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How does a ship float? (1/3)

I

M The force that enables a ship to float ®» “Buoyant Force’
W It is directed upward.
B It has a magnitude equal to the weight of the fluid which is displaced

by the ship.
a R
D A
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R Ship
Water tank
Water




How does a ship float? (2/3)

M Archimedes’ Principle

B The magnitude of the buoyant force acting on a floating body in the
fluid is equal to the weight of the fluid which is displaced by the

floating body.
B The direction of the buoyant force is opposite to the gravitational

force.

Buoyant force of a floating body
= the weight of the fluid which is displaced by the floating body (“Displacement”)

» Archimedes’ Principle

M Equilibrium State (“Floating Condition”) !
B Buoyant force of the floating body wf A=-W=-pgV

= Weight of the floating body

\VA ' G v

-.Displacement = Weight

?

|

[

[
G: Center of gravity ! B
B: Center of buoyancy T

W: Weight, A: Displacement
A j

p: Density of fluid
(Displacement volume, V) _
[

V: Submerged volume of the floating body \




How does a ship float? (3/3)

M Dlsplacement(A) Buoyant Force = V\{eight(W)

e A:LBTCBIO T: Draft

Cg: Block coefficient
...................................................................... . Density of sea water
— W L WT -+ D WT LWT: Lightweight
...................................................................... DWT: Deadweight

| Weight — Ship WEight (Lightweight) + Cargo Weight(Deadweight)
Ship

] Ship
Tt erenannst®’ Water
I
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What is “Stability”?

Inclining

w . (Heeling)

i \
. \e"
6\0‘0 Restoring

Stability = Stable + Ability
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Ch. 1 Introduction to Ship Stability
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What is a “Hull form”?

M Hull form

B Outer shape of the hull that is streamlined in order to satisfy requirements of a
ship owner such as a deadweight, ship speed, and so on

B Like a skin of human
M Hull form design
B Design task that designs the hull form

Hull form of the VLCC(Very Large Crude oil Carrier)

Wireframe model Surface model

> -~
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What is a “"Compartment”?

M Compartment

B Space to load cargos in the ship

B It is divided by a bulkhead which is a diaphragm or peritoneum of human.
M Compartment design (General arrangement design)

B Compartment modeling + Ship calculation
M Compartment modeling

B Design task that divides the interior parts of a hull form into a number of
compartments

M Ship calculation (Naval architecture calculation)

B Design task that evaluates whether the ship satisfies the required cargo
capacity by a ship owner and, at the same time, the international regulations
related to stability, such as MARPOL and SOLAS, or not

Compartment of the VLCC




What is a “"Hull structure”

?

M Hull structure

B Frame of a ship comprising of a number of hull structural parts such as plates,

stiffeners, brackets, and so on
B Like a skeleton of human

M Hull structural design

B Design task that determines the specifications of the hull structural parts such

as the size, material, and so on

Hull structure of the VLCC
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Principal Characteristics (1/2)
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LOA (Length Over All) [m] : Maximum Length of Ship

LBP (Length Between Perpendiculars (A.P. ~ F.P.)) [m]
B A.P. : After perpendicular (normally, center line of the rudder stock)

B F.P.: Inter-section line between designed draft and fore side of the stem, which is
perpendicular to the baseline

Lf (Freeboard Length) [m] : Basis of freeboard assignment, damage stability calculation
B 96% of Lwl at 0.85D or Lbp at 0.85D, whichever is greater

K

Rule Length (Scantling Length) [m] : Basis of structural design and equipment selection
B Intermediate one among (0.96 Lwl at Ts, 0.97 Lwl at Ts, Lbp at Ts)

11
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Definitions for the Length of a Ship

_|_ N

Structures above
main deck

Main deck
B e

v .
=| (Main) Hull
v\ : v
/! N

Wetted line Molded line

1 Length overall(L,)

N

Length on waterline(Ly,, )

| ’ )
_L : Stem \%stem Z
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N

<
N

Length between ?e endiculars(L
AP g P: p (Lgp) Fp
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Principal Characteristics (2/2)

K = B (Breadth) [m] : Maximum breadth of the ship,
measured amidships

i - B,molded : excluding shell plate thickness
' - B,extreme : including shell plate thickness

e — =
e . - = D (Depth) [m] : Distance from the baseline to the deck
B3 -— o side line
—-—-—-|————— = - D,molded : excluding keel plate thickness
— = 7 - D,extreme : including keel plate thickness
A S . . .
: m  Td (Designed Draft) [m] : Main operating draft
\ - In general, basis of ship’s deadweight and
g N PR speed/power performance
=i O
= g \ / = Ts (Scantling Draft) [m] : Basis of structural design
b ‘
\/BL\/\\—E;Q—"ITI_“-.—HJ;BL N4
< Breadth S

= Air Draft

Distance (height above waterline only or including operating draft) restricted by the port facilities,
navigating route, etc.

- Air draft from baseline to the top of the mast
- Air draft from waterline to the top of the mast
- Air draft from waterline to the top of hatch cover

e ESS82 SYstem
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Definitions for the Breadth and Depth of a Ship

_\LSheer

~ 1/2 Molded breadth(B ;)

Deck plating

Camber |

after

|‘r

Deck beam

Scantling waterline

\ Centerline

Freeboard

_________ Molded depth(D ,;4)

Scantling draft

\ Dead rise

Sheer forward\L

pf——

—

UR
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Static Equilibrium
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Center plane

Before defining the coordinate system of a ship, we first introduce three planes,
which are all standing perpendicular to each other.

Centerplane

Generally, a ship is symmetrical about starboard and port.
The first plane is the vertical longitudinal plane of symmetry, or center plane.

Gt SNgSYstem :
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Base plane

Baseplane

The second plane is the horizontal plane, containing the bottom of the ship,
which is called base plane.
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Midship section plane

—> Midship section plane

The third plane is the vertical transverse plane through the midship, which is
called midship section plane.
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Centerline in
(@) Elevation view, (b) Plan view, and (c) Section view

Centel’“nei Centerp]ane
Intersection curve between
center plane and hull form

Elevation view

-

Plan view

e e e e e e R B e

S Section view

| 7 ¢

d
e

-

e e e e e e e e e e e e e e - -~ ¢: Centerline
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Baseline in
(@) Elevation view, (b) Plan view, and (c) Section view
Baseline:

Intersection curve between
base plane and hull form

Elevation view

Baseline
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System of coordinates

Zn 4
> n-frame: Inertial frame x,y,z,orxyz
E yn 'xb Point E: Origin of the inertial frame(n-frame)
b-frame: Body fixed frame x, y,z, orx’y’z’
X Point O: Origin of the body fixed frame(b-frame)

n

1) Body fixed coordinate system
The right handed coordinate system with the axis called x,(or x'), y,(or y’), and z,(or z') is fixed

to the object. This coordinate system is called body fixed coordinate system or body fixed
reference frame(b-frame).

2) Space fixed coordinate system

The right handed coordinate system with the axis called x,(or x), y,(or y) and z.(or z) is fixed to

the space. This coordinate system is called space fixed coordinate system or space fixed
reference frame or inertial frame(n-frame).

In general, a change in the position and orientation of the object is described with respect to
the inertial frame. Moreover Newton's 2" |law is only valid for the inertial frame.

> -~
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System of coordinates for a ship

Body fixed coordinate system(b-frame): Body fixed frame x, y,z, orx’y’z’

Space fixed coordinate system(n-frame): Inertial frame x,y,z,orxyz

Stem, Bow

Stern

Y

< QPR SY st
8} Rhtoeson
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Lp LBP Xp P

AP: aft perpendicular @0 : midship

FP: fore perpendicular

LBP: length between perpendiculars.

BL: baseline

SLWL: summer load waterline (b)
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K: keel

Center Of bUOya ncy (B) LCB: longitudinal center of buoyancy LCG: longitudinal center of gravity
VCB: vertical center of buoyancy VCG: vertical center of gravity
a nd Center Of Mass (G) TCB: transverse center of buoyancy  TCG: transverse center of gravity
Elevation view e Section view
v e 5
GiLcg
B <—>
LCB
Plan view AV

X In the case that the shape of a ship is asymmetrical
with respect to the centerline.

