) + J (>, %) dg(x) = (0 - Equation (1) —-»Equation (4) can be rearranged as follows.
ox, ox, dx, | s :
=¢@(x,) is the explicit form, in general it is impossible to represent the constraint af(xl , xz) * ah(xl 9x2) :
asthisfrom. === =ssssssssssssssssssnng — OE
Form the equality constraint4(x;, x;) = 0} E axzaxz
dh(x; ,x,) _ Oh(x/,x,) n Oh(x/,x;) d¢(x1) —0 ! In summary, for X = (xﬂ; ,x;) to become
dx Ox Ox dx = the local candidate minimum, the following
dd(x,) ah(x* )lc*) / Ox 2 : : three conditions have to be satisfied.
1 — _ ia 5 1 Equation (2) . E."""* ...... *. ........ :
dx, Oh(x",x5)/ éx, ih(x),x,)=0:
Substitute the equation (2) into the equation (1) : ..'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.' ........................... .
....................... a x X * ah x X E
af(xmxz) af(xDxZ) 5h€x1,x2)/axl;0 X, 2) Cat 2)205
ox, : Ox, Gh(xl,xz)/('?xz : E;;'uation : ....... 5)61 ..................... axl
) 8f(xl*,5)22*)/8x2 . _...-.......................-.....................E
If we assume that v/ :_6h(x1* hian Equation (4) af(x1 ,xz) e Oh(x,,x,) _ o
.............. - Ox Ox :
_ :0f (x,,x,) +Oh(x,,x,) _ o . 22
The equation (3) becomes : o TV Py =V — v* is called the Lagrange multiplier.
. 1 1 -
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4.3 Kuhn-Tucker Necessary Condition
for Inequality Constraints

Naval Architecture & Ocean Engineering
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Quadratic Programmmg Problem

with Inequali 1t
e can transform an inequality

constraint to an equality constraint by
adding a new variable, called the slack
variable.

" Original Problem

Minimize f(x)=(x,—1.5)> +(x,-1.5)°
Subjectto g(x)=x,+x,—2<0

» o(x)+s5 =x +x,—24Hs &

Lagrange Function

Minimize L(X, u, s)= f(x)+ u[g(x) + Sz]
=(x, —1.5)> +(x, —1.5)°

+u(x, +x, —2+5s)

Quadratic programming
problem

- Constraint: linear form

- Objective function: quadratic form

Necessary Condition: VL(x", u’, s')=0

r . . .
,a_L =2(x,—-1.5)+u=0, a_L =2(x,—1.5)+u=0 ! Llneal.' indeterminate
10X, ox, I equation
: oL "aL _ 'Nonlinear indeterminate equation

— —N!
N2 s =0ar = =0 uzo0 P

(1) If s = 0, (Inequality constraint is transformed to the equality constraint.)

*

x, =x, =1, u" =1 » Candidate minimum point(The point C)

(2) If u = 0, (Inequality constraint is not active.)

x, =x, =1.5,u” =0,5” = —1(The point D: the constraint is violated.)

- At first, we find the

solution for the nonlinear
indeterminate equation of

u=0o0rs=0

- And substitute u=0 or
s=0 into the linear
indeterminate equation
- Then, solve the linear
equation system.

339




Necessary Condition of Candidate Local Optimal Solution for

the Inegualitx Constrained Problem (1/2)

[Ref] Lagrange function for the equality constrained problem
p
L(x,v) = f(x)+ > v(x) = () + v h(x)
i=1
Inequality constraint v, are the Lagrange multipliers for the equality

( ) O ] 1 constraints and are free in sign.
gx)<0, 11=1,..,m

To transform the ineguality constraints to the equality constraints,
the slack variables §; are introduced:

gi(x)+sl.2 =0, i=1..,m

Lagrange function for the inequality constrained problem

Since the inequality constraint can be transformed to the equality constraint by introducing
the slack variable, the Lagrange function is defined as

Lxw.8) = F()+ (2 (0 +57) = f(x) +u” (g(x) +8), 1,20

u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
s; are the slack variables to transform the inequality constraints to the equality constraints.
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Necessary Condition of Candidate Local Optimal Solution for

the Inegualitx Constrained Problem (2/2)

Lagrange function for the inequality constrained problem

L(xu.8) = (x)+ 22 (0 +57) = (%) +u” (g(x) +5°)

u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
s; are the slack variables to transform the inequality constraints to the equality constraints.

