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Ship Stability
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Ch. 9 Numerical Integration Method in
Naval Architecture

Simpson’s Rule
Gaussian Quadrature
Calculation of Area by Using Green’s Theorem

Calculation of Hydrostatic Values By Using Gaussian
Quadrature and Green’s Theorem

Classical Calculation Method for Ship’s Surface Area
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Simpson’s Rule

o ‘3.% §TSYsiem |
% Design 4
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh L IDlLaboratory



Simpson’s 1st and 2"d Rules

Simpson’s 1t, 2nd Rules

Simpson’s 15t Rule Simpson’s 2" Rule
Y, Yi
Yo Vi 1) Yo V1 1) V3
| | x| | X
s s
1 3
Areazgs(y0+4y1—|—y2) Areazgs(y0+3yl+3y2+y3)
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5-8--1, 3:10--1, and 7-36--3 Rules

5-8--1, 3-10--1, 7-36--3 Rules

5-8--1 Rule 3-10--1 Rule

yn 1
M =QS2(3yo+10y1—1y2)

_ |

7-36--3 Rule

Yo Y ) | ;
I, =120 (7y,+36y,—3y,)

1
Area :ES(SyO +8y, —1y,)
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Derivation of Simpson’s 15t Rule (1/4) " i

Simpson’s 15t Rule:
Approximate the function y by a parabola (quadratic polynomial curve) whose

equation has the form

2
Parabola: ) = a, + a,x + a,x

The parabola is represented by three points defining this curve.
The three points (y,, V¢, ¥,) are obtained by dividing the given interval into equal
subintervals “s”.

The relation between the coefficients a,, a;, a, and v, V4, ¥, is
x=0: y,=a,
. 2
xX=s: y, =a,t+as+a,s

x=2s: y,=a,+2as+4a,s’
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Derivation of Simpson’s 15t Rule (2/4) " i

— 2

Vo=0y @

N 2 . .
ylzao‘l'alS-l-Clez alS_I_aZS +.y0 yl_o @

S

2 —
y, =a,+2a,s+ 451252 2as+4a,s"+y,—y,=00®

4

4x@ - @: @ -2x@:

20,8 +3y, =4y, +y, =0 2a,5" =y, +2y,—y, =0

oy = —(yo 2y1 +)/2)

_( 3y, +4y,—¥,)
2s°

28
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. 2

]
ay = Yo, a1=2—S(—3yO+4y1—yz), a, =

2 N 2
I 1 .
Y=Y+ = (Byy +4y, = y)X + (¥ =2, + )X
28 28

Integrate the area A from 0 to 2s.

28

A= j ydx
2s 1

= yo+—( 390 + 40 =323+ 5 (o - 2y, + y,)x dx
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Derivation of Simpson’s 15t Rule (4/4) y’o’ AR

f<——=

S X
28 1 1
A= I Yo+ (3yy +4y = y)x + (1) =2y, + y,)x"dx
0 2 2 ,
] ] ’
=YX +—(3Y, 4y, = 1,)X° +—5 () =2y, + y,)x°
4s Os 0

1

@(yo =2y, +3,)(2s)’°

1
= YO(25)+4_S(_3)/0 +4y, _yz)(ZS)z +

4
=2YS+(=3y,+4y, —»,)s + 3 (Vo =2y, + ;)8

S
| =§(1y0 +4y, +1y,)
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Derivation of Simpson’s 2"d Rule (1/4) /—\L

Simpson’s 2" rule : ~s X
Approximate the function by a cubic polynomial curve whose equation has the form

Cubic polynomial curve: ) = d,, + a,x + a2x2 + a3x3

The cubic polynomial curve is represented by four points defining this curve.
The four points (v,, V4, ¥, V3) are obtained by dividing the given interval into equal
subintervals “s”

The relation between the coefficients a,, a,, a,, a; and vy, V4, V5, Y3 is
x=0: y,=aq,
2 3
xX=8: y, =a,tas+a,s +a,s
2 3
x=2s: y,=a,+2as+4a,s" +38s

x=3s: y,=a,+3a,s+9a,s’ +27s
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Derivation of Simpson’s 2"d Rule (2/4) /—\L

2 3 -
y=a,+ax+a,x" +ax ~= .
_ 2 3

y, =a,+2a,s+4a,s> +8s°, y,=a,+3a,s+9a,s>+27s’

The unknown coefficients, a,, a,, a,, a; lead to

:yo
—( 11y, +18y, =9y, +2y;)
6S
a, = 22(2yo—5y1+4y2 V3)
a, = —( Yo +3y, =3y, + ;)
6s°
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Vi Vo V3

Derivation of Simpson’s 2"d Rule (3/4) y’; /—\L

y=a,+ax+a,x’ +a,x’ == g

a, :yo, —a( 11y, +18y, =9y, +2y,),
1

ay, =—5 2y, =5y, +4y,=y;), a3=—=y,+3y, =3y, +;)

22 6s°

Integrate the area A from 0O to 3s.