Center of buoyancy (B)

It is the point at which all the vertically upward forces of support (buoyant force) can be considered to act.
It is equal to the center of volume of the submerged volume of the ship. Also, It is equal to the first moment
of the submerged volume of the ship about particular axis divided by the total buoyant force (displacement).

Center of mass or Center of gravity (G)
It is the point at which all the vertically downward forces of weight of the ship(gravitational force) can be

considered to act.
It is equal to the first moment of the weight of the ship about particular axis divided by the total weight of

the ship.
P Bz SYst i
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Static

Equilibrium (1/3) |IIIIIIIIIIIII|I!!!Iiii!W

:

Q
———o0

m: mass of ship
a: acceleration of ship

G: Center of mass
F : Gravitational force of ship

| Static Equilibrium

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

@ Newton'’s 2" |aw
ma = ZF
=—F,
I\
Gt SNgSYstem
(&) Rdoesen, 24




Static Equilibrium (2/3)

B: Center of buoyancy at uprlght
Eosmon (center of volume o
he submerged volume of the
ship)

Fj : Buoyant force acting on ship

Static Equilibrium

/

@ Newton'’s 2" |aw

ma = ZF
=—t. +F,
for the ship to be in static equilibrium

0=YF ,(-a=0)

" F,=F
- " )

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Static Equilibrium (3/3)

N P ] Aval

Static Equilibrium
B

7: Moment
1: Mass moment of interia

o : Angular velocity

Static Equilibrium

/(D Newton’s 2Md |aw N
ma = ZF
=—t. +F,
for the ship to be in static equilibrium
0=YF ,(-a=0)
N b =F, )
/@ Euler equation \

]a')zZr

for the ship to be in static equilibrium

0=>7 ,(-0=0)

When the buoyant force(F,) lies on the same
line of action as the gravitational force(Fp),
total summation of the moment becomes 0.

-
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What is “Stability”?

Inclining

w . (Heeling)

i \
. \e"
6\0‘0 Restoring

Stability = Stable + Ability

0 &g SYstem ‘
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Stability of a floating object

® You have a torque on this object
relative to any point that you choose. It

Static Equilibrium

does not matter where you pick a point. /® Newton’s 29 law )
ma= ) F
® The torque will only be zero when the Z
buoyant force and the gravitational =ty + 1y
force are on one line. Then the torque for the ship to be in static equilibrium
becomes zero. 0=YF ,(-a=0)
S . F.=F, )
/@ Euler equation \

]a')sz

for the ship to be in static equilibrium

0=>7 ,(-0=0)

When the buoyant force(Fy) lies on the same
line of action as the gravitational force(Fp),
total summation of the moment becomes 0.

-
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Stability of a ship

® You have a torque on this object

relative to any point that you choose. It
does not matter where you pick a point.

® The torque will only be zero when the

buoyant force and the gravitational

force are on one line. Then the torque

becomes zero.

Rotate

Static Equilibrium

-

@ Newton'’s 2" |aw

ma:ZF

=—f. +F,
for the ship to be in static equilibrium
0=YF ,(-a=0)
N b =F,

/

/@ Euler equation

=/

s
i,

Static Equilibrium

]a')sz

0=>7 ,(-0=0)

for the ship to be in static equilibrium

\

line of action as the gravitational force(Fy),

When the buoyant force(Fy) lies on the same

total summation of the moment becomes 0.

-
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Interaction of weight and buoyancy of

a floating bodx (1/2)

. Restoring
orque , Moment
(Heeling : ﬂ
Moment) ! .
W L
G
5
¢ b
(a) (b)

Euler equation: /w= Zr _ WO

Interaction of weight and buoyancy resulting in intermediate state

Gt SNgSYstem :
i@ Design . 30
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh e IDlLaboratory



Interaction of weight and buoyancy of

a floating bodx (2/2)

Static Equilibrium

Heeling !
Moment !
T, :
( Vi
W : L
; G
B |
¢
(a)

Euler equation: /w= Zr » v=0

Interaction of weight and buoyancy resulting in static equilibrium
state

Gt SNgSYstem |
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Stability of a floating body (1/2)

/ Restoring Moment

\/ Inclined

17

i

Ik
-_=

Floating body in stable state

Planning Procedure of Naval Architecture and Ocean Engineeri
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Stability of a floating body (2/2)

\/ Overturning Moment

\/ Inclined
. 28

¥

K
K

Oy

(b)

Floating body in unstable state

Planning Procedure of Naval Architecture and Ocean Engineeri
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Transverse, longitudinal, and yaw moment

Question) If the force F is applied on the point of rectangle object, what is the moment?

M=r,xF
I i ] k ] Transverse moment  Longitudinal moment Yaw moment
=|Xp Vo Zp |=UVpF —zp F )+ )X F 2, F)+K(Xp - F, = yp - F))
FoF, F M, M, M.

The x-component of the moment, i.e., the bracket term of unit vector i,
indicates the transverse moment, which is the moment caused by the force F
acting on the point P about x axis. Whereas the y-component, the term of unit
vector j, indicates the longitudinal moment about y axis, and the z-component,

the last term k, represents the yaw moment about z axis. 34



Equations for Static Equilibrium (1/3)

Suppose there is a floating ship. The force equilibrium states that the sum of total forces is
zero.

Y F=F; +F, =0

, Where
Fc, and Fg, are the z component of the gravitational force vector and the buoyant force vector,
respectively, and all other components of the vectors are zero.

Also the moment equilibrium must be satisfied, this means, the resultant moment should
be also zero.

dYr=M,+M, =0

where M, is the moment due to the gravitational force and Mg is the moment due to the buoyant
force.

35



Equations for Static Equilibrium (2/3)

dYr=M,+M, =0

where M. is the moment due to the gravitational force and M; is the moment due to the buoyant
force.

From the calculation of a moment we know that Mg and Mg can be written as follows:

M, =r.xF,
i K
= Y Yo Zc
F, FG,y F.
=i o =20 Fo )i Fo + 26 B K B~ B
M, =r, xF,
i K
=l X Vs Zp
Fy FB,y Fy.

=i(y, 'FB,Z_ZB 'FB,y)+j(_xB 'FB,z +Zp 'M"‘k(xzz% _yg%s

Mg =i(yg F;. =z Fg,)+i(=x; - F;,) and M, :i(yB'FB,Z_Zz/ﬁB,y)+j(_xB'FB,z)

M, =i(y, 'FG,Z)"'j(_xG 'FG,z) and M, =i(y, 'FB,Z)+j(_xB 'FB,z)

36



Equations for Static Equilibrium (3/3)

dYr=M,+M, =0

where M. is the moment due to the gravitational force and M; is the moment due to the buoyant
force.

M, =i(y, ’FG,Z)+j(_xG 'FG,Z) and M, =i(y, 'FB,Z)+j(_xB 'FB,Z)
ZT:MG+MB :i(yG'FG,z+yB'FB,z)+j(_xG'FG,z_xB'FB,z):O

yG.FG,Z_I_yB.FB,Z:O and _xG.FG,Z_xB.FB,Z:O
Substituting £;.=-F,. (force equilibrium)

Ve —Yp =0 X=Xz =0

Ve = Vs - Xg = Xp

37



Restoring Moment and Restoring Arm
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Restoring moment acting on an inclined ship

l
f Restoring
I Moment

Heeling
Moment

Q

oy

Mv“Uﬂo‘ bTSYsiem
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Restoring Arm (GZ, Righting Arm)

Iy

Heeling i Restoring
Moment I Moment

1K

 The value of the restoring moment

Is found by multiplying the
buoyant force of the ship
(displacement), Fg, by the
perpendicular distance from G to
the line of action of Fy.

-« It is customary to label as Z

the point of intersection of the line
of action of Fz and the parallel line
to the waterline through Gto it.

e This distance GZis known as the

‘restoring arm’ or ‘righting arm’.

