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Ch. 2 Review of Fluid Mechanics
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Introduction to Hydromechanics
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Introduction to Hydromechanics

® Today, the branch of physics, which encompasses the
theories and laws of the behavior of water and other
liquids, is known as hydromechanics.

® Hydromechanics itself is subdivided into three fields:

(1) Hydrostatics, which deals with liquids at rest.

(2) Hydrodynamics, which studies liquids in motion.

(3) Hydraulics, dealing with the practical and engineering
applications of hydrostatics and hydrodynamics.
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Concept of Hydrostatics
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Meaning of Hydrostatics

® What is Hydrostatics?

Hydrostatics (from Greek Aydro, meaning water, and
statics meaning rest, or calm) describes the behavior
of water in a state of rest.

This science also studies the forces that apply to
immersed and floating bodies, and the forces exerted

by a fluid.
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Definition of Pressure

® Pressure®

Let a small pressure-sensing device be Pressure

Sensor

suspended inside a fluid-filled vessel.

We define the pressure on the piston from the
fluid as the force divided by area, and it has
units Newtons per sqgaure meter called ‘Pascal’.

P=£ (1Pa=1N/m")

AA

One newton per square meter is one Pascal.

We can find by experiment that at a given
point in a fluid at rest, the pressure have the
same value no matter how the pressure sensor s : magnitude of normal force on area A4
. . AA : Surface area of the piston

Is oriented.

Pressure is a scalar, having no directional

properties, and force is a vector quantity.

But AF is only the magnitude of the force.

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.361, 2004 %%:é§‘¥§$\(sfem
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Two Principles of Hydrostatics

Hydrostatics mainly consists of two principles.

1. Pascal’s principle says that the pressure applied to an
enclosed fluid is transmitted undiminished.

2. Archimedes' principle states that the buoyant force
on an immersed body has the same magnitude as the
weight of the fluid which is displaced by the body.

Plan
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Definition of Fluid

® What is a Fluid?*

A fluid, in contrast to a solid, is a substance that can flow, because it
cannot withstand a shearing stress.

It can, however, exerts a force in the direction perpendicular to its
surface.

AA
feomes I ,', ---------------

AF : Magnitude of perpendicular force between the two cubes
AA : Area of one face of one of the cubes

. . . SE gD 2 SYst
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Pascal’s Principle
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Pascal’s Principle

e We will now consider a fluid element in static equilibrium in
a closed container filled with a fluid which is either a gas or a
liquid. The velocity of flow is everywhere zero.

o At first, we will neglect gravity. If a force F is applied on the
cap of the container with an area A in this direction, then a

pressure of F/A is applied.

12



Pascal’s Principle

Pascal’s Principle

In the absence of gravity, the pressure is everywhere in
this container the same.
That is what's called Pascal's principle.

A change in the pressure applied an enclosed fluid is
transmitted undiminished to every portion of the fluid
and to the walls of its container*.

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.366, 2004 @%%ﬁgﬁ 13
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° ° 7 ° ° iy Sttt
Application of the Pascal’s Principle v rrince. |
' A change in the pressure applied an
y enclosed fluid is transmitted
+ undiminished to every portion of the

e The idea of a Hydraulic jack fuid and to the walls of s container”,

Pascal’s Principle : 1 __2 E
4, 4,

Consider a vessel with two pistons .
having area A; and area A,. The vessel l

is filled with liquid everywhere.
Now a force F; on A, and a force F, on —
A, are applied. So the pressure on the
left piston is F,/A,.

According to the Pascal’s principle,

everywhere in the fluid, the pressure
must be the same. The pressure on the
right piston, F,/A, must be the same as
the pressure F,/A,, if the liquid is not
moving. The effect of gravity does not
change the situation very significantly.
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Example of Design of Hydraulic Jack (1/4)

Pascal’s Principle : Z -2

1 2

Example) If %:IOO, then —==100.

1 1
(Pascal’s Principle)

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Example of Design of Hydraulic Jack (2/4)

F, F,

Pascal’s Principle :

il
A A
Displaced Volume: Ad, = Ad, l |

(Incompressible fluid)
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Example of Design of Hydraulic Jack (3/4)

Pascal’s Principle : — ==
A4y A, i
Displaced Volume: Ala’1 = A2d2 W \ ~ T
(Incompressible fluid) l
> Conservation of Energy: d — ‘
A A
Fd, = _le _2d2 = F,d,
A2 Al
8 d,
(Pascal’s Principle) (Displaced Volume)
e @2 SYstem
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Example of Design of Hydraulic Jack (4/4)

Pascal’s Principle : — == F
A A 1 d
! Aq A 2
Displaced Volume: Ala’1 = A2d2 ----- \ ~ T
(Incompressible fluid) l
Conservation of Energy: Fid = F,d, ;4
| |
Bxample) If “2-100 - 100F = F,
Al (Pascal’s Principle)
~ d =100d,
(Displaced Volume)
v """""" - x100
:> Edl = dez . Conservation of Energy is satisfied.
100

e 4 SYst
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Hydrostatic Pressure
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Hydrostatic Pressure (1/9)

e Hydrostatic Pressure

As every diver knows, the pressure increases with depth
below the water.

As every mountaineer knows, the pressure decreases
with altitude as one ascends into the atmosphere.

The pressure encountered by the diver and the
mountaineer are usually called hydrostatic pressures,
because they are due to fluids that are static (at rest).

Here we want to find an expression for hydrostatic
pressure as a function of depth or altitude.
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Hydrostatic Pressure (2/9)

Now, gravity, of course, has an Fluid Element

effect on the pressure in the
fluid. K, e d
. . A Z
Hydrostatic pressure is due to | © . e
fluids that are static (at rest). ;
Thus, there has to be static dmg """"""""""""""" z E
equilibrium. @ )
, (2

] . . ﬁ ﬁ dm = A-dz-p(z)
Consider a fluid element in the F, P
fluid itself and assume the upward )= Density of the fluid el t

. . . o o _ pLz)= bensity O e TiJida elemen

vertical direction as the positive z- | | "_ /"¢ he fluid element
coordinate. A = Horizontal base(or face) area
The mass of the fluid element Fo= tFortCF]e that acgs Iat thti bottct?m sulrface(ld(;e
. . . 0] € water pelow tne rectangular soll
is the volume tll1.1eS the denSI.ty' F, = Force that acts at the top surface(due to
and the volume is face area times the water above the rectangular solid)
delta z, and then times the density, | == Eressure at z+dz
which may be a function of z. £ = FPressureat

e
BB
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh v D) Laboratory



Hydrostatic Pressure (3/9)

Newton's 2" Law : ) F=mi

(Static Equilibrium : Z =0)

Y F=0
F-F,—-dm-g=0

To describe the behavior of the fluid element, we apply the
Newton’s 2" law to the free body diagram for the fluid
element, as shown in the figure.

The gravitational force acting on the fluid element is delta m
times g in the downward direction. The pressure force, which is
always perpendicular to the surfaces, acting on the bottom
surface is F; in the upward direction, whereas the pressure
force acting on the top surface is F, in the downward direction.

We only consider forces in the vertical direction, because all
forces in the horizontal direction will cancel, for obvious
reasons. The fluid element is not going anywhere. It is just
sitting still in the fluid. Thus, the fluid element is in static
equilibrium.

For the fluid element to be in static equilibrium, the upward

force F; minus downward force F, minus delta mg must be zero.

Fluid Element

_____

ZT . i]_‘;:2_ i-— -z+dz })z—i-dz
e | P
dm-g T S

p(2)
e dm = A-dz- p(2)

_____

p(z)= Density of the fluid element

dm = Mass of the fluid element

A = Horizontal base(or face) area

F, = Force that acts at the bottom surface(due
to the water below the rectangular solid)

F, = Force that acts at the top surface(due to
the water above the rectangular solid)

P = Pressure at z+dz

P = Pressure at z

Fluid Particle

Free-body diagram for the fluid element

A
Fl

- _\_ s o 4 })z+dz

|
F2 dmg

dm=A-dz- p(z)

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Hydrostatic Pressure (4/9)

Reference) Static Equilibrium

If a fluid is at rest in a container, all
portions of the fluid must be in static

equilibrium (at rest with respect to the

observer).