The necessary condition of the candidate local optimal solution for the inequality
constrained problem

VL(x ,u’,s )=0

4
oL _ o +Zul* %, =0, j=1,..,n
ox, Ox, I = Ox,
a—LEgi(x*)+s:<2:O, i=1, ...,m
ou,
—=us, =0, =1, ..,m
Os

l. ee e
a1



Kuhn-Tucker Necessary Condition for Inequality Constraints

Optimization Minimize | (X)=f(x,x,,"",x,)
Problem Subjectto h,(x)=0, i=1,....,p Equality constraints
g,(x)<0, i=1,...,m Inequality constraints

Lxv,u,s) = (0 + Y v+ Y u,(g,(0 + 57)

Definition of
the Lagrange function

= f(x)+ VTh(X) + uT(g(x) + sz)

v; are the Lagrange multipliers for the equality constraints and are free in sign.
u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
s; are the slack variables to transform the inequality constraints to the equality. constraints

Kuhn-Tucker necessary condition: VL(x,v,u,s)=0

OL of & .Oh O . 0o ,
= J +2vl. ’ +Zui f =0, Jj=1...,n

ox, ox; ‘I Ox; ‘T Ox

G_L = h(X*) =0, i=1,..,p If x* is the candidate local minimum point, the equations
l. l from the Kuhn-Tucker necessary condition have to be

oL ) satisfied.

—=g((x)+s, =0, i=1 ..,m Therefore, K.-T. condition can be used to find the

ou, candidate local minimum point for the equality and

oL .. inequality constrained problem.

—=u;s, =0, =1, ... ,m

0s,

ul* > O, 1 = 1, . ,m  The value of the objective function and gradient vectors have to be calculated a X*.




[Example] Nonlinear Constrained Optimization Problem #1

(1/2)

@ ®

Minimize f(X)= xl2 + x22 —3x,x, S—L =2x, —3x, +2ux, =0
Xy
gx)=x"+x, —6<0 oL

ox,
2 2 2 2 2
L(X, u,s) =x" +x,” =3xx, +u(x, +x,” —6+57) Z—L:xl2 +x, —6+5>=0,520,u>0
u
DI  sxevesnses c
r™ =i2us = 0 :  There are two cases.
S

=2x, —3x,+2ux, =0

v

CASE #1: 1 = O (The inequality constraint is considered as inactive at the solution point.) 4

MR ®» PointA: x, =0,x, =0, f(x,x,)=0
—3x,+2x,=0

CASE #2: 5§ = 0 (The solution point is on the boundary of the inequality
constraint. The inequality constraint is considered as active.)

X2

A

X
Rearrange 2x, —3x, +2ux, =0, u=—1+=-—=>
the equation @ 2 x, 4 -3
3x
Substitute u  2x, —3x, +2(-1+=2)x, =0
into 2 x
2 2
' X X
the equation ® 5, _3x, —2x,+3220, 32 =3x, x2=x’
Substitute x, X &
into 2x12 = 6, X, = i\/g

the equation ®

s

Cost function contours
4]




[Example] Nonlinear Constrained Optimization Problem #1

(2/2)

CASE #1: u = () (The inequality constraint is considered as inactive at the solution point.) _
2x,—3x,=0
—3x,+2x,=0

» PointA:x, =0, x, =0, f(x;, x,)=0

CASE #2: s = O (The solution point is on the boundary of the inequality
constraint.)

1 * * * *
X, =X, =—4/3, uzz =» Point C: x, :xzz—«/g,f(xl,xz):—3

Vg
5 ] " . % _ * * . . __
X, ==X, = \/5, u= —5 » Point D: x, = \/gaxz - _\/gaf(xl >x2) =15 ’ ;jtfunctlonconlours
-4

X, =—x, =—/3, u=—% ®Point E: x' =—/3,x; =+/3, f(x,x)) =15
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[Example] Nonlinear Constrained Optimization Problem #2
- Find the Optimal Solution for the Quadratic Programming Problem
by using the Kuhn-Tucker Necessary Condition : xi are free in sign (1/3)

Quadratic programming
problem

- Objective function: quadratic form
- Constraint: linear form

»
|

Minimize f(X)=x+x;—2x,—2x,+2

Subjectto g,(X)=-2x,—x,+4<0 \
g, (X)=—x,-2x,+4<0 4

g:=0 Minimum at Point A

X =(4,9),/(x')=3

Lagrange function
L(x,u,8)=x, +x; —2x, —2x, +2

+u, (=2x, —x, +4+57)

+1, (—x, —2x, + 4+ 57)

f=132"1 2\ 3 o X

c“U RS bTSYsiem
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[Example] Nonlinear Constrained Optimization Problem #2
- Find the Optimal Solution for the Quadratic Programming Problem
by using the Kuhn-Tucker Necessary Condition : xi are free in sign (2/3)

Lagrange function

= x| +x;, —2x —2x, +2
L(Xa u, S) — xlz + x22 _ 2x1 - 2X2 +2 . f(X) AT Xy X )
? 442 g(x) =-2x,—x, +4<0
+u, (2%, — X, +4+5)) 2, (X)=—x,—2x, +4 <0

+u,(—x, —2x, +4+ S?)

