Course Syllabus

1. Class Information

- Class Title: Computer-Aided Ship Design
- Class Number: 414.437(3 Credits)
- Semester: Fall 2013
- Level of Course: Undergraduate / Junior
- Time: Tue. 09:00-10:50 a.m., Thu. 09:00-10:50 a.m.
- Location: Room 106, Bldg. 34
- Instructor: Prof. Myung-Il Roh
 Office: Room 205, Bldg. 34
 E-mail: miroh@snu.ac.kr
 Phone: (02)-880-7328
 Office Hours: Available before school and after school by appointment
- Teaching assistants: Ki-Su Kim E-mail: kisu2511@snu.ac.kr Office: Room 312, Bldg. 34 Phone: (02)-880-8378
- **Language of Instruction**: English

X Announcement: Please note that all lectures, assignments, exams, and term projects for this course are in English.

2. Course Topics and Description

The course deals with the basic mathematical model and computational procedure for ship and offshore plant design. The course consists of two parts:

- Part I: Optimization method Determination of optimal principal dimensions of a ship
- Part II: Curve and surface modeling Ship hull form modeling

Term Project: (1) Programming for the determination of optimal principal dimensions of a ship by using a constrained optimization method (2) Programming for ship hull form modeling by using B-Spline curve and surface.

3. Text Book and Reference

(1) Textbook

• Roh, Myung-Il, Lecture Note for "Computer Aided Ship Design", Seoul National University, Fall, 2013

(2) Reference

- Lee, Kyu-Yeul, Roh, Myung-Il, Lecture Note for "Innovative Ship Design", Seoul National University, Fall, 2013
- Part I: Arora, J.S., "Introduction to Optimum Design", 2nd Ed., Elsevier Academic Press, 2004
- Part II: Farin, G., and Hansford D., "The Essentials of CAGD", AK Peters, Ltd., 2000

4. Grade Computation

Weighted system is as follows:

- Two Exams: 50%
- Two Term Projects: 40%
- Attendance: 10%

In case of an excused absence, the student must make-up any missed test, quiz or homework on the following day during a free period, before or after school. Unexcused absences will result in a zero.

5. Website: <u>http://etl.snu.ac.kr</u>

Most assignments, instructions and notice for supplementary lecture will be made only on the website, so check it frequently.

6. Class Expectations

- All lectures, assignments, exams and term projects for this course are presented in English.
- Late work will be not accepted.
- Show respect to others and their property.
- Come prepared to class.
- It is required to make appointments to see instructor during office hours. Send email for an appointment at least one day in advance.

7. Exam

	Mid-term exam	Final exam	
Date	October 24 th , 2013 (Thursday),	December 12 th , 2013 (Thursday),	
	09:00~10:50	09:00~10:50	
Range of	Part 1: Optimization method	Part 2: Curve and surface modeling	
Exam			

8. Course Schedule

	Course Schedule					
Week	Part	Tuesday		Thursday		Term Project
		Date	Time: 09:00~10:50	Date	Time: 09:00~10:50	
1			Introduction to Optimal Design		Unconstrained Optimization Method	Term project 1: Programming for
		00/02	Unconstrained Optimization Method	00/05	- Gradient Method(Newton's Method, Davidon-Fletcher-	determination of optimal principal
		09/05	- Gradient Method(Steepest Descent Method, Conjugate	09/05	Powell(DFP) Method, Broyden-Fletcher-Goldfarb-Shanno(BFGS)	dimensions of a ship by using a
			Gradient Method)		Method)	constrained entimization method
2			Unconstrained Optimization Method		Constrained Optimization Method	(Description Thereaders October 21)
			- Direct Search Method		- Kuhn-Tucker Necessary Condition	(Due date: Thursday, October 31)
		09/10	- 1-dimensional Search Method(Golden Section Search	09/12		
		09/10	Method)	09/12		
			- n-dimensional Search Method(Hooke & Jeeves Method,			
			Nelder & Mead Method)			
3	Optimization	0/17	Constrained Optimization Method	0/10	Holiday	
	Method	5/17	- Lagrange Multiplier	5/15		
4		9/24	Constrained Optimization Method	9/26	Constrained Optimization Method	
		5724	- Penalty Function Method	5720	- Linear Programming (1)	
5		10/01	Constrained Optimization Method	10/03	Holiday	
		10/01	- Linear Programming (2)	10/05		
6		10/08	Constrained Optimization Method	10/10	Constrained Optimization Method	
		10,00	- Sequential Quadratic Programming (SQP) (1)	10,10	- Sequential Quadratic Programming (SQP) (2)	
7		10/15	Determination of Optimal Principal Dimensions of a Ship	10/17	Programming Guide for Golden Section Method and Direct	
		10,15		10,11	Search Method	
8		10/22	Programming Guide for Penalty Function Method and Term	10/24	Mid-term Fxam	
		-,	Project 1	-,		
9		10/29	Introduction to Curve and Surface Modeling	10/31	Bezier Curves and de Casteljau Algorithm	Term project 2: Programming for ship
10		11/05	B-Spline Curves and de Boor/Cox-de Boor Algorithm (1)	11/07	B-Spline Curves and de Boor/Cox-de Boor Algorithm (2)	hull form modeling by using B-Spline
11	Curve and	11/12	B-Spline Curve Interpolation (1)	11/14	B-Spline Curve Interpolation (2)	curve and surface
12	Surface	11/19	Bezier Surfaces (1)	11/21	Bezier Surfaces (2)	(Due date: Thursday, December 19)
13	Modeling	11/26	B-Spline Surfaces (1)	11/28	B-Spline Surfaces (2)	,
14	5	12/03	Programming Guide for B-Spline Curve	12/05	Programming Guide for B-Spline Surface	
15		12/10	Programming Guide for Term Project 2	12/12	Final Exam	