Furthermore, all points at the same

depth must be at the same pressure. F K,
If this was not the case, a given portion ﬁ> K —]

of the fluid would not be in equilibrium.

For example, consider the small block
of fluid. If the pressure were greater on
the left side of the block than on the
right, F, would be greater than F,, and
the block would accelerate and thus
would not be in equilibrium.

e Sz SYstem
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Hydrostatic Pressure (5/9)

Newton's 2" Law : Y F =mi
F-F —-dm-g=0

Fluid Element

_______

p(z)= Density of the fluid

-z+dz : z+dz
‘o
_______ Z |l PZ :

()
dm=A-dz-p(z)

element

dm = Mass of the fluid element

A = horizontal base(or face) area

F, = Force that acts at the bottom surface(due
to the water below the rectangular solid)

F, = Force that acts at the top surface(due to
the water above the rectangular solid)

P.is= Pressure at z+dz
P = Pressure at z

Three forces act on vertically.
Thus we can consider magnitude of vectors only.

:>P/Z_ z+ds —/{dz p(z)-g=0

R ~\

PP, —d-p(z)-g=0

P-P..=dz-p(z)-g ~
P,.—P=-dz-p(z)-g *

z

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Fluid Element

Hydrostatic Pressure (6/9) 1k 7

p(z2)

Fﬁ dm — A-dz- p(2)

’ .. p(z)= Density of the fluid element
NeWton S 2nd LaW : E F = mZzZ dm = Mass of the fluid element
A = horizontal base(or face) area

F, = Force that acts at the bottom surface(due
to the water below the rectangular solid)

]?1 — F2 — dm . g — 0 F, = Force that acts at the top surface(due to
the water above the rectangular solid)

P = Pressure at z+dz

P = Pressure at z

Pz+dz_})z :_dZVO(Z)'g\

+(dz)
])Z—I-dZ B ])Z - <

FR p(z)-g
P —P dP

lim z+dz z =—,O(Z)°g=—

dz—0 dZ dZ

dP
;.—=—p(z)-g :Change of Hydrostatic Pressure

dz (Due to gravity)

< P2 SYstem ‘
B, =
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dP |
Hydrostatic Pressure (7/9) dr P iy T

In the fluid

Calculate the pressure difference

between z, and z,. ¢
[— 5 P

dP = _IO(Z) g dz P, (imegate by 2 o
Integrate from z, to z, . —_

b Zy T
= dez—jp(Z)-g-dz
R = Density of a fluid

Pressure at z
= Pressure at z

Most liquids are practically incompressible. In other
words, the density of the liquid cannot really change.
And so therefore, we could always use the constant
density, p, instead of the varying density p(z). We will
assume from now on that fluids are completely
incompressible. We can, then, do a very simple

integration.

SOy R
I

We have now dP in the L.H.S, which we can integrate
from some value P; to P,. And that equals now minus rho
g dz in the R.H.S, integrated from z; to z,.

‘%3 b‘&'SYstem
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Hydrostatic Pressure (8/9)

Calculate the pressure difference
between z and z,.

In the fluid

1
_____

---------------- z, (R
p. = Density of a fluid
F, = Pressure at z,

P, = Pressure at z,

b )
[dP=—[p(z)-g-dz
A 2|
P,
LHS:  [dP=P-R
P

_________

CTTTTTTTSY o g

R.H.S: —J.lp(z) g-dz = —Lng‘ dz=-pg(z,—z)

_________

_____

Z I '1‘ Z

Assume : Incompressible Fluid (= constant)

L.H.S=R.H.S

P, —H=-pg(z,-2)|: Pascal’'s Law

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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In the fluid

Hydrostatic Pressure (9/9) d

1
_____

R-R=-pgz-z) F "
h—-F, =pg(z,—z) "
P

O

ensity of a fluid
ressure at z,
ressure at z,

© O

We multiply a minus sign here, so we switch these around: p g
times z, minus z,.

What it means is we see immediately that if z, minus z; is positive,
i.e. Z, is higher than Z,, the pressure at P, is larger than the
pressure at P,.

This is the hydrostatic pressure.

Hyd rOStatiC PI‘ESSU re (Incompressible fluid due to gravity)

The pressure at a point in a fluid in static equilibrium
depends on the depth of that point, but not on any
horizontal dimension of the fluid or its container.*

N - B - < @2 SYstem i
Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.363, 2004 %@§%Design
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Three Basic Characteristics of Pressure in a Body of Fluid

P=P =P =P P >P P — Z90°
Hydrostatic pressure Pressure in a body Hydrostatic pressure
at any point in a of water increases is always applied
body of water is with depth of water. perpendicular to any
equal in all submerged body.
directions.

<Graphic presentation of the concept of hydrostatic pressure>

* Polevoy, S. L., Water Science and Engineering, Blackie Academic and Professional, pp.78, 1996 @%gﬁgg‘ . 29
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Archimedes’ Principle and Buoyant
Force
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Archimedes’ Principle and Buoyant Force (1/4)

® Static equilibrium of a rigid body in a fluid

Consider a simple box shaped barge

that floats in a fluid. That means the
barge is in static equilibrium.

Thus, the gravitational force on the
barge in the downward direction
must be equal to a net upward force
on it from the surrounding fluid, so
called ‘buoyant force'.

The length of the barge is L, the breadth is B,
the depth is D, the immersed depth is T, its
density is p,,; and the density of the fluid is
pSW'

Let be the upward vertical direction as the
positive z-coordinate. We define, then, the
level of the bottom surface as z; and the level
of the immersed depth as z,.

On the top surface of the barge, there is the
atmospheric pressure P,, which is the same as
it is on the fluid. And on the bottom surface
we have a pressure P, in the fluid.

SN OW S

Length of the barge
Breadth of the barge
Depth of the barge

Draft of the barge(=z,-z;)
Density of the fluid
Density of the barge

3




Archimedes’ Principle and

Buoxa nt Force (2/4)

® Static equilibrium of a barge in a fluid

Newton’s 2nd Law:ZF =m-7Z

L = Length of barge
B = Breadth of barge
. oye . .. D = Depth of barge

(Static Equilibrium: 2=0) 7 = Draft of barge(=z,2,)
p,, = Density of sea water
p,; = Density of a barge

> ¥F=0 |
Assumption: Buoyant force of air is neglected.
E —P2 = ,OSWgT (Pascal’s Law)
KK, i-mg=0 K, : Force which contains the hydrostatic pressure

F, : Force which contains the atmospheric pressure
F, —F, : Buoyant Force F, 2 P P

To describe the behavior of the barge in the fluid, we apply the Newton’s 2"d law to the barge as shown in the figure.

The gravitational force acting on the barge is mass, m, times g in the downward direction. The hydrostatic pressure force,
which is always perpendicular to the surfaces, acting on the bottom surface is F; in the upward direction, whereas the
atmospheric pressure force acting on the top surface is F, in the downward direction.

We only consider forces in the vertical direction, because all forces in the horizontal direction will cancel. If there were
any net tangential component force, then the barge would start to move. The barge, however, is static, that means the
barge is not moving anywhere. It is just sitting still in the fluid. Thus, the barge is in static equilibrium. For the barge to be
in static equilibrium, the upward force F; minus downward force F, minus delta mg must be zero. Here the net upward
hydrostatic pressure force, F;-F,, is so called the ‘Buoyant force’.

SYstem
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Archimedes’ Principle and

Buoxa nt Force (3/4)

® Buoyant force: I, =F —F,

Length of barge
Breadth of barge

= Depth of barge

7 = Draft of barge(=z,-z;)
p,, = Density of sea water
p,; = Density of a barge

Sl

~ F,=(L-B)-B~(L-B)-P,
=(L-B)-(P,~P)

Assumption: Buoyant force of air is neglected.
Substitution: A —P =p,_ gT (Pascal's Law)
—> F,=(L-B)-p, . gT

F,=(L-B-T)-p,-g

= 33
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Archimedes’ Principle and

Buoxa nt Force (4/4)

: — . . . L = Length of barge
° FB (L B T) pswg B = Breadth of barge
Volume D = Depth of barge

7 = Draft of barge(=z,-z;)
Mass p,, = Density of sea water
‘l’ p,; = Density of a barge

Buoyant force is the weight of the displaced fluid.