Kuhn-Tucker necessary condition: VL(x,u,s) =0

L L
a—=2x1—2—2ul—uz:O a—=2xz—2—u1—2u2=0

Ox, 0,

a_L:—2x1—x2—|—4—|—S12:0 a—L:—xl—2x2+4+S22=0

ou, Ou,

a—L:2u1S1=0 a_Lzzuzszz() u,20,i=1,2
0s, 0s,

< @2 SYstem |
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[Example] Nonlinear Constrained Optimization Problem #2
- Find the Optimal Solution for the Quadratic Programming Problem

by using the Kuhn-Tucker Necessary Condition : xi are free in sign (3/3)
|

Lagrange function : Case #1: 5,=s5,=0
. _ _ 4 _ ) . )
L(x,u,s)=x12+x22—2xl—2x2+2 PN EX, U U, = (Minimum at Point A)
2 :
iy (=2x, —x, +4+57) : Case #2: u,=s,=0, (Point B)
oy — 2 : _6 v T ., 2 2 _ 1
N T (-6 —2n+4+s) L o x=tx,=fu, =35 =—1
24 . It has to be nonnegative(g,).
\ : Case #3: u,=s,=0, (Point C)
: 7 6 2 2 I
X, =+, X, =2,Uu, ==<,5, =—=+
% g =0 Minimum at Point A bS5 5ol >

. It has to be nonnegative(g,).
(4 4 y=2 : .
X =G3./(X)=5  icase #4: u=u,=0, (Point D)

. _ 2 __ 2
. . It has to be nonnegative(g,, g,).
Feasible region




[Example] Nonlinear Constrained Optimization Problem #3
- Optimum Solution for the Case that x; are”"Nonnegative” (1/4)

X)

y

|

Minimize f(X)=x+x;—2x,—2x,+2
Subjectto g,(X)=-2x,—x,+4<0 \
g, (X)=—x,-2x,+4<0 4

81~ 0 Minimum at Point A
> > s *
% 20,x, 20 X =(4,4), f(x") =2

Minimum point: x” = (£,4), f(x") = 3-

Minimize f(X)=x] +x;—2x, — 2x2 +2
Subjectto g,(X)=-2x,—x,+4<0
g, (X)=—-x,—2x,+4<0
—x, <0,-x, <0

Inequality constraints whose form are “<”:
Introduce the slack variable.

Minimize f(X)=x] +x;—2x,—2x, +2

Subjectto g,(X)=-2x,—x,+4+ Sl2 =0
2, (x)=—x,—2x,+4+s; =0
—x,+6, =0,—x,+5, =0



[Example] Nonlinear Constrained Opt

Minimize f(X)= xl2 + x22 —2x,—2x,+2
Subject to g,(X)=-2x,—x, +4+ Sl2 =0
2,(X)=—x,—2x,+4+5. =0

—x,+67 =0,-x,+6, =0

Lagrange function
L(x,u,8,5,8) = x7 +x; —2x, —2x, +2

+u, (—2x, —x, +4+ S12)

+u, (=X, — 2%, +4+52)

- Optimum Solution for the Case that x; are”"Nonnegative” (2/4)

imization Problem #3

Quadratic programming
problem

- Objective function: quadratic form
- Constraint: linear form

Minimum at Point A

X = (3. =

g=0

2

9

+§1(_x1+512)+§2(_x2+5§) \f='. . "

........................................................ ({= 1321 %\ 3 4 x]
Kuhn-Tucker necessary condition: VL(x,u,s,(,0) =

a—L:2xl—2—2ul—uz—4’1=0 8—L=2x2—2—ul—2u2—§220

Oox, 0x,

8—L=—2X1—X2+4+S12=0 8—L=—.)Cl—2)62-|-4—|‘S12:O

ou, Ou,

oL oL

—=2us, =0 —=2 =0

as, 3s, 27

OL oL
A5 =0 FL_s =0 = =266, =0 = =26,6,=0
agl aé/z 551



[Example] Nonlinear Constrained Optimization Problem #3
- Optimum Solution for the Case that x; are”"Nonnegative” (3/4)

Quadratic programming
problem

- Objective function: quadratic form
- Constraint: linear form

Kuhn-Tucker necessary condition: VL.(x,u,s,(,0) =0

L
a—:le —2-2u,
ox,

L
a—:—2)c1—x2+4+sl2 =0
ou,
a—L=2uls1 =0
0s,

oL

_“2_41 =0

=5 -x,=0 >3 =x

0¢) Substitute
oL 5
5—51:24/151 =0—->2£,07 =0

Multiply J, to the both sides.