 Transverse Restoring Moment

U viesiont :FB'E

restoring

G: Center of mass K: Keel

B: Center of buoyancy at upright position

B,: Changed center of buoyancy

F;: Weight of ship F: Buoyant force acting on ship

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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 Restoring Moment

Metacenter (M) T oring = Fy " GZ

Definition of M (Metacenter)

 The intersection point of the vertical
line through the center of buoyancy
at previous position (B) with the
vertical line through the center of
buoyancy at new position (B,) after
inclination

* The term meta was selected as a prefix for center
because its Greek meaning implies movement. The
metacenter therefore is a moving center.

* GM » Metacentric height

« From the figure, GZ can be obtained
with assumption that M does not
change within a small angle of
inclination (about 7° to 10°), as below.

Z: The intersection point of the line of buoyant force through
B, with the transverse line through G ! !

X
Q
Q
<
Z.
Al

0 &g SYstem :
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Restoring moment at large angle of inclination (1/3)

GZ =~GM -sin ¢

For a small angle of inclination
(about 7° to 10°)

* The use of metacentric height(GM)
as the restoring arm is not valid for
a ship at a large angle of inclination.

=

To determine the restoring

arm “GZ", it is necessary to know
the positions of the center of
mass(G) and the new position of the
center of buoyancy(B)).

G: Center of mass of a ship U -
F: Gravitational force of a ship r
B: Center of buoyancy in the previous state (before inclination)
Fy: Buoyant force acting on a ship

B,: New position of center of buoyancy after the ship has been inclined

Z :The intersection point of a vertical line through the new position of
the center of buoyancy(B,) with the transversely parallel line to a
waterline through the center of mass(G)

t‘“%% §TSYsiem |
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Restoring moment at large angle of inclination (2/3)
ﬁ M: The intersection point of the vertical line through the center
i L, of buoyancy at previous position (8., with the vertical line
I - through the center of buoyancy at present position (B) after
by s % inclination
o & L
w, b
— EB \\.‘B2
/@ Bs %! o) J-M35
A £ 35°
\ i B \\_\ J poa ‘200"”3@
L M " o M
1 35 .25 ?é{'i
M 20° 420
M, % Pars 7 Y
o« M > ]15° HMis
*Mzo‘_; t 15 > 10°Mio
Mg > 5° M,
- = ::yJr
X' B3s
Bs | % 44"
— 5 L oo »
— Bso
A BIDan
-1
¢
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Restoring moment at large angle of inclination (3/3)
ﬁ M: The intersection point of the vertical line through the center
i L, of buoyancy at previous position (8., with the vertical line
I - through the center of buoyancy at present position (B) after
by s % inclination
o & L
" 1“ ) \\.B2 ; GZ # GM35 -S1n ¢35
W, o5 35
= Bé e o) J-M35
- E \ =30 Z 3509
\ Vs \\. / \\ - O"MSID
| "1 \\ § 130
L \ kM, 750° M,
: Ly
X M 20° 420
M, |2 \ -7 v
M ! M p=35° ﬂlS P
N 15 - > 10°Mio
M “G\ Oz — 5° M
/e -
= . 'yf
- x' \ \.\‘ 335
B . ]
I 5 | ob p
f‘f’_" B Bzﬁ \ FB,35
1 10 F‘\ \
- B.30 \'\
AN
e \ \
‘L
¢, Ly, 35
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Stability of a ship according to
relative position between “G”, “B”, and “M"” at small angle of inclination

 Righting(Restoring) Moment : Moment to return the ship to the upright floating position

- Stable / Neutral / Unstable Condition : Relative height of G with respect to M is
one measure of stability.

Fg

G
pi
.

¥
« Stable Condition (G < M) * Neutral Cond'ltion (G=M) - Unstable Condltioﬁ (G>M)

G, Z.M

FG;
GIM

fB I
Fs TFB

G: Center of mass K : Keel
B: Center of buoyancy at upright position B,: Changed center of buoyancy
F. : Weight of ship Fg : Buoyant force acting on ship

Z : The intersection of the line of buoyant force through B1 with the transverse line through G
M : The intersection of the line of buoyant force through B1 with the centerline of the ship

< @S2 SYstem
B
A IDlLaboratory
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Importance of transverse stability

B B, »
|
The ship is inclined further from it. The ship is inclined further from it.
The ship is in static equilibrium state. Because of the limit of the breadth, “B” can not

move further. the ship will capsize.

As the ship is inclined, the position of the center of buoyancy "B” is changed.
Also the position of the center of mass “G" relative to inertial frame is changed.

One of the most important factors of stability is the breadth.

So, we usually consider that transverse stability is more important than longitudinal
stability.
o




Summary of static stability of a ship (1/3)

K

G: Center of mass of a ship
G,: New position of center of mass after the object on the deck moves

to the right side

F: Gravitational force of a ship

B: Center of buoyancy at initial position

Fj: Buoyant force acting on a ship

B;: New position of center of buoyancy after the ship has been inclined

Z: The intersection of a line of buoyant force(F;) through the new position
of the center of buoyancy (B,) with the transversely parallel line to the
waterline through the center of mass of a ship(G)

® When an object on the deck moves to
the right side of a ship, the total center of
mass of the ship moves to the point G, off

the centerline.
® Because the buoyant force and the

gravitational force are not on one line, the
forces induces a moment to incline the
ship.
* We have a moment on this object
relative to any point that we choose.

It does not matter where we pick a
point.

47



Summary of static stability of a ship (2/3)

G: Center of mass of a ship
G,: New position of center of mass after the object on the deck moves

to the right side

F: Gravitational force of a ship

B: Center of buoyancy at initial position

Fj: Buoyant force acting on a ship

B;: New position of center of buoyancy after the ship has been inclined

Z: The intersection of a line of buoyant force(F;) through the new position
of the center of buoyancy (B,) with the transversely parallel line to the
waterline through the center of mass of a ship(G)

® The total moment will only be zero
when the buoyant force and the
gravitational force are on one line. If the
moment becomes zero, the ship is in static
equilibrium state.
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Summary of static stability of a ship (3/3)

| ® When the object on the deck returns to the
Te 1y initial position in the centerline, the center of

I/ _
m"’ mass of the ship returns to the initial point G.

K

G: Center of mass of a ship

G,: New position of center of mass after the object on the deck moves
to the right side

F: Gravitational force of a ship

B: Center of buoyancy at initial position

Fj: Buoyant force acting on a ship

B;: New position of center of buoyancy after the ship has been inclined

Z: The intersection of a line of buoyant force(F;) through the new position
of the center of buoyancy (B,) with the transversely parallel line to the
waterline through the center of mass of a ship(G)

® Then, because the buoyant force and the

o

————————————————————————

———————————————————————— 1

F< Naval architects refer to the restoring

- O g

® The moment arm of the buoyant force
and gravitational force about G is
expressed by GZ, where Z is defined as the
intersection point of the line of buoyant
force(F;) through the new position of the
center of buoyancy(B,) with the
transversely parallel line to the waterline
through the center of mass of the ship(G)

moment as “righting moment'¢

 Transverse Righting Moment

4 =F,-GZ

® By the restoring moment, the ship
returns to the initial position.

righting
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Evaluation of Stability
: Merchant Ship Stability Criteria — IMO Regulations for Intact Stability

(IMO Res.A-749(18) ch.3.1)
M IMO recommendation on intact stability for passenger and cargo ships.

__________________________________________________________

Area A: Area under the righting arm curve
between the heel angle of 0° and 30°

Righting Arm

L Go) A = const.

_,i«__ (A: displacement)
Area B: Area under the righting arm curve
between the heel angle of 30° and min(40°, ¢)
X ¢,: Heel angle at which openings in the hull
¢,,. Heel angle of maximum righting arm

GM

X After receiving approval of
$ calculation of IMO regulation

|
|
: Angle of heel
= (2[°])

' : [ from Owner and Classification
0O 10 20 30¢f 40 50 60; 70 80 Society, ship construction can

f proceed.