3s 3s
Azjo ydx=jo (a, +a,x+a,x” +a,x’)dx
3
4, 4, a; 4
=g x+—Lx"+—2x +-2x"
2 3 4 |,

2 ]
=3a,s +— ) as +—7azzs3 +8—a3s4

2 3 4
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Vi V2 V3

Derivation of Simpson’s 2"d Rule (4/4) y’; /—\L

y=a0+a1x+a2x2+a3x3 = g
a, :yo, a( 11y, +18y, =9y, +2y,),
1
az 2 2(2y0_5y1+4y2 y3)9 CZ3 6 3( y0+3y1 3y2+y3)
9 27 31
A=3a,s+—as’ +=—a,s’ +—a,s"
2 3 4
By substituting a,, a,, a, and a; into the equation, the Area “A” leads to
A= 3y05+2 L( 11y, +18y, =9y, +2y,)s’
2 6s
27 1 31 1
+ o QN =Sy Ay = y)s e s (Cr 35 =3+ )
3

A :gs(J’o +3y,+3y, + ;)

P RZSYstem
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Derivation of 5-8--1 Rule (1/4) —

5-8--1 Rule:
Approximate the function y by a parabola whose equation has the form

2
Parabola: ) = a, + a,x + a,x

The parabola is represented by three points defining this curve.
The three points (y,, V¢, ¥,) are obtained by dividing the given interval into equal
subintervals “s”.

The relation between the coefficients a,, a;, a, and v, V4, ¥, is
x=0: y,=a,
. 2
xX=s: y, =a,t+as+a,s

x=2s: y,=a,+2as+4a,s’

> -~
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Derivation of 5-8--1 Rule (2/4) —

. 2

Vo=0y @

N 2 — —
Y, =a,+as+a,s’ 4s+as+y, -y =0 @

S

2 _
y, =a, +2a,s+4a,s’ 2as+4ays"+y, -y, =00

4

4x @ - ®: ®-2x®:

2a,5" =y, +2y, =y, =0
1

N 2s?

2a,s+3y,—4y,+y, =0

|
Soa;=— 3y, +4y,—y,) e (Vo =2+ ;)

28
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Derivation of 5-8:-1 Rule (3/4) y’o’ Vi Vs
y=a,+a,x+a,x’ L
S X

]
ay = Yo, a1=2—S(—3yO+4y1—yz), a, =

2 N 2
I 1 .
Y=Y+ = (Byy +4y, = y)X + (¥ =2, + )X
28 28
Integrate the area A from 0 to s.
A= IO ydx

s 1
= joyo+2—S(—3yo+4y1—yz)x+ (o =2y, +y,)x dx

2 2
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Derivation of 5-8--1 Rule (4/4) N

Yo

1
257
1
6s*
1

6s*

| 1
A=IO Yo +2—S(—3yo 4y, —y)x+
1
=YX +4—S(—3yo +4y, —y,)xX* +— (3, =2y, + y,)X°

1
= ¥,(5) +4_S(_3y0 +4y, _yz)(S)z +

] ]
= yOS+Z(_3yo +4y, _yz)S+g(yo =2y, +»,)s

S
SA= E(SYO +8y,—1y,)

(Vo =23, + ,)x"dx

A

0

(Vo =2y, + yz)(S)3
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Derivation of 3:10--1 and 7-36--3 Rules , — ]
- -
3-10--1 Rule: The first moment of area about y axis My = jo xdA
7-36--3 Rule: The second moment of area about y axis ]y = jo x*dA
S S S 7 3
M =\ xdAd=| xydx=| a,x+ax" +a,x dx
y 0 0 0 0 1 2 |
1 @«@a,=),, alzzis(—3y0+4yl—y2), azzz—sz(yo_zyl"'yz)
=——5"(3y, +10y, — »,)
0 1 2
24
o2 > 2 S 3 4 5
[ =| xdA=| x'ydx=| a,x +ax +a,x dx
y 0 0 0 0 1 2 1
1 «a,=Y,, alzzis(_3yo+4%_yz)a a2:2—Sz(y0_2yl+yZ)
=——5" (79, +36y,-3y,)
0 1 2
120
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Gaussian Quadrature
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Gaussian Quadrature

Gaussian quadrature: J‘_llf(t)a’t = ZA]. - f())
j=I

Given: Function £7)

Find: Integration of f{r) at given interval

[-1, 11 [ (e
In the case of Cubic Gaussian quadrature,

J:f(f)dt ~ 4 'f(t1)+Az 'f(t2)+A3 'f(tg,)

e — D
n Coefficients A]. Node t

A; = 0.5555555556 t; = -0.7745966692

3 A, = 0.8888333889 t,=0

A; = 0.5555555556 t; = 0.7745966692
N /

Coefficients A].

i (Quartic)

A, = 0.3478548451
A, = 0.6521451548
A, = 0.6521451548
A, = 0.3478548451

t; = -0.8611363115
t, = -0.3399810435
t; = 0.3399810435
t, = 0.8611363115

AN

5

1
1 |(Quintic)

A; = 0.2369268850
A, = 04786286704
A; = 0.6521451548
Ay, = 04786286704
As; = 0.2369268850

t, = -0.9061798459
t, = -0.5384693101
t;= 0.0

t, = 05384693101
t; = 0.9061798459
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Calculation of Area by Using
Green’'s Theorem*

* Erwin Kreyszig, Advanced Engineering Mathematics, 9t Edition, pp.439-445, 2006 %‘Ugﬁ }QS"’%E?&T 29
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Calculation of Area by Using Green’s Theorem

y

H[ oN aj\){ jdxdy = §(de + Ndy)

C Surface Integral Line Integral

M, N: The functions of x and y. And M, N, dM/dy, and
dN/dx are continuous on R.