L
a—:2x2—2—u1 —2u,-¢,=0
ox,
a—L:—xl—2x2+4+sz2 =0
ou,
a—L=2u2S2 =0
0s,

§—§=522—x2 =O—>522 =X, :I
2 Substitute
o _ 2¢,6,=0->2¢,5, =0
00, . T . u,; >0,
Multiply J, to the both sides. 7’

Kuhn-Tucker necessary condition: VL(x,u,s,(,0) =0

a—L:2x1 —2-2u —u,—¢, =0
ox,

8_L:_2x1_x2+4+S12 =0
ou,

a—L:2ulsl =0

0s,

2¢,x,=0

a—L=2x2—2—ul—2uz—§2 =0

ox,
oL

G—uZ =
oL

—=2u,s, =0
5S2 252

2£,x, =0 u,;.,0,20,i=12 .

2 _
—x, —2x,+4+s,=0



Quadratic programming
problem

- Objective function: quadratic form
- Constraint: linear form

[Example] Nonlinear Constrained Optimization Problem #3
- Optimum Solution for the Case that x; are”"Nonnegative” (4/4)

Lagrangian function Case #1: 5,=5,=¢,=4,=0, (Point A) Case #9;)u1=s2=§2=x1=0 ,l(Pomt F)
2 2 = —4 = =2 X, =U, X, =2,U, =1,
L(Xaupsagaﬁ):xl +x2_2x1_2x2+2 XI—X2—3,M1—M2—9 : ? ’ It has to be
) Case #2: u,=s,=¢,=¢,=0, (Point B) S12 =-2, 4/1 = —3  nonnegative.
+u, (—2x, —x, +4+s,) =6 o=l gy =2 2o Case #10: u,=s,=(,;=x,=0 , (Point G)
9 b 5
2 : i 2 3 2 It hgs tolbe nonnsegative. xl = 2, x2 = O,ul = 1, S22 = —2,
+u, (=X, —2x, +4+5,) Case #3: u,=5,=(;=(;=0, (Point C) ‘-3 It hes to bs
7 6 ) 2 1 s — nonnegative.
2 2 X =%, X% =5,U| =%5,5, =—3% * . =52 =X i
xz +§1 (_'xl + 51 ) + 4/2 (_x2 + é‘2 ) : 37 32 It hsas, tozbe nonnsegative. Case #11: $I==617% 0, (Point G)
4 Case #4: u,=u,=¢,=¢,=0 , (Point D) x, =2,x, =0,
) ) The constraint is violated.
X =x,=Ls =5, =-1 _ —x,—2x,+4+5; #0
It has to be nonnegative. ! 2 2 )
Case #5: u,=u,=x,=x,=0 , (Point E) Case #12: u,=s,={,=x,=0, (Point H)
4 — . . . x,=x,=0,s"=s2=—4 x, =0,x, =4,u, =6,
gl — 0 Mlnlmum at POInt A : 2 > Izt has to b,e nonnegative. 12 g : It has to be
4/1 = é/z =-2 Sy = 4, 4/1 =-14 nonnegative.

X = (%’%)9](()(*) :%

Case #6: u,=s,=x,=x,=0, (Point E) Case #13: 5,=5,=¢,=x,=0, (Point H)

2 = =
x, =x,=0,s =4, x =0,x, =4, -
2" has to be nonnegative. The constraint is violated.
—x,—2x,+4+s, 20 —x,—2x,+4+s, #0

The constraint is violated. Case #14: u.=s,=.=x,=0 . (Point |
Case #7: u,=s,=x,=x,=0, (Point E) 1=5:=61=x,=0 , ( )
2 xl = 4’ .X2 == O, uz = 6,

X =X, =0,5, =4, 2 It has to b
It has to be nonnegative. — — as to be

2% —x. +4+52 20 S nonnegative.
! 2 1The constraint is violated. Case #15: ul_”l_gz_xl_o ’ (Pomt J)

Case #8: 5,=5,=x,=x,=0, (Point E) 2 X, =0,x, = I,Slz =-3,
X =X, ZO,—ZXI—Xz +4+S1 io, 2 7 ) It has to be
Sy, =4, éll - nonnegative.