IMO Regulations for Intact Stability

) Area B > 0.030 m-rad considerations (dynamic stability)

(a) Area A > 0.055 m-rad
(b) Area A + B > 0.09 m-rad } The work and energy
(c
(d) GZ = 0.20 m at an angle of heel equal to or greater than 30°
(e) GZ,,., should occur at an angle of heel preferably exceeding

30° but not less than 25°. Static considerations

(f) The initial metacentric height GM, should not be less than 0.15 m.

‘%3 §TSYs!em :
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Rotational Transformation of
a Position Vector to a Body in Fluid

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh




Orientation of a ship with respect to the different reference
frame

(b)

Space(Water plane) fixed reference frame Body fixed reference frame

Body fixed coordinate system(b-frame): Body fixed reference frame x’y’z’
Space fixed coordinate system(n-frame): Inertial reference frame x y z

> -~
%‘f@g{% }ﬂ 3\22182' 52
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Reference)
- Water Plane Fixed Reference Frame vs. Body Fixed Reference Frame

i How can we calculate ship's center of buoyancy(B;)?

We can calculate the center of buoyancy with respect to the water plane fixed
reference frame (inertial reference frame).

Alternatively, we can calculate the center of buoyancy with respect to the body fixed
reference frame (non-inertial reference frame).

Method 1. Calculate center of buoyancy B, directly Method 2. Calculate center of buoyancy B, with
with respect to the water plane reference fixed frame. respect to the body fixed reference frame, then
transform B, to the water plane fixed reference frame,

O : Origin of the water plaﬁe fixed O : Origin of the water plane fixedlrefere\ce frame
O’ : Origin of the body fixed reference frame O’ : Origin of the body fixed referdlnce frame

Water plane fixed reference frame Body fixed reference frame 53




Reference) pEp— oy
E Question : How to calculate center of the buoyancy(B;) with respect t| Yrio _'{ cos ¢ smgb}l Yrio

v'Comparison between Method 1 and Method 2 (1/2) "Zp0

I
Il Zpo

ethod 1. Calculate center of buoyancy B, directly Method 2. Calculate center of buoyancy B, with
with respect to the water plane fixed reference frame. respect to the body fixed reference frame, then
transform B, to the water plane fixed reference frame.

/
zn /,]\2,

O : Origin of the water plape fixed framé O : Origin of the water plane fixedlframe \n-frame)
O’ : Origin of the body fixed reference frame (b-frame) O’ : Origin of the body fixed referdlnce frame (b-frame)
v A, M_, M, with respect to the water plane VA M, My, with respect to the body fixed
i frame
fixed frame dAZdde A:IdA dA'=dy'dz' MA,Z':[y'dA MA,y,:.Az'dA
M, =IydA M, =Isz v" Center of buoyancy with respect to the body
- = fixed frame M,. M,,
v Center of buoyancy with respect to the (V5,105 Z5,0) = A’ > A’

water plane fixed frame

>

_ M,. M,, v’ Rotational transformation
(yBl/O’ZBl/O) P P

. !
yBl/o _ COS¢ sm¢ yBl/O'
M , . : The moment of sectional area M, ,: The moment of sectional area o .

. . z —Sin COS
under the water plane about z-axis under the water plane about y-axis 5/0 4 P 1| Zi0




Reference) pEp— oy
E Question : How to calculate center of the buoyancy(B;) with respect t| Yrio _'{ cos ¢ Sm(qu Yrio

v'Comparison between Method 1 and Method 2 (2/2) "Zp0

ethod 1. Calculate center of buoyancy B, directly Method 2. Calculate center of buoyancy B, with
with respect to the water plane fixed reference frame. respect to the body fixed reference frame, then
transform B, to the water plane fixed reference frame.

I
Il Zpo

/
zn /,]\2,

O : Origin of the water plape fixed framé O : Origin of the water plane fixedlframe \n-frame)
O’ : Origin of the body fixed reference frame (b-frame) O’ : Origin of the body fixed referdlnce frame (b-frame)

v A, M., M,  with respect to the water plane VA M, M, with respect to the body fixed

. f
fixed frame rame _ dy'dz' M,.=[y'd4 M, =[z'dd
dA=dydz  A={dA - -

v Center of buoyancy with respect to the body
M,. = IydA M,, = IZdA fixed frame (MA . M, j

(yjyl/o'a Zzal/o') =

b

v' Center of buoyancy with respect to the Same A A

water plane fixed frame v M ) v’ Rotational transformation Convenient

(J’Bl/oszBl/o) :( ==, VB0 _|: cos ¢ Sin¢:| ngl/()'
Zg 10 —sing cosq || z; 0 b5

A A




Reference)
Orientatia

Inclination of a ship can be represented either with respect to the water plane fixed
frame(“inertial reference frame”) or the body fixed reference frame.

Are these two phenomena with respect to the different reference frames the same?

Rotation of a ship with respect to the water plane | Rotation of a ship with respect to the body fixed
fixed reference frame reference frame

Submerged volume and emerged volume do not change with respect to the frame, that means

volume is invariant with respect to the reference frame. Also is the pressure acting on the ship
invariant with respect to the reference frame.

In addition, the magnitude of the moment arm “GZ" also does not change. However, the position

vectors of the center of mass “G” and the center of buoyancy “B;"” are variant with respect to the water
plane fixed reference frame.




Representation of a Point “P"” on the object with respect to

the bodx fixed frame (decomeosed in the bodx fixed frame)

Z,zZ (¥, z5) The position vector of the point P
A e decomposed in the body fixed frame
Invariant with respect to the body fixed frame

0,0’

> /
VsV

O’x'y'z' : The body fixed frame

Oxyz : The inertial frame

> -~
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Rotate the object with an angle of ¢ and then represent the
oint “P” on the object with respect to the inertial frame.

Z (¥, z5) The position vector of the point P
/ A prer decomposed in the body fixed frame
Z Invariant with respect to the body fixed frame

(¥p>2p) The position vector of the point P
decomposed in the initial frame

Yp

Variant with respect to the inertial frame

0,0’ \¢' i
' >

O’x'y'z' : The body fixed frame
Oxyz : The inertial frame

> -~
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Coordinate Transformation of a Position Vector

(y;),z;a) The position vector of the point P
decomposed in the body fixed frame
Invariant with respect to the body fixed frame

(¥p>2p) The position vector of the point P
decomposed in the initial frame

Variant with respect to the inertial frame

Yp=),COS@—z,sing

§59



Coordinate Transformation of a Position Vector

(y;),z;a) The position vector of the point P
decomposed in the body fixed frame
Invariant with respect to the body fixed frame

(¥p>2p) The position vector of the point P
decomposed in the initial frame

Variant with respect to the inertial frame

!

Z, COS ¢ , o
/\ Vp =YpCOSP—2z,8IN¢
Z,=YpSing+z,cos¢

> Vpsing
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Coordinate Transformation of a Position Vector

(y;),z;a) The position vector of the point P
decomposed in the body fixed frame
Invariant with respect to the body fixed frame

(¥p>2p) The position vector of the point P
decomposed in the initial frame

Variant with respect to the inertial frame

¥ = ¥ cos - Zpsin ¢

Z,=YpSing+2z,cos¢

Matrix Form

vo| [cosg —sing|[ v

Zp sing cos¢ || z,

n . n b
l‘P_ Rb I.P

It cannot be too strongly emphasized that
the rotational transformation and the coordinate transformation are important.




Representation of a Point “P"” on the object with respect to

the body fixed frame (decomposed in the body fixed frame)
{)’P}:{C?S¢ —Sin¢}{y%} Z, ! (¥p,Zp) The position vector of the point P

Zp Sin ¢ COS ¢ decomposed in the body fixed frame
Invariant with respect to the body fixed frame

>

0,0’

> /
VsV

O’x'y'z' : The body fixed frame

Oxyz : The inertial frame

o bTSYsiem
%E%& }iDesn n 62
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh v D) Loboraiory



Coordinate Transformation of a Position Vector

>N

Vp | |cosg —sing ||y,
z, | |sing cosg ||z,

(y;),Z;D) The position vector of the point P

decomposed in the body fixed frame
Invariant with respect to the body fixed frame

(yp, P) The position vector of the point P

decomposed in the initial frame
Variant with respect to the inertial frame

Yp

0,0’

-

=i 4

P

~

O’x'y'z' : The body fixed frame

The inertial frame

Oxyz :

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Change of the total center of mass caused by movmg a

load of welght ‘w” with distance “d” from ’ 'g” to “g,"

“Change of z 5!

the center of mass” T

(6, »26,)

The position vector of the changed total center
of mass G; decomposed in the body fixed frame

_where w is the weight of the
moving load

W is total weight of the

object.