This is a very special case of a general principle
which is called Archimedes’ Principle.

Archimedes’ Principle*

When a body is fully or partially submerged in a fluid, a
buoyant force F; from the surrounding fluid acts on the

body. The force is directed upward and has a magnitude
equal to the weight of the fluid which is displaced by the

body.

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.368, 2004 3% SRy stem
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Reference) Buoyant Force of Air

® Static equilibrium of a barge
,=(L-B)-(R-P)

""""""" L = Length of barge
B = Breadth of barge
— = Depth of b
Apply Pascal’s Law: I dP = .f p(z)-g-dz 1; o by
(Due to graVIty) A A (z1~2,: fluid, z,~z5: air) gs " ngz:g gi Zega"r"g""éer
L.H.S: de:P2 ~P
R.H.S: —I p(z)-g-dz= —J 0,.,8dz — J Pair8Z
E Zzl :2 :-"(Air, Sea water : incompressible)
2 3 </
:_psngdz_pairgjdz
=—p.,8(z,—2)—p,,8(z;—2,)
L.H.S=R.H.S
> B-P,=p,8T+p,gD-T) —>R-P=p,gT

7 P =12kg/m’, p, =1025kg / m’

1025
Ratio of Py 1O Pair IS U~854 ( Pair < psw)

So buoyant force of air is negligible.

\‘ﬁ’\\\ Design 35
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Archimedes’ Principle and Buoyant Force
- Example: Archimedes and Crown Problem (1/2)

= Apparent weight of a body in a fluid X W

If we place a crown on a scale that is calibrated
to measure weight then the reading on the T o
scale is the crown’s weight. However, if we do 1‘ @ 1‘
this underwater, the upward buoyant force on

the crown from the water decreases the reading. |

W, =Weight of the crown
V' =Volume of the crown

That reading is then an apparent weight. In P erght immersed i water
general, an apparent weight is the actual weight 7+ Density of the water

of a body minus the buoyant force on the body.
apparent | [ actual magnitude of
weight - weight buoyant force

Weight Loss

* i i i ‘ ¥z SYstem
Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.369, 2004 %E% b}‘ioesu n 36
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Archimedes’ Principle and Buoyant Force

- Examele: Archimedes and Crown Problem (2/2)

Question)
Is the crown made of pure gold?

Answer)

VVI — Vp crowng
— "V immersed = Vp crowng o Vp wg

(Apparent Weight)

W, oe: Weight Loss(Buoyant Force)
(Measure)

(Find & Compare)
VVI — Vpcrowng — pc

rown

(I\/Ieasure)VVLOSS prg 'OW (Known)

Archimedes lived in the third century B.C. Archimedes had been given
the task to determine whether a crown was pure gold. He had the great
vision to do the following: He takes the crown and he weighs it in a
normal way.

So the weight of the crown - we call it W, - is the volume of the crown
times the density of which it is made. If it is gold, it should be 19.3 gram
per centimeter cube, and so volume of the crown x rho crown is the mass
of the crown and multiplying mass by g is the weight of the crown.

Now he takes the crown and he immerses it in the water. And he has a
spring balance, and he weighs it again. And he finds that the weight is
less and so now he has the weight immersed in the water.

So what he gets is the weight of the crown minus the buoyant force,
which is the weight of the displaced water. And the weight of the
displaced water is the volume of the crown times the density of water
times g. And so V x rho w x g is ‘weight loss’.

And he takes W, and divides by the weight loss and it gives him rho of
the crown divided by rho of the water. And he knows rho of the water, so
he can find rho of the crown. It's an amazing idea; he was a genius.

VV] mmmersed
T el
. W @4
F, , T
v
mg

mg
W, =Weight of the crown
/' =Volume of the crown
P...., =Dbensity of the crown
Womesea  =Weight immersed in water
p, =Density of the water

* Serway, R. A, College Physics, 8th Ed., Brooks/Cole, pp.287, 2009. 37




Archimedes’ Principle and Buoyant Force

- Condition for floating

= Condition for floating

Length of barge
Breadth of barge
epth of barge

raft of barge
ensity of sea water
ensity of a barge

o O S

Fy,=mg (T < D)

D
D
D
D

sw

R~

obj

= For this barge to float, the buoyant
force must be equal to gravitational
force.

(L-8-T)-p,&=(L-B-D) p,,&

-> IOSW > Ioobj . Float

Necessary condition for floating

psw < pobj . Sink

\;\’\L Design - 38
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Archimedes’ Principle and Buoyant Force
- Example: Floating Iceber

Question)
What percentage of the volume FG
of ice will be under the level of the water?

p.. =0.92g/cm’, p =1.0g/cm’ e

1K

Answer) B 4
Mg V;ot icgg = I/uwpwg

I/uw — IO ice
I/tot IO w

M . Mass of iceberg
;. Total volume of iceberg
: Volume underwater

Underwater Volume V| _ Pie v
B =0.92 P . Density of the ice,
p
g

Total Volume V.. P.

: Density of underwater
. Acceleration of gravity

".92% of the iceberg is in underwater.

* Ohanian, H. C,, Physics, 2nd Ed., W. W. Norton & Company, pp.478, 1989 mb¥vig:§teg 38
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Archimedes’ Principle and Buoyant Force
- Example: Waterline will change? (1/6)

Question)

A boat with an anchor on board floats in a swimming pool that is
somewhat wider than the boat. Does the pool water level move up,
move down, or remain the same if the anchor is

(a) Dropped into the water or
(b) Thrown onto the surrounding ground?

(c) Does the water level in the pool move upward, move downward, or
remain the same if, instead, a cork (or buoy) is dropped from the
boat into the water, where it floats?

g‘&’ SYstem

* . . . e » ]
Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.377, 2004 %&E ﬂDesign 40
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Archimedes’ Principle and Buoyant Force
- Example: Waterline will change? (2/6)

Question)

A boat with an anchor on board floats

in a swimming pool that is somewhat
wider than the boat. Does the pool |:>

water level move up, move down, or
remain the same if the anchor is

(@) Dropped into the water

Answer)

The volume under the water level is composed of the water and the
volume displaced by the boat and anchor. After the anchor is dropped
into the water, the buoyant force exerted on the anchor cannot
compensate the weight of the anchor.

Thus the water level moves down.

3 - . < P2 SYstem
* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.377, 2004 %Eﬂf% §¥§Design a1
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh A IDlLaboratory



Archimedes’ Principle and Buoyant Force
- Example: Waterline will change? (3/6)

Stagel Stage2

.7 A

VTotal,l VTotal,2

If the shape of water tanks are same, the waterline will be proportional to total
volume (volume of water + volume displaced by the boat and the anchor).

. VTotal,l h . VTotal,Z
h = >

A A

h . Waterline
A : Bottom area
..;. Total volume

VT

o

e &S §2 SYstem :
Design - 42
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Example: Waterline will change? (4/6)

(a) Droeeed into the water (1/2) -

Stagel

Stage2

%

V.

Water

V _ WBaot + WAnchor
Boat,1 —
IO Waterg

(floating condition)

VT

otal 1 — VBoat,l +

+V +V,

VToml,2 — VBoat,Z

Anchor Water
V _ WBoat V WAnchor
Boat,2 — ’ Anchor
pWaterg pAnchorg
w w
_ Boat + Anchor + V

Water

IO Waterg IO Anchorg

— WBoat + WAI’IC}ZOF + VWater
Pwaer8
I : Height of the waterline in stage 1~ Vsous:
h, : Height of the waterline in stage 2 Vaou2:
W : Weight of the boat Anchor -
W o - Weight of the anchor Vivater
Pwaer . Density of the water P tnchor

: Density of the anchor

Displaced volume by the ship with the anchor
Displaced volume by the ship without the anchor
Displaced volume by the anchor

Volume of the water which is invariant

p Anchor > p Water



Example: Waterline will change? (4/6) h=VT
(a) Dropped into the water (2/2) M s >
Stagel Stage2
Vipars = Waour * W tncer Vaser PLuggage = Phwater v, .= W sou n W tehor s

%

hl

)_( WB 4 WAnchor +V

Water )

w w
— at Anchor
o ( T + VWater

Water g IO Water g Water g IO Anchor g

— (WAnchor )_( WAnchor )
P Waterg P Anchorg

1 1 { {

o ) > O (.'. lOAnchor > pWater9 P < P )
g pWater IOAnchor Anchor Water

VTotal,l _ VTotal,2

Anchor (

VTotal,l > VTOta],29 ]’ﬁ > hz The waterline will go down!