—x, = 2x, +4+s; %0 Case #16: u,=u,=¢,=x,=0 , (Point K)

The constraint is violated.

YV EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

2
x =1x,=0,s; =-2,

It has to be 2
nonnegative. S, = —3, é/z =-2

=
~




[Reference] The Reason Why Lagrange Multiplier for the
Inequality Constraint has to be Positive

" Original Problem

Minimize f(x)=(x, —1.5)> +(x, —1.5)
Subjectto g(X)=x,+x,—-2<0

—>: Vf —>: Vg
Direction of the gradients Direction of the gradients
of the objective function of the constraint

£=0.75

L(x,u,s)= f(X)+u(g(x)+s>)
VL(x,u,8)=Vf(x)+uVg(x)=0
—Vf(x) =uVg(x)

If u >0, the gradients of the objective function and
the constraint function point in the opposite
direction:

-Vf=Vg

In order to reduce the value of the objective
function 1, the design point has to move to the
negative gradient direction.

However, at the green point(1.5, 1.5), for example,
gx)=x+x,-2
=1.5+1.5-2=1Z£0 the constraint is violated.

Therefore, this way, f cannot be reduced any further
by moving to the negative gradient direction without
violating the constraint.

That is, the point C is the optimal solution
satisfying the constraint and minimizing the

objective function. 52



[Appendix] Quadratic Programming
Problem
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[Examp|E] Quad ratic Prog ramming Objective function: quadratic form

Constraint: linear form
Problem #1 -

Method

Ex) Problem
T 2 2
Minimize f(xl,xz) = ()C1 — 1.5) + (xz — 1.5) Express / (equality constraint) as an explicit

h(xl,xz) = xl -4 x2 _ 2 — O function of Xqe

Then substitute x, into /' and
Find: Local minimum point(x,*, x,*) find the stationary point by using df=0.

Solution

Express x, as an explicit function of x,,

X, ==X, +2=D(x,)

X, ®(x)) = (x, —1.5)* + (=x, +2-1.5)’
£, @) = (5 =15 + (=, L 152n 4050
This is an unconstrained optimization dx,
problem to determine the stationary point. =x =1

=>x,=—x;+2=1

dfzsldx1:():>i:0 d25:4>0
X, dx, | dx,

* *
Local minimum point S, x)=(1, 1)
< P2 SYstem i
4 § i s
(&) Rdoesen, 54
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[Example] Solution for Quadratic Programming Problem #2

Given:  f(X;,X,,%;) = x12 T x22 T x32

h(x,x,,%)=x+x,+x,+1=0

Find: Stationary point (x,*, x,*, x;%)

Express / (equality constraint) as an explicit
function of x,.
x, —1

X, =—X, —

Substitute x, into the function f

| =(=x, —x, ~1)’ +x22 +)C32

. 2 2

=(x,” +x," +1+2x,x, +2x, +2x,)
+x,7+x,

. 2 2

=2x," +2x," +14+2x,x, + 2x, + 2x,

df =0

Determine the stationary point
for the unconstrained optimization problem.

df = fa’xz—kia’x3 0

OX,
R
~ox, O,

i=4x2+2x3+2:0

ox,
0
i=4x3 +2x,+2=0
Ox,
The solution of the equations are:
1 1
X, =——, Xy =——
o373
By substituting these value into the function f,
w obtain 1
X, =——

3 ( 11 1)
Thus, the stationary pointis | —,——,—— |.
33 3
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[Appendix] Example of a Constrained
Nonlinear Optimization Method by
Using the Lagrange Multiplier

1. Determination of the Optimal Principal
Dimensions of a Ship

2. Determination of the Optimal Principal
Dimensions of a Propeller

Naval Architecture & Ocean Engineering

= C N
&) B

voitx [
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2013, Myung-Il Roh SW7Z
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Ship (1/5)

= Given: DWT, Vy,,, D, T, T,
» Find: L, B, Cy
® Hydrostatic equilibrium(Weight equation)
L-B-T.-C,-p,, -C,=DWT, +LWI(L,B,D,C,)

given

= DWWl +C L7 B+ DY+ €y Lo BA Gy (BT CaY V71 (a)
Simplify @ Simplify @ ,
—~C -’ (B+D) —~Cper (2:B-T;+2-L-T,+L-B)-V’

(L-B-T, 'CB)Z/3 is (Volume)??® and means the submerged area of the ship.
So, we assume that the submerged area of the ship is equal to the submerged
area of the rectangular box.