> /
VsV

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Rotate the object with an angle of “-¢” and then represent
the total center of mass with respect to the inertial frame

e K (y, ,Z’)
Ve dW i G,° <G,

The position vector of the changed total center of
Z’ mass G; decomposed in the body fixed frame

Invariant with respect to the body fixed frame

(Y6 +26,)

The position vector of the changed total center
of mass G; decomposed in the initial frame

Variant with respect to the inertial frame

{J/Gl } _  cos(—¢) —sin(—¢)}{yg;l }
> |z _sin(—¢) cos(—¢) Zg
y e ,
_| cos (¢) sin (¢)} {)’q }
—sin(¢) cos(4) || zg
Ve =V, COSP+ 2z, sing
\ / 1 1 1

T Yo, =

6 =Yg SIng+z; cosg

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Change of the center of buoyancy caused by changing

the shaEe of immersed volume

“Change of
the center of buoyancy”

>IN

(yr Py ) The position vector of the point B
B>7B /7 decomposed in the body fixed frame

Invariant with respect to the body fixed frame

The position vector of the point B,
decomposed in the initial frame

(prZBl)

Variant with respect to the inertial frame

e G

§66



(1) Calculate the initial centroid “B” of the rectangle for z' <0 with respect to the body fixed frame.
(2) Then calculate new centroid “B;” caused by moving a partial triangular area with respect to the
body fixed frame.

z7 z rot The position vector of the point B
A (yBl ’ZBI) decomposed in the body fixed frame
Invariant with respect to the body fixed frame

B is centroid of “[ Jabcd”
B, is centroid of “[]ebcf”

b c

O’x'y'z' : The body fixed frame

Oxyz : The inertial frame o



(3) Rotate the new centroid “B;"” with an angle of “-¢”(clockwise direction).
(4) Then calculate the position vector of the point “B;"” with respect to the inertial frame.

The position vector of the point B,
decomposed in the body fixed frame

Invariant with respect to the body fixed frame

The position vector of the point B
decomposed in the initial frame

Variant with respect to the inertial frame

cos(—¢) —sin(—¢)|| Vs
sin(—¢) cos(—¢) || z
cos(¢) sin(g) || Vs

| —sin (¢) cos(g) Zp

/ / :
Vg =Yy COSP+z, SINQ

z (V5 525)
(ygl »Zp, )
VB
> Zp,
4 y
Vs
B A
O Vs
'

Yy SIN@+ 2z, cosg
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Stability of a ship 27 feosl4) —sinlo]
- Stable Condition (1/3) i {( g ”’)H |

' @ Apply an external heeling moment to
the ship.

' @ Then release the external
moment.

(3 Test whether it returns to its initial
. equilibrium position.
Heelin ' '

moment Z'h

y Z

z
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M M i i k (e 5. =26 Fg,) Y| COS(—¢) —sin(—¢) Ve
Stablllty of a ?I‘!lp r.xF. =|x, v, z,|=+i(=x,Fy.+z,F,.) LJ_Lm(_m cos(—¢)}{z;}
- Stable Condition (2/3) |n. 7, r.| cor, om0

z Resultant moment about
S through point O (1°) :
7
/
" [/ Heeli (v . F ..
/ meOerT'I]I;ntTh _[ l(yG FG,Z ZG FG,y)]

+j(=xg Fg . + 2z L5 ,)
+k(xg - Fg, =6 L)

(Hi(vy Fy.— 24 Fy,) |
+i(=xg Lz - Fy )
+tR(xg £y, =y )

= i(y, 'FG,Z —Zg %)
Hiy Fy 2y B

=iy (- )+ yy D)
If W=A
=1i(y, '(_A)"_)/B1 -A)

:i'A(yBl — V)
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Stability of a ship op]_[eos() (oot
- Stable Condition (3/3) H { = MH }

Z,Z' Resultant moment about

through point O (1°) :

e —
T =1, %K, tr; XK,

=1-A(yy —V5)

=i-A-GZ
 Transverse Righting Moment
T =A-GZ

v The moment arm induced by the

——  buoyant force and gravitational

Vs J— force is expressed by GZ, where Z
is the intersection point of the
line of buoyant force(A) through
the new position of the center of
buoyancy(B,) with a transversely
parallel line to a waterline through
the center of the ship's mass(G).

Stable!!

7



Stability of a ship o] _[eos(=0) —sin(-0)][
- Neutral Condition (1/3) i Lm(_‘”) °°S(‘¢)L}

' Suppose G is higher than that of

zZ,2
’:\ the stable S:ondition.
I Z
G
()
lFG @
moment?;,
0,0’ Y/
: _¢Z ya.y,__
BIFB
I Bl
i v
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i j k
X Yo Zg

FG,x FG,y FG,z

i(ye Fs.— 2 F(}) Y| COS(—¢) _Sin(_¢) y;)
=+j(=x;F,. +2; F(v) z B Sil’l(—(b) COS(—¢) Z:D

P
+K(xg .F;Ly Y F5.))

Stability of a ship
- Neutral Condition (2/3)

z Resultant moment about
through point O (1°) :
T° =1, xF, +r; xF,
:[ i(yG'FG,Z_ZG.FG,y) ]
+ j(_xG .FG,Z + ZG | FG,x)
- +k(xG'FG,y_yG'FG,x)
[+i(yBl .FB,Z _ZBl .FB,y) ]
‘Fj(_xz;1 by, +zp Fy )
—v +k('xBl .FB,y _yBl .FB,x)
y _
= i(y, 'FG,Z —Zg %)
+Hi(yy Fp. —2p %)
=i(y, () +y; -A)
If W=A
=i(yg (~A)+y, - A)

:i'A(yBl — V)
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Stability of a ship op]_[eos() (oot
- Neutral Condition (3/3) H { = MH }

If G and B, are on one lineg,
calculate resultant moment about
x-axis through point O (1°) :

e —
T =1, xF, tr; XK,

:i'A(yB1 — V)

T
0
\/
y p—
Neutralll
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Stability of a ship 27 feosl4) —sinlo]
- Unstable Condition (1/3) M { ) ”’)H e

Gz ' Suppose G is higher than that of the

4 neutral condition.
F, z'

momentl'h

Q
<

oo
S L
“"——OF-——— -
=
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i j Kk

Stability of a ship s
- Unstable Condition (2/ .

i(ye 5. =26 Fg,) yp| |cos(=¢) —sin(—¢)|[ v,
=+i(=xg  Fo .+ 26 F ) z, | |sin(-¢) cos(-¢) ||z,

+k(x; - F, G.y Ve Fs.,)

4 Resultant moment about

G S through point O (1°) :

T =1, xF, +1; xF,
=i Fo. =26 Fs) |
+j(=xg  Fg 26 Fy )
+K(xg  Fo, — Ve IG.)
[+ Fy. —2, Fy,) |
+(=xp Fy . +zp - Fp )
V4 +k(xg  Fy =g Fy.)

y —_
= (y;F Z_ZG'%)
+1(yBl ’ B,Z_ZB1 %,y)

=i(y, () +y; -A)

If W =A
=i(y; - (—A)+y, -A)
:i°A(yBl_yG)

76



Stability of a ship iR e insd i
- Unstable Condition (3/3)

z

sin(—¢)  cos(—¢)

z

P P

If G is so high that G locates on
the right side of B,, calculate
resultant moment about x-axis
through point O (T°) :

t=1,xF, +1; xF,

=1-A(yg — ;)
Vg = Vg < 0

y—Z Unstable!!