If M =-y, N=x
LHS= || [aN oM jdxdy ] [(x)—( y)jdxdyz [ 2dxdy =24 (1 Area)

R.H.S=§(de+Ndy § ydx+xa’y §(xdy—ydx)
C

C

24 = §(xdy — ydx) A= %ﬁ(xdy — ydx)
C

C

P RZSYstem
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Calculation of First Moment of Area
by Using Green’s Theorem (1/2

y

H[ oN 8]\)/4 jdxdy = §(de + Ndy)

C Surface Integral Line Integral

M, N: The functions of x and y. And M, N, dM/dy, and
dN/dx are continuous on R.

v'First moment of area about the y-axis in x direction (MAJ = J-di = ”xdxdy)

If M =-xy, N=— x
L.H.S = H(aN aé\j]dxdy H(@ 2 )—;/(—xy)]dxdy =_g2xdxdy =2M,

X x>
R.H.S = §(de—|—Ndy)= §(— xydx+2dyj = §[2dy—xydxj

C C C

_ (X ¢l x
..2MA,y—<J‘>(2dy xydx] 2§[2dy xydx]

¢ C

U‘;o‘ bTSYsiem
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Calculation of First Moment of Area
by Using Green’s Theorem (2/2

y

H[ oN aj\){ jdxdy = §(de + Ndy)

C Surface Integral Line Integral

M, N: The functions of x and y. And M, N, dM/dy, and
dN/dx are continuous on R.

v'First moment of area about the x-axis in y direction (MA)X = jydA = Hydxdy)
If M ——y— N =xy

LHS= |[ @])\C] aﬂy{jdxdy = Lj[%(xy)— ;} (- y;)jdxdy = ij 2ydxdy =2M , ,

2 2
R.H.S = i(de+Ndy)=§[—yzdx+xydyj=§[xyd —);dxj

C C

2 1 2
S2M = c‘f{xydy —y?dx) M, . = zﬁ(xydy = );dx]
C

C

o bTSYsiem
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Calculation of Second Moment of Area
by Using Green’s Theorem (1/2

y

H[ oN 8]\)/4 jdxdy = §(de + Ndy)

C Surface Integral Line Integral

M, N: The functions of x and y. And M, N, dM/dy, and
dN/dx are continuous on R.

v'Second moment of area about the y-axis in x direction ([A)y = szdA = H xzdxdy)

If M =—-x"y, N:%3

s H(GN aé\jjd Xdy = H( —() ;}(—xzy))dxdy:LIszdxdy:HA’y
R.H.S=£(de+Ndy)=£[—x2ydx+);dyjzi[idy—xzydxj

w20, = ﬂxg dy — x* ya’xj I,,= % J (%3 dy —x° ydxj

U‘;o‘ bTSYsiem
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Calculation of Second Moment of Area
by Using Green’s Theorem (2/2

y

H[ oN aj\){ jdxdy = §(de + Ndy)

C Surface Integral Line Integral

M, N: The functions of x and y. And M, N, dM/dy, and
dN/dx are continuous on R.

v'Second moment of area about the x-axis in y direction (]A’x = ijdA = H yzdxdy)

3

IfM——y— N =xy’

LH.S - jj@f af‘jjdxdyij[@—i(xyz)—;(— y33>]dxdy=Lj2y2dxdy=2fA,x

3 3
R.H.S = §(de+ Ndy)z §[—);dx+xy2dyj = §[xy2dy—2dxj
C

C C

3 1 3
S21, = Cﬁ(x)fdy —y?dxj [, = 5@ (xyzdy —y?dxj
C

C

o bTSYsiem
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[Example] Calculation of Area, First Moment of Area, and

Centroid with ResEect to the Inertial Frame 51/102

Z A\

Cf: From the geometry of the triangle, the area and
the centroid can be obtained as follows;

v’ Area A
A=[dA=|[dydz
4L Green’s theorem
= l§ya’z—za’y
2 C

: Segment (@: y(0)=t, z()=-1-2, 2120

Using the chain rule, convert the line
: integral for y and z into the integral for
: only one parameter t.