Archimedes’ Principle and Buoyant Force
- Example: Waterline will change? (5/6)

Question)

A boat with an anchor on board floats ‘
in a swimming pool that is somewhat
wider than the boat. Does the pool

water level move up, move down, or
remain the same if the anchor is

(b) Thrown onto the surrounding ground

Answer)

After the anchor is thrown onto the surrounding ground, the
ground supports the weight of the anchor. So buoyant force exerted

on the anchor is zero.
Thus the water level moves down.

) - . G &gz SYstem ;
* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.377, 2004 %@§¥§Design 5
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Archimedes’ Principle and Buoyant Force
- Example: Waterline will change? (6/6)

Question)

A boat with an anchor on board floats

in a swimming pool that is somewhat
wider than the boat. Does the pool @ |:>

water level move up, move down, or
remain the same if the anchor is

(c) If, instead, a cork is dropped from the boat into the water, where it
floats, does the water level in the pool move upward, move downward,

or remain the same?

Answer)

After the cork is dropped from the boat into the water, the cork
floats in the water. So the buoyant force exerted on the cork has the
same magnitude as that of the weight of the cork. Thus the volume
displaced by the cork remains the same.

And the water level also remains the same.

3 - . < P2 SYstem
* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.377, 2004 %Eﬂf% §¥§Design 46
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Archimedes’ Principle and Buoyant Force

- Examele: Floating Down the River (1/2)

Question)*

A raft is constructed of wood having a density of 600 kg/m3. Its
surface area is 5.7 m?, and its volume is 0.60 m3. When the raft is
placed in fresh water of density 1,000 kg/m3, as in the figure, to
what depth does the raft sink in the water?

A

<A raft partially submerged in water>
Hint)

The magnitude of the upward buoyant force acting on the raft must
equal the weight of the raft if the raft is to float. In addition, from
Archimedes' Principle the magnitude of the buoyant force is equal to the
weight of the displaced water.

* : =S Yst |
Serway, R. A, College Physics, 8th Ed., Brooks/Cole, pp.273, 2009. @%oe‘;&? 17

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh Laboratory !



Archimedes’ Principle and Buoyant Force

- Examele: Floating Down the River (2
Question)*
Answer) <A raft partially submerged in water>

The magnitude of the upward buoyant force acting on the raft equals

the weight of the displaced water, which in turn must equal the weight of

the raft:
B = IO waterg Vwater = IO watergAh

Because the area A and density 0,... are known, we can find the depth A

to which the raft sinks in the water:
h . Wraft

The weight of the raft is
Wi = Prater Ve = (000kg / m”)(9.8m / s*)(0.60m™) =3.5x10° N

Therefore, substitution into (1) gives

5x10°
h= YN g 060m
(1000kg / m™)(9.8m / s )(5.7Tm")
* Serway, R. A, College Physics, 8th Ed., Brooks/Cole, pp.273, 2009. 2 S5 gg!err:\

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh ~- 1) LObOfOfOin
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Archimedes’ Principle and Buoyant Force

- Examele: 302,000DWT VLCC

Question)

A 302,000DWT VLCC has a mass of 41,000 metric tons when empty
and it can carry up to 302,000 metric tons of oil when fully loaded.
Assume that the shape of its hull is approximately that of a
rectangular parallelepiped 300m long, 60m wide, and 30m high.

(@) What is the draft of the empty tanker,
that is, how deep is the hull
submerged in the water?

Assume that the density of the sea
water is 1.025Mg/m’

(b) What is the draft of the fully loaded
tanker?

e &S §2 SYstem
Design 1
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh e IDlLaboratory |
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Archimedes’ Principle and Buoyant Force

- Freeboard (1/2)

~ 1/2 Molded breadth(B ,;,y)

Deck plating
Camber § | = o L
T A
Deck beam a
Freeboard
Scantling waterline
R e EE LT -———}[ ————————— Molded depth(D ,4)
'\ Centerline Scantling draft
————— A
Y |
i \ Dead rise
T Baseline
Freeboard = Depth(D,,,) — Draft(T) +t 41 1a1ing

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Archimedes’ Principle and Buoyant Force W =F,

- Freeboard (2/2) =(L-B-T) p,.g&
|
Freeboard Mark The heaviest water is in i Troplcal fresh water is
. the North Atlantic in . lightest. It occurs in
. winter time. Ships there . tropical rivers(Amazon,
F T . displace much less water | Congo, and others).
. than in other areas of the | Some of these rivers are
. world ocean. . navigable by ocean
. steamers.
W |
WNA
TF — Tropical Fresh Water
F — Fresh Water
T — Tropical Sea Water
S — Summer Sea Water |
W — Winter Sea Water The density of water in the The density of water in

world ocean is 1.026 g/cm3. | navigable tropical rivers is
The density of water in the | 0.997 g/cm3.

WNA - Winter North Atlantic
. North Atlantic is 1.028 g/cm3.

* Polevoy, S. L., Water Science and Engineering, Blackie Academic and Professional, p.93-97, 1996
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh




The Equation of Continuity
and Bernoulli Equation

DD (N
Eﬂg‘% \%? gﬁifg? 52
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The Equation of Continuity* (1/3)

® The Equation of Continuity

The equation of continuity of flow is a mathematical

expression of the law of conservation of mass for flow.

Here we wish to derive an
expression that relates v
and A for the steady flow
of an ideal fluid through
a tube with varying
cross section.

(b) Time t+at A,

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.311, 2004 g"g\éﬂgg‘ . 53

k]
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The Equation of Continuity* (2/3)

® The Equation of Continuity

The volume AV of fluid that has passed through the dashed
line in that time interval Ar is

AV =A-Ax=A-v-At

Apply to both the left and
right ends of the tube
segment,
we have
AV = Av,At = A,v,At
= . Ay, = A,v,

: Equation of Continuity | (b) Time t+at

for the flow of an ideal fluid

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.371, 2004 %éﬂﬂ b}?ig\g*eg‘ 54
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The Equation of Continuity* (3/3)

® The Equation of Continuity
Av, = A4,

This relation between speed
and cross-sectional area is
called the equation of
continuity for the flow of an
ideal fluid.

The flow speed increases
when we decrease the cross-
sectional area through
which the fluid flows.

. Equation of Continuity
for the flow of an ideal fluid

(b) Time t+at A,

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.371, 2004

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Bernoulli’'s Equation (1/9)

® Bernoulli's Equation
We can apply the principle of conservation of energy to

the fluid.

Assumption: incompressible fluid (density is constant.)

(1) If this fluid is completely static,
it seems that it is not moving.

F—P,=pg(z,—z)=pgh : Pascal's Law

1% >V2

< @2 SYstem |
B,
i IDlLaboratory
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Bernoulli’'s Equation (2/9)

® Bernoulli's Equation

We can apply the principle of conservation of energy to
the fluid.

Assumption: incompressible fluid

(1) If this fluid is completely static,
it seems that it is not moving.

F—P,=pg(z,—z)=pgh : Pascal's Law

1 T

/Have the same, mgh : Gravitational Potential Energy )
! dimension of € |
: ! [ Mass o
Energy . Volume ensity
“~ Volume -/ -: o . .’ \
! pah Gravitational Potential Energy: Vv,
—> pgh = /
Volume 12 > v,

o ‘}% §TSYsiem |
% Design . 57
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Bernoulli’'s Equation (3/9)

® Bernoulli's Equation
We can apply the principle of conservation of energy to

the fluid.

Assumption: incompressible fluid

(2) If we now set this whole machine
in motion, there are three players.