7



Example of Equilibrium Position and Orientation of a Box-shaped Ship
Question 1) The center of mass is moved to 0.3 [m] in the direction of the starboard side.

*A box-shaped ship of 10 meter length, 5 meter breadth and 3 meter height\

weights 205 [kN].
The center of mass is moved 0.3 [m] to the left side of the center of the deck.
When the ship is in static equilibrium state, determine the angle of heel(¢) of
the ship.
Given : Length(/):10m, Breadth(58):5m, Depth(D):3m, Weight(I#): 205kN,
Location of the Center of Gravity: 0.3m to the left side of the center of the deck
Find : Angle of Heel(yp)

Assumption)
(1) Gravitational acceleration = 10 [m/s?], Density of sea water = 1.025 [ton/m3](Mg/m?3)
(2) When the ship will be in the static equilibrium finally, the deck will not be immersed and the

\ bottom will not emerge. /
F. =205 kN
.................... Fosm
E : )
Sz :

10m

> ® : Location of the center of

Ap £p gravity of the ship 78



F, =-205 kN

Solution) }
/ _____ ,'~” __a@__;gzr

(1) Static Equilibrium
3 | !
”®‘ ) I Baseline

When the ship is floating in sea water, the requirement
for ship to be in static equilibrium state is derived from e tocfionof tre center of mess of the thip
Newton's 2"d [aw and Euler equation as follows.

(1-1) Newton’s 2" Law: Force Equilibrium
The resultant force should be zero to be in static equilibrium.
Y "F="F;, +"F, =0

, Where
"Fs, : z,-coordinate of the gravitational force

"Fg, : z,-coordinate of the buoyant force
(1-2) Euler Equation: Moment Equilibrium
The resultant moment should be zero to be in static equilibrium.

Y r="M;+"M, =0

, Where
"M : the moment due to the gravitational force

"M; : the moment due to the buoyant force.

< @S2 SYstem
B
A IDlLaboratory
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Solution)
(1) Static Equilibrium

The first step is to satisfy the Newton-

3

F, =-205 kN

Euler equation which requires that the
sum of total forces and moments acting
on the ship is zero.

As described earlier, in order to satisfy a
stable equilibrium, the buoyant force and
gravitational force should act on the

same vertical line, therefore, the moment

arm of the buoyant force and
gravitational force must be same.

Yo = Vp

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Solution)
(1) Static Equilibrium

Yo | | cosg sing ||y, Vs | | cosg sing || v,
z, | |—sing cos¢|| z, z, | |-sing cosg| z,
By representing y, and v, with »;.z;,»;, and z; ,
we can get

Vi COSP+z, -Sing =y, -cosP+z, -sing

In this equation, we suppose that y'.
and z'c are already given, and y'; and z';
can be geometrically calculated.

Body fixed coordinate system(b-frame): Body fixed frame x’y’z’
Space fixed coordinate system(n-frame): Inertial frame x y z

F, =-205 kN

Z4

8




Solution) Y6 = Vs
(2-1) Changed center of buoyancy, B,, with respect to the body fixed frame

Zh

The centroid of A with respect to the
body fixed frame:

M, M,
(yé?A’ZéA):[ AI:Z, Ajy)

, Where

A, : the area of A

Ma, @ 18t moment of area of A about z' axis
My, @ 15t moment of area of A about y" axis.

To obtain the centroid of A, the followings are required.
- The area of A

- 1st moment of area of A about z' axis

- 1st moment of area of A about y' axis

82



Solution) Y6 =V

(2-2) Center of buoyancy and center of gravity with respect to the body fixed frame
]

The centroid of A with respect
to the body fixed frame:

M, M, ,
)| )

1) Center of buoyancy, B,, with respect to the body
fixed frame

To calculate the centroid of A using the geometrical

relations, we use the areas, A;, A,, and A;.

2a

- +A—7

To describe the values of A;, A,, and A; using the geometrical parameters (a, t,
and ¢), y' and z' coordinate of the points P, Q, R, R,, S, S, with respect to
the body fixed frame is used, which are given as follows.

P(ypzp)=(=a, 1), O(3p25) =(a~1)

R(yg,zz) =(a,a-tang), Ry(yy ,z; ) =(a,0)

S(ys»zg) = (-a,—a-tang), S, (s ,z5,)=(-a,0)

t‘“%% §TSYsiem |
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Calculation of area, centroid, and moment of area

2a

S 0A2;E>é: 7

Aj

2b

Area: %a-a-talwﬁ

z r . 2 1
a-tan ¢ Centroid: (y’c,z’c):ga,gatan¢

I_Q-a-tan .
- yr Moment Of area about zZ' axis:
‘ 1 2 1
Areaxy. =—a-a-tangdx—a =—a’ tan
Ye 5 ¢ 3 3 ¢

Moment of area about y' axis:

1 1 1
Areax z, :Ea-a-tan¢><§a°tan¢=603 tan” ¢
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Solution)

Yo = Vs

(2-3) Center of buoyancy and center of gravity with respect to the body fixed frame

1) Center of buoyancy, B,, with respect to the body

fixed frame

— -

+= — =

A,

Ay

As

(yé'_A’Z’C_A)

=n

AA

The centroid of A with respect
to the body fixed frame:
M,. M,,

The table blow summarizes the results of the area, centroid with
respect to the body fixed frame and 15t moment of area with
respect to the body fixed frame of A;, A,, A;, and A.

2b

Area Centroid Moment of area Moment of area
(A A) (Ve»ze) about z'-axis about y'-axis
(ye - A) (z¢ - A)
A o o) : ot
2

AZ l.a.a-tarl¢ Z_a a.tan¢j a3.tan¢ a3-(tan¢)2

2 373 3 6
As l-a-a-tangb _2a _a-tangb] _a’-tang a* -(tan g)’

2 373 3 6
A 2a-t - 24 tan ¢ —a-t* +a3'(tan¢)z
(=A1+Ax-Ay) 3 3
The center of buoyancy, B,, with respect to the body fixed frame is

§85




Solution) Y6 =V
(2-3) Center of buoyancy and center of gravity with respect to the body fixed frame

612 .tan¢ _L Clz -(tan¢)2

2) Center of gravity, G, with respect to the body (y%azé)‘(T’ St e
fixed frame

2a

The center of gravity, G, with respect to z \ 1
the body fixed frame is given by
geometrical relations as shown in the
figure, which is

(v's.2's)=(d,2b—1)

< ‘%% STSYstem ‘
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Solution)

(3) Comparison between the figure describing the ship inclined N\

and the figure describing the water plane inclined | ”\\ 2a_
|

Let us calculate the center of buoyancy, B,, and
the center of gravity, G, using the Fig. (b).

® The center of buoyancy, B;, and the center of gravity, G,
with respect to the body fixed frame

(d,2b—1)

(y'G=Z'G)

: Next, we use the condition that the moment arm of the
buoyant force and gravitational force must be same and
: substitute the coordinates of the center of gravity and
: buoyancy with respect to the body fixed frame into the
: : following equation.
\ 4 v
Vi, -COS@P+ 2z, -singg =y, -cos@+z, -sin @

87



Solution)
(3) Comparison between the figure describing the ship inclined
and the figure describing the water plane inclined

Vi, -COSP+z, -singg =y, -cos@+z, -sin @

F oy a’-tang ¢ az-(tanqﬁ)z
(yB’ZB)_[ 3 20 6

N (y'G’Z'G):(d’Zb_t)

{—3t2 +2a’ +a’ -(tan ¢)2} -sin @

6t
@ Substituting a=2.5m, b=1.5m, t=0.4m, d=0.3m into this equation

d-cosg+(2b—t)-sing =

and rearranging

2.6-sing+0.3-cos@ = sin¢(15';)25 + 15'6625 (tan ¢)2j

) tang =0.123 [rad] :>[ ¢ =1.047 [degﬂ
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Example of Equilibrium Position of a Box-shaped Ship
Question 2) The center of mass is moved to 2 [m] in the direction of the forward perpendicular.