—f ydz — zdy =

P E RERNB| 7

A:l-2-2:2
2 2 Bl
(Va5 28) = (0,==) \ /

oy'z':Body fixed coordinate

oyz : Water plane fixed coordinate

!
5_
1
“2de

1 ¢0 1 0
:Ej_ﬁﬁdf 25\/51‘ NG
— V242 -1

28



[Example] Calculation of Area, First Moment of Area, and

Centroid with ResEect to the Inertial Frame gZ/ 102

v'Area A4

Z A\

1
z : — _
A—2§>ydz zdy

C

: 1
: Segment (: Ej@de_Zdy =1

> Esegment @: y()=t, z(t)=t—+2, 0<1<2

Y
A —_[ dz —zdy = 1 J‘ﬁ 4z _ z @ dt
YETET e
' 1 2
Y -~ (t 1—(t—\/§)-1)dt
Cf: From the geometry of the triangle, the area and 1 ¢v2 1 V2
the centroid can be obtained as follows; 5 = EJ.O \/Edf = —\/51‘0

1

A=22.2=2 7| :%ﬁﬁzl
J2 15
(Vi,25) = (0, =) /

oy'z':Body fixed coordinate

oyz : Water plane fixed coordinate

29



[Example] Calculation of Area, First Moment of Area, and

Centroid with ResEect to the Inertial Frame $3/ 102

v'Area A4

' : |
z : —_ _
A—2§>ydz zdy

C

Z A\

Segment (: —I®yd2—zdy =

7y Segment @: Ej@ydz—zdy=

A i Segment @: y()=1, z=0, —V2<1<42
Y 1 dz — zd Lr 2( %—zd—y}z’t
-[®y Y=ol VT
: 1 -2
Cf: From the geometry of the triangle, the area and : - — (t -0-0- l)dt =0
: 22

the centroid can be obtained as follows;
AN

gL 5 5_5 =]
> V. 15
(yBl,ZBl):(O,_T
V2

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate

=—§ydz zdy=1+1+0=2
ONONE

<V




[Example] Calculation of Area, First Moment of Area, and

Centroid with ResEect to the Inertial Frame $4/ 102

Z A\

Cf: From the geometry of the triangle, the area and
the centroid can be obtained as follows;

Z N

1

Segment M: y(H)=t, z(t)=-t-+2,

A=—-2.-2=2

2 e
N Bl
(yBIDZBl) — (Oa_% \/
2

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate

<V

v'First moment of area about the z-axis

in y direction M,
M, . = J.ydA = ”ydydz

4L Green’s theorem

1y’
=—¢-—dz— yzdy
2£ 2
—+/2<t<0

10 (y?dz dy
—I dz ydy—2 I[———yz—jdt

2 dt dt
:% ((1) r(rf)ljdt
1 (ﬁ ZtJdt:—{t— Qﬁ}
2 -2 2
V2

31



[Example] Calculation of Area, First Moment of Area, and

Centroid with ResEect to the Inertial Frame $5/ 102

z

v'First moment of area about the z-axis
in y direction M,

Cf: From the geometry of the triangle, the area and

the centroid can be obtained as follows;

z 1 2
M,. :—§y—dz—yzdy
' V2
Segment@ I Y g yzdy ==~
> : Segment @: y(t)zr, 2()=1-+2, 0<1<42
A : 1 J2 2
Y dz dy
< d =— [ =22 ar
I Zyyzjo(zdtde
yV

ljﬁ(t—i—t(t—\/a)-ljdt
24 | 2
=ljﬁ(—i+ﬁtjdt

20 | 2

<V

Z A\
J2
A:%-z-Z:Z =] 18 A2
A N\t 2762
(yBI,ZBl):(O,_T) / 0
2 2
oy'z":Body fixed coordinate B 3

oyz : Water plane fixed coordinate

32



[Example] Calculation of Area, First Moment of Area, and

Centroid with ResEect to the Inertial Frame $6/ 102

Z A\

Cf: From the geometry of the triangle, the area and
the centroid can be obtained as follows;

1

Segment (:

Segment @: ;

A=—-2-2=2
2 2 Bl
(Va5 28) = (0,==) \ /

oy'z':Body fixed coordinate

oyz : Water plane fixed coordinate

v'First moment of area about

in y direction M,

1.y’
M, . =—¢-——dz— yzdy
2£ 2 2

L
29072
1

_Lpe(e
R )

the z-axis

2
_ 3
ESegment ®@: y(@)=t, z=0, —J2<1<42

t-0- ljdt 0

1 y2
M, =—¢o—dz— yzdy = —
A,z 2§ 2 y y

V2 A2
+—+0=
3 3

© @ 6

33



[Example] Calculation of Area, First Moment of Area, and

Centroid with ResEect to the Inertial Frame $7/ 102

v'First moment of area about the y-axis

“A in z direction M,
z' 1 z
M, =—¢yzdz——d
A,y 2£y 2 y
4L Green’s theorem
: 1 z’
> i = _SsyZdZ——dy
y E 2 C 2
A Segment (D: y(?) =¢, 2(t)=—1-~2, —~2<1<0
1 z° 1 o dz z* dy
: —\| yzdz——dy =— z—— dt
Y 2I®y i 2Iﬁ(y dt 2 dtj
: 1 (0 (=t —~/2)?
Cf: From the geometry of the triangle, the area and = 5_[_\5 H(—t— \/5)(_1) - 5 1 |dt
the centroid can be obtained as follows; :
Z A 2
1 5 :lfo t2+\/§t—t +2\/§H2Jdt
Y 292

oy'z":Body fixed coordinate

A=—-2.2=2 = 5
> V2 V1B
(V5250 =(0,— 3 )\/ 1o (7 i[2 7 V2
NG 3la 7@”’”5{%"}&"—

oyz : Water plane fixed coordinate



[Example] Calculation of Area, First Moment of Area, and

Centroid with ResEect to the Inertial Frame $8/ 102

Z A\

Vv

Cf: From the geometry of the triangle, the area and
the centroid can be obtained as follows;