ﬁ(inetic Energﬂ N (Gravitational Potential Rnergﬂ N
L Volume J L Volume J

Apply
the Conservation
of Energy

1

—pv2 + pgz + P. = Constant |: Bernoulli’s

1% >V2

2 Equation

e &S §2 SYstem :
Design Y
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh e IDlLaboratory |



Bernoulli’'s Equation (4/9)

® Example: Eliminate ‘2’

If we take z to be a constant,
so that the fluid does not change
elevation as it flows,

If we assume that 4 < 4,

By the Equation of Continuity (ideal fluid)
Av, = 4y,

> A <4, —>v >v,

< P2 SYstem ‘
B, =
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh L IDlLaboratory



Bernoulli's Equation :

Bernoulli’'s Equation (5/9) L v+ pgz+ P = Constant
. Z

® Example: Eliminate ‘2’

If we take z to be a constant,
so that the fluid does not change
elevation as it flows,

Bernoulli’ Equation becomes

1 1
Epvlz +F = Epvzz + P,

- v, >v, > <P
Which tell us that :
If the speed of a fluid element increases as the element travels

along a horizontal streamline, the pressure of the fluid must
decrease, and conversely.*

< P2 SYstem ‘
B, «
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh L IDlLaboratory



Bernoulli's Equation (6/9)
- Examele : SiEhon* (: Eliminate ‘P’) (1/3)

Figure on the right side shows a
siphon, which a device for /‘\
removing liquid from a container. d

A tube must initially be filled, but
once this has been done, liquid will
flow through the tube until the
liquid surface in the container is
level with the tube opening at z,.
The liquid has density p and
negligible viscosity. N

o - P =1 atm

(a) With what speed does the liquid emerge from the tube at z,?
(b) Theoretically, what is the greatest possible height d that a siphon
can lift water?

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.383-384, 2004 N@@gg '@;ﬁismem

Design
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh IDlLaboratory
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Bernoulli's Equation (6/9)
- Examele : SiEhon* (: Eliminate ‘P’) (2/3)

(a) With what speed does the liquid
emerge from the tube at z,?

Bernoulli's Equation:

1
> pv’ + pgz+ P. = Constant

B =P, —> P term is eliminated.

—>l v+ pgz = poz 4
PV, T P82 = PEZ, Zy Voo ot- P =1 atm
2 /
Lo oo Lo o N
o 82 = 8% 2V1 =g(z,-z)
[
*E‘ﬁ =g(h)

Ly = /Zgh Conversion .of gravitational potential
energy to kinetic energy

DD (N
%‘f@g{% \%? gﬁifg? 62
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Bernoulli's Equation (6/9)
- Examele : SiEhon* (: Eliminate ‘P’) (3/3)

(b) Theoretically, what is the greatest

possible height d that a siphon L /_\
can lift water? 2 J

Barometric Pressure:
1 atm =1.01x10°Pa

= 760torr
=10m (Water)

- - P =1 atm
Therefore, This siphon would N
only work if d is less than 10m.

e Sz SYstem
éfﬁaﬂg{% %Design 63
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Bernoulli’'s Equation (7/9)

® Example: Funnel with a Ping-Pong Ball

Movie Clip

= B

64



Bernoulli’'s Equation (8/9)

® Example: Ping-Pong Ball in the jet of air*

If you place a ping-pong ball in the jet of air from a vacuum cleaner
hose aimed vertically upward, the ping-pong ball will be held in stable
equilibrium with this jet. Explain this by means of Bernoulli's equation.
(Hint: The speed of air is maximum at the center of the jet.)

m le\rllzt:l::\(;:e P‘ll Tilt
Pl <— P9

P

(/____-____
~
~,
N

@ {7 SYstem
A %Design 65
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Bernoulli’'s Equation (9/9)

® Example: A Glass Filled with Water*

Partially fill a tall drinking glass with water to depth h. Cut a square of
sturdy paper somewhat wider than the mouth of the glass. Place the paper
over the mouth. Spread the fingers of your left hand over the paper,
pressing it against the mouth of the glass.

Grab the glass with your right hand and then as rapidly as you can, invert
it with your left hand and then as rapidly as you can, invert it with your left
hand still pressing the paper against the rim. Chances are you can then
remove your left hand without the water pouring out. If h=11.0cm, what is
the gauge pressure of the air now trapped in the above the water?

Paper
N\

A

h

v

* Halliday, D., Fundamentals of Physics, 7th Ed., Wiley, pp.385, 2004 gvg\gjgem
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Reference Slides
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Example of ‘Perceived Gravity’
- Relative Motion -

@ 2 SYstem
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Relative Motion
- Examples of a Bus (1/9)

Case #1

- Find the forces exerted on the box.

E - A box is fixed on a bus which is at rest. J

xl’l
Observer @

P:Box of mass m,

Free-body
diagram

-

s+ N
d vV
~< A reaction force
by Newton'’s 3 |aw

*P

~N
~N

N~
S~

v
mpg

ﬁ. At first, we consider the forces \
exerted on the box in vertical
direction. Newton’s 2" |aw is
applied to the box in the bus.

mplp, ; =F

/:mPg+N
S

ince the box is at rest, it is in static
equilibrium.

i, =0
0=m,g+N
2
‘ N=-m,g ‘

2. There is no force in horizontal

\\direction. /

69



Relative Motion
- Examples of a Bus (2/9)

Case #2

- A box is fixed on a bus which is moving with an acceleration of a
in horizontal direction.

- Find the force exerted on the box in horizontal direction.

a

[
»

We apply Newton’s 2" law to the

box in the bus.
P : Box of mass m,

T, mp Tpp =Fp
Iy = dj
m,aj=F,

®» The force exerted on the box
is m, a in horizontal direction.

< N Y

Observer @




Relative Motion m ¥y, =F, —m,i,,,
= Exam |ES Of d BUS (3/9) Ext'ernal In:ertial force
Force
Case #2

- A box is fixed on a bus which is moving with an acceleration of a
in horizontal direction.

- Find the force exerted on the box in horizontal direction.

/

a

[
»

An observer @) in the bus describes
/ the force exerted on the box.

The observer @ is located at the origin
of the non-inertial reference frame
which moves with an acceleration of a.

So, the inertial force should be
considered.

P : Box of mass m,

inertial force

e =

I .
mp¥p, =Fp mP O/E 1 >Fp=mpaj

———————-’

The observer (2 recognizes that no
" @rce is exerted on the box. A/
Observer @ 1




Relative Motion
- Examples of a Bus (4/9)

Case #3

- The box is not fixed and there is no friction btw the box and the bus
- The bus is moving with an acceleration of a in horizontal direction.
- Find the force exerted on the box in horizontal direction.

a

P : Box of mass m,

.
€
Observer

0,

Observer @ 72



Relative Motion
- Examples of a Bus (5/9)

Case #3

- The box is not fixed and there is no friction btw the box and the bus
- The bus is moving with acceleration of a in horizontal direction.
- Find the force exerted on the box in horizontal direction.

a

-

P:Box of mass m,

We apply Newton’s 2" law to the
box in the bus.

Mp Yp,p = FP

OZFP > Iy, =0

®» The force exerted on the box
is zero in horizontal direction.

/

Observer @
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Relative Motion m ¥y, =F, —m,i,,,
= Exam |ES Of d BUS (6/9) Ext'ernal In:ertial force
Force

Case #3

- The box is not fixed and there is no friction btw the box and the bus
- The bus is moving with acceleration of a in horizontal direction.
- Find the force exerted on the box in horizontal direction.

Observer @

a

[
»

P:Box o

mass mp

An observer @) in the bus describes
the force exerted on the box. \

The observer @ is located at the origin
of the non-inertial reference frame
which moves with an acceleration of a.

So, the inertial force should be
considered.

inertial force

e e R a=.

1 .
mp¥p, =KFy—m,r, .> F,=0j

———————-’

=—m, aj

The observer (2 recognizes that the
\rEgative force —m,a is exerted on the b%




Relative Motion
- Examples of a Bus (7/9)

Case #4

- The bus is moving with an acceleration of @ in horizontal direction.
- The handle is connected to the top of the bus by the strap.
- Find the tension of the strap.

Since the handle is moving with
the same speed of the bus, the
acceleration of the handle with
respect to observer @ is given by

Iy =aj

And, the handle is dragged to
backward direction.

e

Observer @ 75




Relative Motion
- Examples of a Bus (8/9)

Case #4

- The bus is moving with an acceleration of a in horizontal direction.
- The handle is connected to the top of the bus by the strap.

- Find the tension of the strap.