4 ™
A box-shaped ship of 10 meter length, 5 meter breadth and 3
meter height weights 205 [kN].

The center of mass is moved to 2 [m] in the direction of the forward
perpendicular. When the ship is in static equilibrium state, determine

the equilibrium position and orientation of the ship.

Assumption)

(1) Gravitational acceleration = 10 [m/s?], Density of sea water = 1.025 [ton/m3](Mg/m?3)
(2) When the ship will be in the static equilibrium finally, the deck will not be immersed

N and the bottom will emerge. y

F.=-205 kN

Starboard

Baseline

e : Location of the center of

P mass of the ship 89




Question 2) The center of mass is moved to 2 [m] in the direction of the forward perpendicular.
Solution)

F—f205kN
__________ /J i
5m Zl’l
f %7 Force Equilibrium
77!: 10m . ZF:FG‘I‘FB:O
F, =205 kN Fg =230
F,=—p-g-V

:1.025-10-(%@-19-5)

=25.625-a-b

Y F=F,+F,
=-250+25.625-a-b
=0

a-b=8

‘%3 §TSYs!em :
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Question 2) The center of mass is moved to 2 [m] in the direction of the forward perpendicular.
Solution)

»y &

U

Side view
(Profile view)

Instead of rotating the ship, we can consider the
waterline rotated with an angle of 6 while keeping the
shig constant.

F, A2
— 4\

91



Question 2) The center of mass is moved to 2 [m] in the direction of the forward perpendicular.
Solution)

F =-205 kN
__________ /;% ] Moment Equilibrium
e - S M=M +M,=0
| 10m .
v P Tt The centers of buoyancy B and gravity G

should be in the same vertical line.

Xg = Xp

X, =3cosa—3sina

'-‘“}% §TSYsiem |
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Question 2) The center of mass is moved to 2 [m] in the direction of the forward perpendicular.
Solution)

V4
n

Moment Equilibrium
dYM=M +M,=0

The centers of buoyancy B and gravity G
should be in the same vertical line.

Xg = Xp

"x. =3cosa—3sinax

. a b .
Xz =—COSCx ——SIna
3
gy
a b

3cosa—3sina :gcosa—gsina

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh



Question 2) The center of mass is moved to 2 [m] in the direction of the forward perpendicular.
Solution)

. a b .
3cosa—3sina =—cosa——sIina
3 5 > dividing the both side of equation by cosa
3—3tana:ga——tana
> tan o —é
3_3b_a bbb a
a 3 3 a
> multiplying 3a to the both side of equation
9a—-9b=a” -b’
9(a—b)=(a+b)(a—b)
From the force equilibrium if a=b a=b=2y2 Unstable
a-b=8 ®
From the moment equilibrium ffazb a=8 Stable
=1

9(a—b) =(a+b)(a—b)

G &z SYstem ‘
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Question 2) The center of mass is moved to 2 [m] in the direction of the forward perpendicular.
Solution)

Why is the ship unstable, when g = b = 2\/5? (Horizontal displacement of center of mass R
3\/5 3\/5 Sin Aa
37 ~42482Aa
- J
(Horizontal displacement of center of buoyancy
52
Immersed wedge i 3 N|
N
2tanAQ ] | ) T
.'.. ' Emerged wedge
Jx?
AO( <<1 53(78: wedge $ S _vwedge5
5'xb Vtotal XB B \Y% total Xb
V vedge = 2~2%-tan(A0) = 2tan(A0) 2tan(AQ) 4
an —
27242 ) 4 $ OXp=——,— '3 $5x3 ~ 0.66A 0
Vz‘otal = 2 = 4’ §xb = 2(5) - g 95




Question 2) The center of mass is moved to 2 [m] in the direction of the forward perpendicular.

Solution)

Why is the ship unstable, when g =) = 2\/5?

z

n

a=22

Aa <1

Unstable

wedge

2222

total = 2

\Y%

(Horizontal displacement of center of mass
32 sin Aat
3424
37 ~42482Aa

(Horizontal displacement of center of buoyancy

(52

S
P

Immersed wedge

V oo = 2~2%-tan(A0) = 2tan(A6)

=4, 6x, = 2(%) =

N
2tanAQ ] |8 ) T
.')‘I 2 Emerged wedge
0x,
5-x3 Vwedge \Y% J
= __ " wedge
5'xb Vtotal $ 5XB B \Y% 5Xb

total

3

. D o =202 0 5k~ 0.66A0
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More Examples for Ship Stability

> -~
EU.:"% SN 3\22182' 97
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh A IDlLaboratory



* Given : KB, KG, I;, Heeling moment M,,

Example) Heel Angle caused by Movement 7o o oie s

of Passengers in Ferry (1/2) o2-[au-f g s

Question) Emergency circumstance happens in Ferry with displacement (mass) 102.5 ton.
Heeling moment of 8 ton-m occurs due to passengers moving to the right of the ship.

What will be an angle of heel?
Assume that wall sided ship with KB=0.6m, KG=2.4m, [;,=200m*.

Solution) If it is in static equilibrium at an angle of heel ¢

Righting moment in wall sided ship(M,) = Heeling moment (M,)

—A(GM+%BMtan2¢jsin¢ = 8ton-m

@ Calculation of BM

A=1025ton —> V=A/1.025=100 m°
Ir 200,

VvV 100

@ Calculation of GM

GM = KB+ BM - KG
=0.6+2-24=02m

‘!':

: 8 A
—> (0.2+tan2 ¢)sm¢=— €5 Non linear equation
102.5 about ¢ ?

Ol H|5.2

0 &g SYstem
@ Design . 08
~ IDlLaboratory

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh



* Given : KB, KG, I;, Heeling moment M,,

Example) Heel Angle caused by Movement i i angeorreers

» GZ of wall sided ship

of Passengers in Ferry (2/2) a2 ou o Jing

Question) Emergency circumstance happens in Ferry with displacement (mass) 102.5 ton.
Heeling moment of 8 ton-m occurs due to passengers moving to the right of the ship.
What will be an angle of heel?

Assume that wall sided ship with KB=0.6m, KG=2.4m, [;,=200m*.

Solution) If it is in static equilibrium at an angle of heel ¢

Righting moment in wall sided ship(M,) = Heeling moment (M,)

A(GM+%BMtan2 ¢jsin¢ = 8ton-m

2 .
(O.2+tan ¢)sm¢:0.078 Righting
Because of nonlinear equation, solve /arm

it by numerical method. 1
o 00858
Result of calculation is about ¢=16.0".
LHS RHS 0.0778|------ TR
¢ ot . | .
(Righting arm) | (Heeling arm) ! Heeling
B |
16° 0.0778 0.0780 |

15 \17°
,\ In static
equilibrium

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh




Example) Heel Angle caused by Movement of Cargo

Question) A cargo carrier of 10,000 ton displacement is floating. KB=4.0m,
BM=2.5m, KG=5.0m. Cargo in hold of cargo carrier is shifted in vertical
direction through a 10 meter, and shifted in transverse direction through a 20
meters. Find an angle of heel.

* Given : displacement (A), KB, BM, KG, weight of cargo(#) and moving distance
* Find : angle of heel ¢

|
|

:<
\/ |
I— |
~ i
G
Q

5.0 4.0m B

Base \_
Line :

o H|5.3

R
4 %Deﬁi&? 100

N—f‘U‘%‘
&)
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Example) Change of Center caused by Movement of Cargo

Question) As below cases partial weight w of the ship is shifted. What is the
shift distance of center of mass of the ship?

Case 1) Vertical shift of the partial weight Case 2) Horizontal shift of the partial weight
b
! ] . >
A | ) |
ZAN | T |
! !
| |
\VA h i \V4 i
N GJ* N G :%O G.Z
Base ; ! : ) | Base \ : )
Line : i Line :

O H|5.5

o bTSYsiem
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Example) Calculation of Deadweight of Barge

Question)

A barge is 40m length, 10m breadth,
5m depth, and is floating at 1 m draft.
The vertical center of mass of the ship
is located in 2 m from the baseline.