Z N

1

] 2
Segment ®: 5j®yZdZ—7dy:__

A=—-2.-2=2

2 e
N Bl
(yBIDZBl) — (Oa_%) \/
2

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate

<V

v'First moment of area about the y-axis

in z direction M,
2

1 z
MA,y :§§yZdZ—7dy
C

V2

3

3 ESegment @: y()=t, z(t)=t—-+2, 0<t<2

1 z’ 1 (2 dz z% dy
— dz——dy =— —
oyt~ I(”m 2 dr

5 > ), dt

1 2
-5l

7 2 _
:% 02 i —2r -t 2\2@”]&

V2
\/’ 2 3
:ljz t__l dl‘:l t__t :_Q
29 {2 2] 6 3

dt

t(t—\/z)-l—(t_f)z-l

35



[Example] Calculation of Area, First Moment of Area, and

Centroid with ResEect to the Inertial Frame $9/ 102

z

v'First moment of area about the y-axis
in z direction M,

Cf: From the geometry of the triangle, the area and

the centroid can be obtained as follows;

1

z | g
M,, :Efyzdz—gdy
1 ¢ 72 \/5
Segment (1: E@yza’z—?dy__F
> 1 2. 42
h% Segment @: E@yZdZ_?dy__T
A : Segment @: y()=1, z=0, —V2<i<y2
y'

A=—-2.-2=2
2

V2

(yBl9ZBl):(O9_ 3

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate

1 z’ 1 (2 dz z* dy
) R Lt Lt dfjdf
| (2 02
=z . —- 0. ] ——. —
A g 2Iﬁt01 21]dt0
E—a%yi
1 .
. 2
\ :.'.MA’y:l§yzdz—z—dy=—£—£+0=—£
V2 : 2 2 33 3
: ®» @ ©®



[Example] Calculation of Area, First Moment of Area, and

Centroid with ResEect to the Inertial Frame S10/ 102

i v'Area A
ZA 1
2 A:—§ydz—zdy=2
. 2C
v'First moment of area about the z-axis

in y direction M, .

1 ¢y’
> M, =—o—dz—yzdy=0
y i A,z 2 i 2 y y
A i v'First moment of area about the y-axis
: in z direction M,
\ : 2
Y M, = l zdz — Z—d = —&
: . iy 2 Y 3
Cf: From the geometry of the triangle, the area and v'Centroid
the centroid can be obtained as follows; . M M
=N (y,,2, ) =| —2=, —242
: o A A

1

A==-2-2=2 =

N _
(yBl,zBl)=<o,—%> \/

N 5

oy'z":Body fixed coordinate =

<V
N | O
N | —

|

)
wg‘

)
N
N

oyz : Water plane fixed coordinate



[Example] Calculation of Area, First Moment of Area, and
Centroid with Respect to the Body Fixed Frame (1/10

v’ Area A
z Z'/\ v
L A=[da={[dyaz
I i Il Green’s theorem

|
: — E§yvdzv_zvdyv
(I C
i Segment 0: y'() =1, Z'(N)=-1, —1<¢<I
Using the chain rule, convert the line

@
1
A
/ -1 @ \ i integral for y’ and z’ into the integral for

: only one parameter t.

Ty

Cf: From the geometry of the triangle, the area and l % A I A l ! v% _ '@
the centroid can be obtained as follows; _ 9) I@y dz'~z dy N 9) _1()/ dt z dt dt
4 i

_ . 1
1 3 =—| (t-0—(=1)-1)dt
——.20.2 = N
A_zzz_i 1 e )
(y'BIDZ'Bl):(_a__) 4 2 : _l : _l b
373 5-;3 E = [ war=2d =1

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate



[Example] Calculation of Area, First Moment of Area, and
Centroid with Respect to the Body Fixed Frame (2/10

: v'Area A4
z Z'/\ 1
y E A — _§y|dZ|_Z|dyV
: 27
1 5 !
: Segment : —f y'dz'=z'dy'=1
L 1) : 20
4 :
1 1 >  iSegment @: y'()=1, z'(t)=t, -1<r<1
1 @ Y
6\ .
Bl A . lj 'dZ'—Z'd'_l 1( vg_ 'det
N 2 )27 PR
: =—| (1-1-2-0)ar
Cf: From the geometry of the triangle, the area and : — lt‘l =1
the centroid can be obtained as follows; o 2 -
4
1 3
A=--2-2=2 —tr X
' ' 1 1 | 3 .
VeZa) =373 [Tz
3 3
2:1

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate



[Example] Calculation of Area, First Moment of Area, and

Centroid with Respect to the Body Fixed Frame (3/10

= z
d\ y
1
7 |@
-1 » ‘iA
A AN

Cf: From the geometry of the triangle, the area and

the centroid can be obtained as follows;