/We apply Newton’s 2" law to the \
box in the bus.

mp ¥p, =F,

> F,=T+mg
=T+m,g

T=m, vy, —m,g

@ r,,=aj g=—gk

=m, aj+m, gk

Observer @
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Relative Motion
- Examples of a Bus (9/9)
Case 5: Person in a Bus: Inertial Force (1/2)

A bus is moving with acceleration of a in horizontal direction.

and the person “P” is standing on the bus and moves with the same
acceleration a with the bus.

Consider the horizontal motion.

+a -
> 1. In inertial frame
mpd = Fp - (1)

P
The person “P” is accelerated | | The external force exerted on
in forward direction with an the person “P” is the
acceleration “a”. frictional force between base

F and feet of the person “P”.

P

: Frictional Force

7



Relative Motion
- Examples of a Bus (9/9)
Case 5: Person in a Bus: Inertial Force (2/2)

A bus is moving with acceleration of a in horizontal direction.

and the person “P” is standing on the bus and moves with the same
acceleration a with the bus.

Consider the horizontal motion.

a
+ > 1. In inertial frame

2. In non-inertial frame
(According to D'Alembert Principle)

O0=F,—m,a = (2)

The person “P” is not ®» The force “—m a” is an inertial force.

accelerated - —
(the acceleration is The person “P” perceives the friction

zero). force “F,” and an additional force

”mpa" in backward direction.

Dynamic Equilibrium i.e. The person perceives the moment
caused by the friction force “F,” and

an additional force ”-mpa".

: Frictional Force

¢

3. What is the magnitude of the inertial force “-m,a"?

®» From the equation (1), -m a=-F) 78



Example of an Astronaut, an Apple, and a Helium-filled

Balloon in a Seacecraft

An astronaut “A”, an apple and a helium-filled balloon are in a
spacecraft.

There is no gravity, so they are all floating in space.
The spacecraft is going to accelerate in the upper direction with an

acceleration “a". And an astronaut “B” who is moving with the same
acceleration “a" observes the motion of the astronaut “A”, apple,

and balloon in the spacecraft

P person = 1030 kg/m’, Pappie = 160 kg/m’, p, . =0.18 kg/m’, p. =123 kg/m3)
Air
_* _*
'3 s
Case 1: There is no air Case 2: Air is filled in
inside of the spacecraft the spacecraft

?"g b‘&'SYstem |
%&E& SR Design 79
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Example of an Astronaut, an Apple, and
a Helium-filled Balloon in a Spacecraft

apple and balloon observed by the astronaut “B"?

A
Case 1: there is no air inside of the spacecraft (1/2) ?
a e
(1) What will be the motion of the astronaut “A”, __ f/*‘q @

Do they go downward

B
G
or upward? F

In the case of the astronaut “A”:

1. In inertial frame

mAaA — FA e (1) [RHS FA = FA,Body + FA,Surface}

—0=0

—0 —0

(Because there is no gravity and no air inside of the spacecraft.)

2. In non-inertial frame (observed by the astronaut “B")

m,a,—m,a=

F,—m,a- (2

—>m, (—a)z—mAa

The astronaut “A”
goes downward
(the acceleration is -a)

- The force “—m a” is an inertial force.

When the astronaut “B” observes the astronaut “A”, an additional

force “-m " is acting on the astronaut “A” in downward direction

|:> The astronaut “A”, the apple, and the balloon will go downward.

ﬁso




Example of an Astronaut, an Apple, and
a Helium-filled Balloon in a Spacecraft

A
Case 1: there is no air inside of the spacecraft (2/2 g
v

a
(1) What will be the motion of the astronaut “A”,
apple and balloon observed by the astronaut “B"?
Do they go downward or upward?

I:> The astronaut “A”, the apple, and the balloon will go downward.

(2) What will be the “relative motion” of the
astronaut “A”, apple and balloon?

I:> Their motion will be same.

e &S §2 SYstem :
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Example of an Astronaut, an Apple, and
a Helium-filled Balloon in a Spacecraft

Case 2: Air is filled in the sBacecraft ‘1‘32 4

(1) The height of the spacecraft is “h”. Then what
will be the difference in the air pressure between
the pressure at the bottom and at the ceiling?

h
AP = p_ . ah

6.Assume that air is filled in the spacecraft. \

(2) What will be the motion of the astronaut “A”,

apple and balloon observed by the astronaut “B"?

Do they go downward or upward?

(3) What will be the “relative motion” of the
@tronaut “A”", apple and balloon? /

c“,"\“TSstem 3
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Example of an Astronaut, an Apple, and
a Helium-filled Balloon in a Spacecraft

Case 2: Air is filled in the sBacecraft 52432

According to Newton's Second Law, an apple is

E . E
mapp aapp/E _ Z Fapp

TE
Aok

L.H.S

mapp Eaapp/E - mapp Ei/;tpp/E (2) il
“r app/E ="r Yoie T “r app/O
— i app! E = "7 o T app/O ~(3)

Substitute (3) into (2),

E E .-

- —m_ (5§, + —m,, i m, G (4)
mapp aapp/E _mapp rapp/E _mapp TolE rapp/O app "O/E app " app/O

R.H.S

E __E E
Z Fapp o Fapp,body + Fapp surface
E
— O % I/apppair
because there's no gravity

Aok

G Sz SYstem |
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Example of an Astronaut, an Apple, and
a Helium-filled Balloon in a Spacecraft

Case 2: Air is filled in the sBacecraft ‘3‘32

0, (1) become

E-- E-. B E
mapp rO/E+mapp rapp/O_ apploair aO/E

E-- E
—>m, F_.,=—M +V, P, a
app " app/O app O/ E app I~ air O/E . E B

. . app app/O app
==V o Py 015 tVoppPuir A0
_y Ea (—p +p | ) If papp > /Oair, app/O < 0
app. ZOIEN Fapp = Fair So the apple will fall.

. E-
e mapp rapp/O I/app aO/E (_papp + pair)

In the similar way,
a helium-filled balloon

. E.. B E B
My oo =Viw Qo ( Pra T pair)

If IObal <pair, Ei/;)al/O >O .
So the balloon will rise.

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh
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Relative Motion

- ExamEIes of an Elevator (1/5)

" Case #1
- A person stands in an elevator which is at rest («=0), and the
bottom of the elevator is not attached.

- What will happen?

~

> The person will fall down.

the elevator.
mp ¥y, =K,

mpt,,, =—mpgk
r,, =—gK

The person feels that he is weightless.

- To understand this phenomena, we will
apply Newton’s 2" law to the person in

The person is moving with acceleration g in downward direction

J

Design
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Relative Motion Mt =F, —myiy,,
- Examples of an Elevator (2/5) External _ Inertial force

" Case #1 )
- A person stands in an elevator which is at rest («=0), and the
bottom of the elevator is not attached.

- What will happen? )

> The person will fall down.

a:()' When he observes himself, because he
N E =-m,ck| IS moving with acceleration —g, the
| inertial force should be considered.

inertial force

o= mm mm Em mm o o= o

- The point O is moving mp rP/O — FP:_ mpro/E : > FP =—mp gk

with the person | = === ====-

Therefore the person feels that he is
. weightless.

e &S §2 SYstem :
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Relative Motion

- ExamEIes of an Elevator (3/5)

s Case #2

- A person stands in an elevator which is at rest («=0), and the

bottom of the elevator is attached.
- How much weight dose a bathroom scale indicate?

~

i;O/E = Ol

A reaction force
by Newton'’s 3 law

"> The person is at rest.

- We apply Newton’s 2"d [aw to the
person in the elevator.
mp Ypp =K,
=-m,gK+Nk

Since the person is at rest, static
equilibrium, i, =0
O0=-m,gk+ NK
L

‘N:mpg

The bathroom scale
indicates m,g

/

/
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< @R SYstem |
B
i IDlLaboratory

7



Relative Motion

- ExamEIes of an Elevator (4/5)

" Case #3 )
- A person stands in an elevator which is moving upward with an
acceleration of a.

- How much weight dose a bathroom scale indicate? D

. : : : N
- The person is moving with the elevator.

- We apply Newton’s 2"d [aw to the
person in the elevator.