A cargo is supposed to be loaded in
center of the deck. Find the maximum
loadable weight that keeps the
stability of ship. 2

Problem to calculated position of the ship when
external force are applied.

e Sz SYstem
] R
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Example) Calculation of Position of Ship
when Cargo is moved by Crane

Question) —
A Cargo carrier of 18,000 ton displacement
is afloat and has GM = 1.5m. And we want
to transfer the cargo of 200 ton weight
from bottom of the ship to land.

A lifting height of cargo is 27.0 m from
the original position.

v

After lifting the cargo, turn the cargoto , {
the right through a distance of 16.0 m Line
from the centerline.

What will be the angle of heel of the ship?

Problem to calculated position of the ship when
external force are applied.

o ‘%% §TSYsiem |
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Example) Calculation of Center of Buoyancy of Ship with
Constant Section

Example) A ship is inclined about x-axis through origin O with an angle of -30°.
Calculate center of buoyancy with respect to the water plane fixed frame.

* Given: Breadth(B) 20m, Depth(D) 20m, Draft(T) 10m, Angle of Heel(¢) -30°
« Find: Center of buoyancy(yg, zp)

G: Center of mass K:Keel
B: Center of buoyancy B;: Changed center of buoyancy

Section view

z,z» 20
S IR
20
O |
A
B o 10
P K| Q

Mv“Uﬂo‘ bTSYsiem
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Example) Calculation of Center of Buoyancy of Ship with
Various Station Shapes

A ship with three varied section shape is given. When this ship is inclined about x
axis with an angle of -30°, calculate y and z coordinates of the center of buoyancy

(with respect to the water plane fixed frame).

« Given: Length(L) 50m, Breadth(B) 20m, Depth(D) 20m, Draft(T) 10m, Angle of Heel(¢) -30°
» Find: Center of buoyancy(y-, ., Z .) after heeling

20
N
20
\ 20
L 10
\\\l% \ _______ %‘
20 | 20

q:_ 105
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1) Gere, Mechanics of Materials, 6t ,Ch.12.3, 2006

M Ovement Of CentrOId First Moment of Composite Area(Q,)"

Caused by Movement of Area (1/3) 0.-S 4%

0, : 1** Moment
A, : Each Area

Y L . A4 : Total Area
A il (H) A-x= Z 4% ' % Coordinate of
Y —>X "~ Centroid
1
b

<1t moment of area>

Let us consider 1st moment of area about z
axis through origin g.

gG, - Area :§g1Area(A_a) + gg, - Area,

,(gg=0)
gG, - Area , = gg, - Area,,

gG, Area,
gg, Area,

G, : Centroid of total area, Area, : Total area

g : Centroid of the large circle, Area, , : Area of the large circle

g, : Centroid of the small circle, Area, : Area of the small circle

» i
B
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Movement of Centroid

Caused by Movement of Area (2/3)

y

G, : Centroid of total area,
g : Centroid of the large circle,

g, : Centroid of the small circle,

f (+)
j +
Area o
1
>
\
\
\
\
\_
STV
£ 1 \\
) . 1 .

Area, : Total area
Area, , : Area of the large circlg

Area, : Area of the small circle

1) Gere, Mechanics of Materials, 6t ,Ch.12.3, 2006

First Moment of Composite Area(Q,)"
n |
— : 1t Moment
N4x i Q
Q. nz_;‘ ‘' 1 A;:Each Area
n i A :Total Area
A-x = Z A X, i X : Coordinate of
=1 1
’ Centroid

When the center of the small circle moves
from gl to g2, the total moment of area
about z axis through origin g is

gG, - Area :/g{- Area , ., +gg, Area,
(g2 =0)

gG, - Area = gg, - Area,

gG, Area,
gg, Area,

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Reference) Movement of Centroid

Caused bx Movement of Area (3/3)

y
Area ig &)
y a T £GgG, = 2g,88, - ®

From @, @, ®®,

Triangle AG,gG,and Ag,gg, are similar.
(by SAS(Side-Angle-Side) similarity theorem)

GG, //gg,
G,G, Area, Area
= GG, = X
g,g, Area, 12 Area, &8>

The line G,G, is parallel to the line g;9,.
Thus, the centroid of total area G, moves

Ar Ar
881 “d, 882 “d, parallel to 9,9,
G, : Centroid of total area, Area, : Total area
g : Centroid of the large circle, Area,, : Area of the large circle
: Centroid of the small circle, Area, : Area of the small circle S e
g a [&8) Rdoesen, 109
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Calculation of GZ, when the ship is inclined with angle of ¢

without change of center of gravitx

KN =KGsm¢+GZ
GZ =KN -KGsing

3

?/ In this equation, KG can be measured
by inclining test, and KN can be
represented with the displacement of

center of buoyancy with respect to
W, the body fixed frame. If we define
: the horizontal and vertical
displacement of the center of
buoyancy as 0y} and 0z} ,
respectively, then KN is given as

KN =KBsing+0y,cos¢+0z,sing

110




Determination of heeling angle for the case of moving a

cargo onlx in transverse direction (1/4)

Load |I

NZ

Load

1<

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Determination of heeling angle for the case of moving a

cargo onlx in transverse direction (2/4) |

' G‘?J—}"GOG‘
z N | v
M?\ load I ™ Load _
I\ B!
I\
4 \ ) : \ ) Ki -
. 7
' \ \
\ 0y, COS¢ TP
\ \ .... \i....l ....... \.\ ..............
G\ \ G] \\: \ q
|
2L \ < G ot Gl =
\ | ﬂ/ \OVs \
.......... Ly Ly | R
-—— = — ==y - ———>
X, X 10 \ Y
AN
BL !
Q48523
:\ QVp
\ N
G o Y
Kl \

M, =-W-(KP +PN)
=—W -(KGcosg+3Sy; cosg)

g SSFzSYstem
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Determination of heeling angle for the case of moving a
cargo only in transverse direction (3/4)

M, =A-(KBcosg+35y,cos¢+05zysing)

g SSFzSYstem
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Determination of heeling angle for the case of moving a

cargo onlx in transverse direction (4/4)

My
I\ !
A G oz Gi
\ovpeosg ) ) I¢\\ B
\ A = (=]
G Gl : \ : g B
e} <:| -V % | |
\ el | K
e
X, X TR0 y
: \\ \B
B&z‘\ﬁzﬂ
— I\ B
M,+M,=0 . - U L
KT \

—W -(KGcosg+ Sy cosd)+A-(KBcosg+JIy, cosg+05z,sing) =0
—(KGcosg+0y; cosp)+(KBcosg+Oy,cosg+0z,sing)=0 W =A

In this equation, KG and KB are given. 8Y;,0)zand _Sdre functions of ¢.
Thus we can solve the equation and determine ¢.

g SSFzSYstem
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Determination of the heeling angle due to the movement of

the center of gravitx (1/4)

(33 Load

Load

1<

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Determination of the heeling angle due to the movement of

the center of gravity (2/4) G [

=W -(KP
—_W.

+PN)

A7 > i
z M§ =
\
\_ | J
: \\ K|
AN '
A R
::..-- -\(\ | \\ -~,“:
Gy
P A N
G ’ 0z =
Y E
__________:.._...... \.\_G_j__lé _____ N
E.O ~\ !
X, X T\ \ Y

KGcosg+ Oy cosg+ Sz sing)
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Determination of the heeling angle due to the movement of

the center of gravitx (3/4)

M, =A-(KBcosg+35y,cos¢+05zysing)

g SSFzSYstem
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Determination of the heeling angle due to the quzvement of
the center of gravity (4/4) _ 1

~W -(KGcosg+ Sy cosd+0z; sing)+A-(KBcosg+ 5y, cosg+S5zysing) =

—(KGcosg+0y; cosp+ Sz sing)+(KBcosp+ Sy, cosp+Sz,sing)=0 W =A

In_this equation, KG and KB are given. 9);,02;,0yand _ date functions of ¢.
Thus we can solve the equation and determine ¢.
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