4
1 3
A_5-2-2_2 s
L 1 1 e
(,yB1 9ZBI):(§9_§) i lg
3 3
2:1

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate

\<V

Segment (:
Segment @:

Segment 3®:

Y4

v'Area A4

A= l§y‘a’z’—z’a’y'
2 C

1 ' ' ' ' [
EJ@)y dz'-z'dy = |

J1

y'(t)=t,

1
5I®y'dz'—z'dy' =1

1 ' ' ' '
5_[@)/ dz'-z'dy'=1

zZ'(t) =t,

(1-1-1-1)dt =0

—§y dz'—z'dy'=1+1+0=2

© @ G

—-1<¢<1



[Example] Calculation of Area, First Moment of Area, and
Centroid with Respect to the Body Fixed Frame (4/10

Ty

@

]

A
A AN

Cf: From the geometry of the triangle, the area and
the centroid can be obtained as follows;

4
| 3
A=-:2:2=2 —
T 1 1 HE
D Za) =373 [T
3 3
2:1

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate

-

Y4

v'First moment of area about the z'-axis
iny" direction M .

M'A’Z,zjly'dA =”y‘dy'dz'

4L Green’s theorem

| y'2
— dZ'—y'Z'dy'
2 i 2

 Segment @: ¥'() =1, (=1, ~1<r<l

1 y” 1 ¢ y” dz dy'
- 2 dr—v' 2 dv' = — RS A
Y R 211(2& ar

12
—EL[?-O—t(—I)det

1

=0

-1

1 1
=—rtdt=—t2
21 Ty
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[Example] Calculation of Area, First Moment of Area, and
Centroid with Respect to the Body Fixed Frame (5/10

v'First moment of area about the z'-axis
i iny direction M,

z A BY
12
M' :l§y dZ'_y'Z'dy'
2l
| E 1 yv2
: Segment D: — j dz'-y'z'dy'=0
L 1) : 20 2
4 :
1 1 > , iSegment @: y'(H=1 z'()=t, -1<t<I
- ® Yo
<
Bl \A 12 12 ' '
l¢ vy 1ty dz dy
— dz'-y'z'dy' = — —y'z'— |dt
/ N\ b yEy=o || T dtJ
1l o \ :
:lr D osiola
21 2
Cf: From the geometry of the triangle, the area and 11 .
the centroid can be obtained as follows; - =—| Zdt=—1 =—
) : 2912 4\,
1 N
A:5-2-2:2 ._2__‘
' ' 1 1 | 3 .
(J’BlazBl):(ga_g) 4 lg
3 3
21

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate
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[Example] Calculation of Area, First Moment of Area, and
Centroid with Respect to the Body Fixed Frame (6/10

v'First moment of area about the z'-axis

z z' ) i iny direction M,
: 1 yvz
M! = dZ'_ 'Z'dl
A,z 2£ 2 y y
1 1 »”
= | : Segment (D: 515 dz'—y'z'dy' =0
Z - : 1 ¢ y12 1
— ' i Segment @: — dz'-y'z'dy' = —
Hoe ! y' e 2de gy T,
B\ T A4 :
1 : Segment @: y'()=t, zZ'(0)=t, —1<r<1
> :
/ ~1| @ \ R ol g
Y Yy az Y
— dz'-y'z'dy' = — —y'z'— |dt
e )
Cf: From the geometry of the triangle, the area and 1 ¢l 12 1 ¢l l‘2 tsl 1
the centroid can be obtained as follows; _ : :—I —1—=t-t-1|dt :_j ——\|dt=—— =——
, 21 2 2 2 12|, 6
a=L2.2-2 i : L e v
TS AT o—1> i .'.MA’Z.=—CJ‘> dz'-y'z'dy
(V' 25 ) = G2 el °e e
s — <.~ 2
B, B, 3 3 g |§ 1 l 2
: =0+———=—
2:1 27 6 3

oy'z":Body fixed coordinate :
oyz : Water plane fixed coordinate @ @ @ 43



[Example] Calculation of Area, First Moment of Area, and
Centroid with Respect to the Body Fixed Frame (7/10

z A v
1
2 |® )
—1 1 /y
® 4
B, A
>
/ —1| @ \

Cf: From the geometry of the triangle, the area and
the centroid can be obtained as follows;

4
| 3
A=-:2:2=2 —
T 1 1 HE
D Za) =373 [T
3 3
2:1

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate

[ ]
L

Y4

v'First moment of area about the y'-axis
in z' direction M, .