Mp Ypp = FP

=—mng+Nk>
Ipp =ak
mpak =—m,gK + NK
L
N =m, (g+a)

- The bathroom scale indicates m (g+a)

- The person feels additional force -m )

‘%3 b‘&'SYstem |
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Relative Motion Mt =F, —myiy,,
- Examples of an Elevator (5/5) External _ Inertial force

" Case #3 )
- A person stands in an elevator which is moving upward with an
acceleration of a.

.- Find the exerted force on the person. y

An observer® in the elevator describes
the force exerted on the person.

The observer(® is located at the origin of
the non-inertial reference frame which
moves with an acceleration of a.

So, the inertial force should be considered.

an B

inertial force

________ F,=-mygk

———————— inertial force + NK

P e

— o e e = o -

- The observer(® recognizes that the

inertial force is exerted on the person.

- The person feels additional force -7, )
89
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Examples of a Person in an Elevator Cab (1/2)

Suppose that a person “P” is standing in an elevator.

n

[ The elevator has an upward acceleration a.

1. In inertial frame
Mmpad=N—mpg (1) N=myg+a)

The person “P” is accelerated The external force exerted on
A in upward direction with an the person “P” is “(N-m,g)”
acceleration “a”
+d

o ‘}% §TSYsiem
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Examples of a Person in an Elevator Cab (2/2)

Suppose that a person “P” is standing in an elevator.

n

[ The elevator has an upward acceleration a.

1. In inertial frame
Mmpad=N—mpg (1) N=myg+a)

2. In non-inertial frame
(According to D’Alembert principle)

O0=(N-m,g)—m,a - (2)

The person “P” is not The force “—m a" is an inertial force

accelerated
(the acceleration is zero)

The person “P” perceives the external
- — force (N-m,g) and an additional force
Dynamic Equilibrium “m,a” in downward direction.

- The person perceives that his leg is
compressed by the external force “(N-
m,g)” and the additional force “-m,a"

3. What is the magnitude of the inertial force “-m a"?
®» From the equation (1), -m a=-(N-m,g)

o1



Inhabitant in a Space Station (1/3)

f The generation of gravity by means of acceleration will
play an important role in the design of the space
stations of the future. This figure shows an example of
proposed space station in the shape of a large spinning
wheel which is designed to rotate in order to provide

\simulated gravity for their inhabitants.

of earth’s gravity?

(a) If the distance from the axis of rotation of
the station to the occupied outer wheel is
R=100m, what rotation rate is necessary for
the inhabitants to perceive the same amount

V//Centrifugal — e — (2
Acceleration: N m CZC m ((0 R)
—m-g

S w'R=g,w=+g/R

anning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

S Nz oYstem
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D) Lobo atory

=9.81 m/s* /100m = 0.313 rad/s

92




Inhabitant in a Space Station (2/3)

f The generation of gravity by means of acceleration will
play an important role in the design of the space
stations of the future. This figure shows an example of
proposed space station in the shape of a large spinning
wheel which is designed to rotate in order to provide

\simulated gravity for their inhabitants.

(b) Sleeping quarter is located in the center of
this space station. If there is no staircase or
elevator, can he walk towards the sleeping
quarter?

He cannot walk up against gravity.
If there is a staircase, then he can go towards
the sleeping center because of the reaction

force from the stairs.

s OS2 SYstem
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Inhabitant in a Space Station (3/3)

f The generation of gravity by means of acceleration will
play an important role in the design of the space
stations of the future. This figure shows an example of
proposed space station in the shape of a large spinning
wheel which is designed to rotate in order to provide

\simulated gravity for their inhabitants.

(c) The person wakes up in the morning and
decided to go back to the rim of the wheel.
What will happen if the person is going into
the corridor and starts moving?

F;?:g?:,ﬂy The centrifugal acceleratlon is
N b;\;;aﬁ.:nnsfgrﬁa) proportional to the distance
from the center of the space
station. The farther the person
goes away from the center, the
perceived gravity would be
~/ greater.
Thus, the person will fly out
and fall into the floor. Y




Relative Motion

- Examples of Rotating Reference Frame (1/8)

Case #1

- A chair is fixed on a circular disk which is rotating with an angular

velocity w.

- What kind of forces does a person sitting on the chair feel?

inertial force
Centrifugal force

- -

,//// P\\\\
y Vi ~
Centripetal force

~

Description from the observer @

The person sitting on the chair

revolves around the center of the
disk.

It shows that the centripetal force is
exerted on the person

~

Description from the person
sitting on the chair.

The person sitting on the chair feels
centrifugal force. & inertial force




Relative Motion

- ExamEIes of Rotating Reference Frame (2/8)
Case #2

- A chair moves with velocity valong the line on a circular disk
which is rotating with an angular velocityw .

- What kind of forces does a person sitting on the chair feel?

- e p
Description from the observer @

b/n /O(t)

- -
- ~
- ~o

At l.P/O A /.
LSS T \.,certaln force
(!)b/ P/O (t + At) ‘ ,/// // .....

I, (t+At) /7

From the change of the tangential
velocity, observer @ can recognize
that there are certain force.

(Ob/n

/!
96




Relative Motion

- ExamEIes of Rotating Reference Frame (3/8)

Case #2

- A chair moves with velocity valong the line on a circular disk
which is rotating with an angular velocityw .
- What kind of forces does a person sitting on the chair feel?

riolis force

.O
.
.
‘e
.

—~

.
~ 2.
e

\

Centrifugal forc

o
.
AN

~

e

The person sitting on the chair feels
Coriolis force.

-
-

~.certain force

Nt
N e

'0
N
N
\
AY

(ob/n

~

o7



Relative Motion

- Examples of Rotating Reference Frame (4/8)

Case #1

- A chair is fixed on a circular disk which is rotating with an angular

velocity w.

- What kind of forces does a person sitting on the chair feel?

inertial force
Centrifugal force

- -

,//// P\\\\
y Vi ~
Centripetal force

~

Description from the observer @

The person sitting on the chair

revolves around the center of the
disk.

It shows that the centripetal force is
exerted on the person

~

Description from the person
sitting on the chair.

The person sitting on the chair feels
centrifugal force. & inertial force




Relative Motion

- ExamEIes of Rotating Reference Frame (5/8)

Case #1

- A chair is fixed on a circular disk which is rotating with an angular

velocity w.

- What kind of forces does a person sitting on the chair feel?

- -~

Centrifugal force

- We apply Newton’s 2nd law to the
person on the chair

nee .
mP rP/E - FP

-—— -

| ne 1 _ N _ . n
iy Tpon=F, mp/ﬂ,; Mp ("9, X "Tp0) inertial force

The person feels centrifugal force

-




Relative Motion

- ExamEIes of Rotating Reference Frame (6/8)
Case #2

- A chair moves with velocity valong the line on a circular disk
which is rotating with an angular velocityw .

- What kind of forces does a person sitting on the chair feel?

- e p
Description from the observer @

b/n /O(t)

- -
- ~
- ~o

At l.P/O A /.
LSS T \.,certaln force
(!)b/ P/O (t + At) ‘ ,/// // .....

I, (t+At) /7

From the change of the tangential
velocity, observer @ can recognize
that there is certain force.

(Ob/n

/!
100




Relative Motion

- ExamEIes of Rotating Reference Frame (7/8)

Case #2

- A chair moves with velocity valong the line on a circular disk
which is rotating with an angular velocityw .
- What kind of forces does a person sitting on the chair feel?

riolis force

.O
.
.
‘e
.

—~

.
~ 2.
e

\

Centrifugal forc

o
.
AN

~

e

The person sitting on the chair feels
Coriolis force.

-
-

~.certain force

Nt
N e

'0
N
N
\
AY

(ob/n

~
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Relative Motion

- ExamEIes of Rotating Reference Frame (8/8)

Case #2

- A chair moves with velocity valong the line on a circular disk
which is rotating with an angular velocityw .

- What kind of forces does a person sitting on the chair feel?

oriolis force

.O
.
.
‘e
.

O
Vi
Obsenve @
@
€
E

.
~ 2.
e

,,’ |/
/ -certai
/// yb \..' 'A
4 P/O

~

Centrifugal forceperson on the chair

force

o

- We apply Newton'’s 2" law to the

mP P/E F

————Q—————————————————.