® Required cargo hold capacity(Volume equation) > o
Vitre =Cy-L-B-D ...(D)

H .req

® Recommended range of obesity coefficient o
considering maneuverability of a ship

D| ¥ - -
C, <0.15 (C) ! TV /

(L/B)
® Indeterminate Equation: 3 variables(L, B, C;), 2 equality constraints((a), (b))
|:> It can be formulated as an optimization problem to minimize an objective function.

A
\4

e ESS82 SYstem :
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Ship (2/5)

= Given: DWT, V., D, T, T,
= Find: L, B, C,
» Minimize: Building Cost
f(L,B,Cy)=Cps-C-L** - (B+D)+C,,-C,-L-B+Cp,-C,  "-(2-B-T,+2-L-T,+L-B)-V>

= Subject to (a’ )
® Hydrostatic equilibrium(Simplified weight equation)
L-B-T.-C,-p, -C,=DWT,. +LWT(L,B,D,C,)

given
=pwt,,,,+C, -I**(B+D)+C,-L-B+C, " -(2-B-T,+2-L-T,+ L-B)-V°

...(a')

Vivrew=Cy-L-B-D ..(b)
CB

0.15 ..
(L/B)< (€)

G &z SYstem ‘
B, =
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Ship (3/5)

= By introducing the Lagrange multipliers 4,, 2,, u, formulate the Lagrange function H.

H(L,B,Cy, A, A u,s) = f(L,B,Cy)+ A -h(L,B,Cy)+ A, -hy(L,B,D)+u-g(L,B,Cyp,s) ..(€)

f(L,B,Cy)=Cps-C, - L’ (B+D)+C,,-C,-L-B+C,,-C, . {2(B+L)-T,+L-B}-V’

p
h(L,B,Cy)=L-B-T,-Cy-p,, -C,—DWT, -C'-I*-(B+D)-C,-L-B-C,, . "{2-(B+L)-T,+L-B}-V°
h,(L,B,D)=C, -L-B-D-V,
CB

(L/B)

L—>x,B—>x,,C;, = x,

.req

—0.15+s"

g(L,B,Cy,s)=

NV
H(xl,xz,x3,ﬂ.l,ﬂ,2,u,s)
=Cp-C-x’(x,+D)+C,,-C -x,-x,+C,, -C '-{2-(x2 +x1)-Td +x, %, V7

s power

+A - [x X, T Xy oy, - €, —DWT,

given

-C, -xlz-(x2+D)—C0 -x,-x,—C '-{2-(x2+x1)-Td +xl-x2}-V3]

power

+22-(CH-xl~x2-D—V

H .req )

fu-fxy /(x/%,)=015+5°L ()

t‘“%% S‘FSYstem ‘
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier

- Determination of the Optimal Principal Dimensions of a Ship (4/5)
L—x,B—>x,,C; = x

H (X%, X5, A, Ay 1,8 ) = Cg C'-x*(x,+D)+C,,-C,-x,-x,+Cp, -C '-{2-(x2 +x,)- T, +x-x,}-V°

power

+ A [x-x,-T.-xy-p,,-C,—DWT —CS-xlz-(x2+D)—C0-xl-x2—C '-{2-(x2+x1)-Td+x1-xz}-V3]

given power

+4, -(CH -xl-xz-D—VH_req) +u-{x3 /(x1 /xz)—O.IS—I—Sz} ()

» To determine the stationary point( x,, x,, x,) of the Lagrange function H(equation (f)), use
the Kuhn-Tucker necessary condition: VH (x,,x,,x;,4,,4,,u,5) =0.

aﬂ:2CPS-CS'-xl-(x2+D)+CPO-CO-x2+CPM-Cpower'-(2-Td +x,)V°

X
+ 4 (% T, -xy-p,,-C, =[2:C,-x, - (x, + D)+ C, - x, +C, . (2T, +x,)- V1)
+/12-(CH-xZ-D)+u°(—x3-x2/x12)=O ..(D)

oH r / 3

—=Cp-C - x, +CP0'Co'x1+CPM'Cpower (2T, +x)V

X,

+/1| .[xl T:v .x3 .pSW.COC _Cs, .xlz_Co .xl_Cpower,(z.Td +xl)'V3]
+ 4, -(CH - X, 'D)+M'(X3 /xl):O ..(2)

t‘“%% S‘FSYstem ‘
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Ship (5/5)