M, = JZ'dA = ”Z'dy'dz'

4L Green’s theorem
12

1 z
_ L A
25fy 2 @

i Segment ©: y'() =1, Z'()=-1, —1<1<I
el dz'

12
[ |

1 (R | ' 4 '_1
5!@)/ z dz—jdy =51, V'z
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[Example] Calculation of Area, First Moment of Area, and
Centroid with Respect to the Body Fixed Frame (8/10

\<V

Y4

@

]

A
A AN

Cf: From the geometry of the triangle, the area and
the centroid can be obtained as follows;

4
1 3
A=—-2:2=2 —tr
ST 1 1 E
(yB1 ’ZBI):(E’_E) 4 lg
3 3
2:1

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate

v'First moment of area about the y'-axis

in z' direction M, .
12

' 1 Vg 2 '
MA’y,=5§yZdZ—7dy
C

L g 2 g ]
Segment (D: EI®Y z dz—7dy )
: Segment @: y'()=1, z'()=t, -1<r<1

dz' 2 dy'
— 'Z'dz'—- =— 'Z' — dt
I Y j a2 dt)
2
N S IV
2 2
1
_1 1tdt=lt2 =0
_ 4 4
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[Example] Calculation of Area, First Moment of Area, and
Centroid with Respect to the Body Fixed Frame (9/10

@

]

A
A AN

v'First moment of area about the y'-axis

in z' direction M, .

\ | z" '
MA,y':_§y z dZ_Tdy
E 1 ( ' ! ' Z'z ' 1
: Segment (D: 512 dz'——dy ==
N E 1 12
/yv E Segment @ 5 y'Z'dZ'—Z—dy':O
Segment ®: y'(0)=t, z'(t)=t, —1<t<1
dz' 2" dy'
— 'Z'dz'— — i
ey MJ

Cf: From the geometry of the triangle, the area and

the centroid can be obtained as follows;

4
1 3
A=—-2:2=2 —tr
ST 1 1 E
(yB1 ’ZBI):(E’_E) 4 lg
3 3
2:1

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate

_1y t-t-l—t—-l g =L gL
2 1 > 2129 71|

' 1 '
M',, Ecz[)yZdZ dy
2 3
® @ @



[Example] Calculation of Area, First Moment of Area, and
Centroid with Respect to the Body Fixed Frame (10/10

3

: v'Area A4
z' :
z A h% A= l§y'a’z'—z’dy' =2
: 2 C
1 v'First moment of area about the z'-axis
i Iny direction M,
@ 1" 2
> i M'AZ.=—§ dz'-y'z'dy' = —
—1 1 o 292 3
Bl \A E ) , .
: v'First moment of area about the y'-axis
in z' direction M, .
/ —1 @ \ ] ,d Z'2 J
M' == "D — 2 v
A,y 2iy 2 y
Cf: From the geometry of the triangle, the area and v'Centroid
the centroid can be obtained as follows; _— . ' '
4 (yv Zv ) M A,z M A,y
1 3 aee 4 4
——.0.0 = N
4= 2 22=2 Tz = 1 2 1 2
C 11 e T e
(yBISZBl):(_ﬂ__) 4 lg 2 3 2 3
3 3 3 3
2:1

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate



[Example] Calculation of Area, First Moment of Area, and Centroid
- Transform the Position Vectors with Respect to the Inertial Frame

=z
z A Vv
|
5 |®
—1 3) 1
BN\ | 4
>
/ ~1| @ \
A=2
! 2 1 2
MA,Z'Zg MA,y':_g

\ ' 1 1
(v B °< B ) = (ga_g)

oy'z":Body fixed coordinate

oyz : Water plane fixed coordinate

v'Calculation of centroid(Center of buoyancy B)

in the body fixed frame and inertial frame
Body fixed frame

Inertial frame

o

-5

: |v Transform the center of buoyancy in oy’z’ frame into

oyz frame by rotating the point about the negative x'-
axis with an angle of % Then the result is the same as
the calculation result of centroid in the inertial frame.

Vs,
G| |=
By

S (Vg 25) =(0,-

2
3




Calculation of Hydrostatic Values
By Using Gaussian Quadrature and
Green’s Theorem

b;?!SY stem
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh ﬂ D)L b 1 ory



Section Line & Body Plan

Section line or Station line
St. 19.75

M Section line is a curve located on a cross section.

M Stations are ship hull cross section at a spacing
of Lgp/20, station O is located at the aft
perpendicular, station number 20 at the forward
perpendicular. Station number 10 therefore
represents the midship section.

MIn general, because the section lines are located
at each station, they are called “station line”.

A

MSection lines make up the lines plan(Body plan).

'Y<

50



Description of Section Lines (1/2)

1. Make text file for describing the body plan of a ship.

Given: Body plan of a Ship
Find: Text file describing the body plan of a ship

Example of text file for describing the body plan

SEN o @ s
300.0 50.0 27.0 18.0 Il LBP, B, g Dy T

(#5-2) 27 Il Section Line Num.
1.0 11 Il Station, Point Num.
Yo Zy II'Y coord., Z coord.
Y124
Y2 23
Y10 Z10

// 1.510
g A

< @S2 SYstem
é iﬁaﬁ[% % Design 51
A IDlLaboratory
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Description of Section Lines (2/2)

2. Find cubic B-spline curve passing the points on the section lines.

Given: Data of the points on the section line that describe the body plan of a ship
Find: Cubic B-Spline curve which passes through the points on the section line

A7

Make cubic B-spline curve which passes through

the given points

» Refer to the Part “Curve and Surface”
(Computer Aided Ship Design for 37 Year Undergraduate Course)

r(u)= doNS (u)+ d1N13 (u)+ d2N23 (u)+---+ dD—1N13J—1 (u)
d, : de Boor points (control points), i=0,1,...,D-1