— o o o o o o o o - e o e e e o e e o e e e

The person feels Coriolis and centrifugal force




Examples of a Person on the Rotating Disk (1/2)

The person “P” is sitting on a chair which is fixed on a large disk rotating
with constant angular velocity o.

1. In inertial frame

m,(Rw*)=F, - (1)

Centripetal F

force-- " L

The person “P” is accelerated || The external force exerted on
in inward direction with an the person “P”, this is the
acceleration “Ro* " “Centripetal force”.

103



Examples of a Person on the Rotating Disk (2/2)

The person “P” is sitting on a chair which is fixed on a large disk rotating
with constant angular velocity o.

"1 inertial frame
m,(Ro*)=F,

2. In non-inertial frame
(According to D'Alembert Principle)

0=F,—m,(Ro")

The person “P” is not | = The force “~,(R®")” is a centrifugal
accelerated. (the force which is also inertial force.
acceleration is zero)

—m Ra)
Centripetal F r ( )
force -

The person “P” perceives the
ynamic Equilibrium centripetal force and an additional

force “ m,(R®’) " in outward direction.
i.e. The person perceives the tension
on his arm caused by the centripetal
force and the centrifugal force

3. What is the magnitude of the inertial force ” —,(Ro’) "2

® From the equation (1), —y;; (Rw’)=-F, 104



Centrifugal and Coriolis Accereation
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Example) Rotating Disk - Centripetal, Centrifugal
1/5

A point “"A" is fixed on a rotating disk rotating with a constant angular
velocity.

Velocity of the point A observed in n-frame.

n-frame: an inertial frame.
b-frame: a frame fixed on the center of the disk. 106



Example) Rotating Disk - Centripetal, Centrifugal
2/5

A point “"A" is fixed on a rotating disk rotating with a constant angular
velocity.

Velocity of the point A observed in n-frame.

A >

t+At

n-frame: an inertial frame.
b-frame: a frame fixed on the center of the disk. 107



Example) Rotating Disk - Centripetal, Centrifugal
3/5

A point “"A" is fixed on a rotating disk rotating with a constant angular
velocity.

Velocity of the point A observed in n-frame.

n-frame: an inertial frame.
b-frame: a frame fixed on the center of the disk. 108



Example) Rotating Disk - Centripetal, Centrifugal
4/5

A point “"A" is fixed on a rotating disk rotating with a constant angular
velocity.

Velocity of the point A observed in n-frame.

Vt
. Av AO
lim ~ a
At—>0 Af A ) .
o Centripetal Acceleration
ox(oxr,,)
Magnitude of a,
t —
V, =OXTI,,
t
V,|=or
lim ‘AV‘ ~|Vi|- A =wr-AO
AO—0
o a|=lm|—|=|V| - —=wr-o=wr
n-frame: an inertial frame. n At—0| At ¢ At
b-frame: a frame fixed on the center of the disk. 109




Example) Rotating Disk - Centripetal, Centrifugal
5/5

A point “"A" is fixed on a rotating disk rotating with a constant angular
velocity.

Velocity of the point A observed in b-frame.

Vb
Centrifuggl Acceleration

—ox(oxr,,)

D
C./ xb

\ 4
Centripetal Acceleration

ox(oxr,,)

Since, the point A observed in b-frame is
not accelerated, there should be an
additional force exerted on the point A
except the centripetal force.

trame: an inertial frame. The additional force is a centrifugal force.

b-frame: a frame fixed on the center of the disk. 110




Example) Rotating Disk - Coriolis Acceleration(1/7)

A point "A" is moving along a slot with a constant velocity, and the slot
Is on a disk rotating with a constant angular velocity.

VeIocitonf the point A observed in n-frame.

n-frame: an inertial frame.
b-frame: a frame fixed on the center of the disk. 111



Example) Rotating Disk - Coriolis Acceleration(2/7)

A point "A" is moving along a slot with a constant velocity, and the slot
Is on a disk rotating with a constant angular velocity.

VeIocitonf the point A observed in n-frame.
t+At t

- ~

S~a o -

n-frame: an inertial frame. |
b-frame: a frame fixed on the center of the disk. 112



Example) Rotating Disk - Coriolis Acceleration(3/7)

A point "A" is moving along a slot with a constant velocity, and the slot
Is on a disk rotating with a constant angular velocity.

VeIocitonf the point A observed in n-frame.
t+At t

Coriolis Acceleration

- ~

OXV

. t \
Centripetal v, ~D
Acceleration AO — db
t
X (0) X T ) .
AlB Coriolis
; Acceleration
.- - t+At
7 Vt t
OXV,

S~a o -

n-frame: an inertial frame. 5
b-frame: a frame fixed on the center of the disk. 113



Example) Rotating Disk - Coriolis Acceleration(3-1/7)

A point "A" is moving along a slot with a constant velocity, and the slot
Is on a disk rotating with a constant angular velocity.

VeIOC|ty of the point A observed in n-frame.

n-frame: an inertial frame.
b-frame: a frame fixed on the center of the disk.

Coriolis Acceleration

(OXV;N\ A
v
a JR—

1 At
t

t+At Vn

a6 > a6
D

Magnitude of a,
lim ‘AV‘ ~ ‘Vt ‘-AQ =v A0
AG—0

Av A@
At At

Vt

n

‘aﬂ‘ = lim |—
At—0

~ |V

n

Q
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Example) Rotating Disk - Coriolis Acceleration(3-2/7)

A point "A" is moving along a slot with a constant velocity, and the slot

Is on a disk rotating with a constant angular velocity.

Velocity of the point A observed in n-frame.

1At A

- ~

-~ P

S~a o -

n-frame: an inertial frame.
b-frame: a frame fixed on the center of the disk.

t+At t t yb
v, mx(rA/B+At v )
E ) SRR
lim Av . t
o _ t r
12 A0 At v, A/B

V¢ t

. t t t
—(:)x(rA/BJrAt-Vn)—(oxrA/B E’

_ t t t
—a)x(rA/B+At-Vn —rA/B) ®
=OXAt-V,

. AV . @xAt-V
a.=lim— =lim L

=XV,
12 A0 At At—0 At

Xp
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Example) Rotating Disk - Coriolis Acceleration(4/7)

A point "A" is moving along a slot with a constant velocity, and the slot
Is on a disk rotating with a constant angular velocity.

VeIocitonf the point A observed in n-frame.
t+At t

- ~

-~ P

S~a o -

n-frame: an inertial frame. 5
b-frame: a frame fixed on the center of the disk. 116



Example) Rotating Disk - Coriolis Acceleration(5/7)

A point "A" is moving along a slot with a constant velocity, and the slot
Is on a disk rotating with a constant angular velocity.

VeIocitonf the point A observed in n-frame.
t+At t

- ~

-~ P

S~a o -

n-frame: an inertial frame. |
b-frame: a frame fixed on the center of the disk. 117



Example) Rotating Disk - Coriolis Acceleration(6/7)

A point "A" is moving along a slot with a constant velocity, and the slot
Is on a disk rotating with a constant angular velocity.

VeIOC|ty of the point A observed in n-frame.

Coriolis Accetleration
OXV,

t
n

Coriolis Acceleration vty
OXV

Centripetal

_____________________________________________________________

Acceleration

S et .
2((o>< Vn) Centripetal
Acceleration

t
n-frame: an inertial frame. ® X ((’) X rA/B ) ‘
b-frame: a frame fixed on the center of the disk. 118



Example) Rotating Disk - Coriolis Acceleration(7/7)

A point "A" is moving along a slot with a constant velocity, and the slot
Is on a disk rotating with a constant angular velocity.

Velocity of the point A observed in b-frame.

1At A

- ~

-~ P

S~a o -

n-frame: an inertial frame.
b-frame: a frame fixed on the center of the disk.

Vb
Centrifuggl Acceleration

Coriolis _(’Ox(mxrA/B)

Acceleratior)< s : Coriolis

2 ((0 XV ) X, Acceleratiton
s

\ 4
Centripetal Acceleration

ox(oxr,,)

Since, the point A observed in b-frame is
not accelerated, there should be an
additional force exerted on the point A
except the centripetal force.

The additional force is a centrifugal force
and Coriolis force. 119