L—x,B—>x,,C; = x
H (X%, X5, A, Ay 1,8 ) = Cg C'-x*(x,+D)+C,,-C,-x,-x,+Cp, -C '-{2-(x2 +x,)- T, +x-x,}-V°

power

+A XX T xy p,, - C, _DWTgiven_Cs 'x12 (x,+D)-C,-x-x,-C '-{2-(x2+x1)-Td+x1 'xz}'V3]

power

+4, -(CH -xl-xz-D—VH_req) —I—u-{)c3/()c1 /xz)—0.15+S2} .(f)

= Kuhn-Tucker necessary condition VH (x,,x,,x,,4,4,,u,s)=0.

Gﬂ:ﬂq.xl.xz-];-psw-ca-l—u'(xz/xl):o (3)

OX,

oH 2

5 =5 % Txp,, - C=DWL,,, —C -x"-(x,+D)-C,-X X,
; —Cpower'-{2-(x2+x1)-Td+xl-x2}-V3 -+ (4)
H

8—}/2:CH-_X1'X2'D—VHJ€Q:O ...(5)

H

Mk /x —015+5°=0 ..(6)

ou

oH

—:2-u-S=O, u>0 (7

~ (420) ..(7)

= VH(x, x, x3 45, 45 u, s) : Nonlinear simultaneous equation having the 7 variables((1)~(7)) and 7 equations
» It can be solved by using a numerical method!

e ESS82 SYstem :
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Propeller (1/4)

Given P,n,A.1A,,V
Find J,P/D,

J K
Maximize 1], = —L » Because K; and K,, are a function of J and P/D,,
27T KQ the objective is also a function of J and P/D,.
. 2 5
Subject to =p-n"-Dp K,
27m : The propeller absorbs the torque delivered by Diesel Engine
P: Delivered power to the propeller from
Where, J = V(l - W) the main engine, KW
7 - D n: Revolution per second, 1/sec
P D,: Propeller diameter, m
KT — f(J,B /DP) P.: Propeller pitch, m
Ag/Ay: Expanded area ratio
KQ — f(J,B /DP) V: Ship speed, m/s
No: Propeller efficiency(in open water)

=» Optimization problem having two unknown variables and one equality constraint

G &z SYstem ‘
B,
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Propeller (2/4)

P
—=p- n2 . l)p5 . KQ ..... (a) : The propeller absorbs the torque delivered by main

27mn engine

The constraint (a) is reformulated as follows:

K -n?
C="2- P-n 5

J 2mp-V,
G(J,P/D,)=K,-C-J" =0 ---- (a")

Propeller efficiency in open water 7), is as follows.

F(J,P/D,) =1, = ;ﬂ - ﬁ ----- (b)
0

The objective F is a function of Jand P/D,

It is to determine the optimal principal dimensions(J and P/D,) to maximize the propeller
efficiency in open water satisfying the constraint (a’).

BB e
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Propeller (3/4)

G(J,P/D,)=K,-C-J°=0 ---- (")
F(JP/D) n, = J.& ..... (b)
Introduce the Lagrange multiplier 4 to the equation (a’) and (b). 2r K,
H(J,P,/D,,A)=F(J,P/D,)+AG(J,P/D,) - (c)

Determine the value of the £ /D, and A to maximize the value of the function H.

oK

(@ T) K, —(—9)-K;} oK
OH I(KT) J 26] + A{(—2L)=5-C-J=0---(1)
oJ 27 K, 2« K, o

oK, oK,

K
oH  J {(8B/DP) 0 (8P/D) }+/1( oKy )=0 - (2)

3PID) 27 KQ2 OP. /D,
OH
87:KQ_C J5:O .......... (3)

‘%3 bTSYsiem |
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Propeller (4/4)

Eliminate A in the equation (1), (2), and (3), and rearrange as follows.

oK,
( " ( T) 4K

o(P/D,)
0K, g (PBep_g ..
+(5(B/DP)){5KQ J (8J )i =0 (4)

KQ_C.J5:0 ..... (5)

By solving the nonlinear equation (4) and (5), we can determine J and P,./Dp to maximize the
propeller efficiency.

V—-w)

n-D,

By definition J = , if we have J we can find D,. Then P; is obtained from P/D,.

Thus, we can find the propeller diameter(D, ) and pitch(P,).

CETD bTSYsiem
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Propeller

[Reference] Derivation of Eq. (4) from Egs. (1)~(3) (1/3)

N KT}J{(?)KQ(aaligj'KT}M{%jSm}o

27| K, ) 2% K, o7 ) T M
ADLBC)
o Ky
J { or/D,)) "* \aB/D,) Ky o . )
27 K, aP/D,)) (

To eliminate A, we calculate as follows.

Eq. (1)x Ky ~Eq. (2)x Ky -5.C-J*}=0
o(P/D,) oJ

oK, 8KQ

oK 1( oK ) J( oK )Rl R oK d

Eq. (1)x ¢ . — g iat i ¢ : +A g -5.C-J*}=0
o(P/D,)) 2z\oR/D,) )\ K, ) 27\ a(B/D,) K, (PP, oJ

i) a1}
0 T
Eq.(Z)X{(aﬁj—S-C-J“}: S Lo/ Dr) za(B/DP) {[aKQJS-C-J“}%W}_O
aJ 27 K, oJ >7D,) )|\ o]
Eq. (1) Ky Eq. (2) oKy 5.C-J*
. X —LEq. X —=|=5-C-
1 op/D,y) | Y

_L( K, j(KTj+J( X, j{(szjKQ(?jK} J{auf,l/(h)jxg2[6(183]/(%13)}'KT}{8§]QJS.C.J4}

22\ a(R/D) )\ K, | 27\ (P /D,)

§66



Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Propeller

[Reference] Derivation of Eq. (4) from Egs. (1)~(3) (2/3)

=0

K’ 2 K’

27\ &/ D,) 27\ 8B/ D,) 2r 0

o )2 j{(aa’?)"‘g(aa?}“f} J{(gw)jl{[ag/{m][(}{agjsw}

K,

Multiply 27 and the both side of the equation and rearrange the equation as follows.
) bl () o € ) Gt | e e
AP /D) )\K,) K, |\oB/D,) )|\ oJ oJ o(P /D,) o(P /D,) oJ

The term underlined is rearranged as foIIows

Q 4 8KQ 4
‘K,-C-J"-5- __|.K,-C-J
a(P/D) D) a(P/D) P) a(P/D) P /D,)
Ky aK K oK, Ko x PP R S (P SO K,-C-J*
“\a/D,) e \or/Dy)\ s ) @ aPr /D)) ¢ a(P,,/D,,)

Substituting the rearranged term into the above equation.

Ko LS Ko (aKTJ.K— oKy Kol x w5 |Kr )k .c.gios Ko g C-JV =0
oRIDINK, ) K, |\e@ /D)) as) ¢ \ar/D))\ &) ) ° aP /D)) ° aP/D,)y) T

'-‘“}% §TSYsiem |
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Example of a Constrained Nonlinear Optimization Method by Using the Lagrange Multiplier
- Determination of the Optimal Principal Dimensions of a Propeller

[Reference] Derivation of Eq. (4) from Eqgs. (1)~(3) (3/3) 8_H: KQ —C-

oK oK oK oK
0 By Jz g oKy K, - oKy 2 K,+5- oK, K, C-J* =5 € _|K,-C-J"|=0
&P /D) )\ K, | K, |\ &/ D))\ o] aP /D)) oJ (P /D,) o(P/D,)

Apply the distributive
K, K, oK, (GK j (K YK, g (oK, -C'ﬁ—s K, ) K, cf’ property.
o(P /1 D,) | K, a(P/D) K, \aB/D)\ & ) K, o(P/D,) /kQ a(P/D,) /K
By using Eq. (3) —2— =1
oK, V(K. ), [ oK, (aKT)J_ oK, V(Ko) s [ oK ) o Ko VK _, y using Eq. (3) K,
o IDHINK, ) \ar/D))\ a7 ) K, \aB/D))\ o ) K, a(P/D,) oP/D,)) K,
The underlined term is calculated
% K ) (%K, K, J (oK Ko\ J o K _, as follows.
o /D) \ K, | \ OB /D,) (aJ]KQ aBIDH)\ & ) K, ~\aBID,))
Multiply Kq and the both side of the equation.
RN Cr ) kA b e SR G rs)
—4. K, + J - J+5-K =
o(F, / Dp) o(F, /1 D,) o(F, / Dy) o(F, / Dy)
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[Reference] Linear Systems vs. Matrices
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Xt 20+ x=1 ¢ L2 L x] L)
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o 3x;-X,-X;3=2
ow2 +

Row1 x (-3) _|_) -3x,-6x,-3x;=-3
-Tx, -4x,=-1
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