N (u) :B-splines basis function of degree n(=3)

u].:Knots,j:O,l ..... K-1, where K=D+n+l1

N[n (u) — —Yia Ninfl(u)_*_ ui+n —u

Ui — U U,,—u;

n— 1 i+n

N, ::11 (u)

. D—1
Nlo(u)z{l if u, <u <uy, ’ZNin(u) =1
i=0

0 else

\ 4
<<

> -~
%i%?‘% }ﬂ 3\22182' 52
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh A IDlLaboratory



Calculation of Area and 1st Moment of Sectional Area
Under the Water Plane (1/4)

Given: B-spline curve, the intersection points between the B-spline curves and water
plane, and B-spline parameter “u” at each end point of the line segments
Find: Area and 15t moment of section

W-@
Curve #6 6-@ 6-(»
@ o ]
W-®@ 2-(1
X
:
S
. . W-@ .
The section is represented by The area and 1t moment of the section
Curve #0 ~ Curve #6 under the waterline is calculated

by integration of the following line segments.

»0-DOB1-DDW-@),
1-@%2-O%6-OBW-©@

53



Calculation of Area and 1st Moment of Sectional Area
Under the Water Plane (2/4)

ll n

Given: B-spline curve, the intersection points between the B-spline curve and water
plane, and B-spline parameter “u
Find: Area and 15t moment of section

at each end point of the line segments

v' Relation between the Parameter u and ¢

_ (D)

max mln) +u )
2 min
L (t+1)§5—0) ‘o

<Surface integral> <Line integral >

Green’s Theorem "
A:Udy'dz' | > =5¢(y'dz'—z'dy')
R C

V

For example, integrate the line segment 0-(

For the line integral of the segment in the y'z' coordinate, the interval

for integration has to be determined.

> Since the parameter u increases monotone, the interval can be found
easily.

> Using the chain rule, convert the line integral for y’ and z’ into the
1ntefral for only one parameter ‘u

—f yi(u ui

du
du
N 5.[0 (y'(u d

v

du'jdu :‘%Jjg(u)du\

®» To use Gaussian quadrature, convert the integration parameter
u’ and the interval [0, 5] into ‘t’ and [-1,1]

) (y( )~ () ]d” -5 s

v In the same way, integrate the remained line segments using
Gaussian quadrature.
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Calculation of Area and 1st Moment of Sectional Area
Under the Water Plane (3/4)

X Procedure for calculation of the area and 1st
moment of sectional area under the water plane

Convert surface integral into line integral

1 ' ' ' '
Ec.fy dz'-z'dy

y'

v

Using the chain rule, convert the line integral for y’ and z’ into the integral
for only one parameter ‘u’.

g(u)
1gs , o dz' o dy'
Ejo P )= du =z )~ du
7~ s, odzt L dy
| _5-[0 (y (u)Z—Z (u)EJdu
5 L[ g
! ==\ g(u)du
0 S5u 2 0
v Relation between the Parameter u and ¢ (@) To use Gaussian quadrature, convert the parameter
- and the interval into ‘t’ and [-1,1].
(14 1)~ ) s
u= ) U . | 1 ¢t dz" dyv du 1 1 d
| I — (u(t))—-z'(u(t))— |—dt = j t)at
_6-0 ; : 2I1[y( O g =74 dujdt A
2 3

. 55




Calculation of Area and 1st Moment of Sectional Area
Under the Water Plane (4/4)

6-@

1-@

W-®@

W-®

1-®

W-®
A

X Method to check to check if the line segments are
located under the water plane or not

» To calculate the sectional area under the water plane, it is
required to check if the points on the line segments are located

under the water plane or not. n: Normal vector

Point: X, \ane

Point: X,
v'Check the location of the point by using the sign of dot product of normal
vector of the water plane and position vector of the point

ne(X—0) > 0: The point is above the water plane.

n+«(X—0) <0: The point is on or below the water plane.

v'Perform only line integration for the segments which are on or

below the water plane.
In this example, the line integration is performed as follows:
The line segment 0-@ : Nn«(X—-0) <0 = Perform integration

The line segment 1-@ : n«(X—-0) >0 =» No integration
The line segment 2-@ : n«(X—-0)<0 ®» Perform integration

(X: the middle point of the each line segment)
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Calculation of Ship’'s Displacement Volume, 15t Moment of

Displaced Volume, LCB, TCB, and KB

Given: Sectional areas and 1t moment of the sectional area under water
Find: Displacement volume, 1t moment of displacement volume, LCB, TCB, and KB

Calculate sectional area
and 15t moment of the

A
M area of each section
41 The results for

M, | each section @
M

| ]t

}X{: The integration value is 0.

V=V= J‘A(x ')dX' MV,y'z’ = .MA,y'z'('x v)dxv
Displacement My ... = | M, .. (x)dx'
Volume . ' '
MV,x'y' = J MA,x'y'('x )dx

X

!

Calculation procedure

v" Calculate the displacement volume and 1st
moment of the volume by integrating the
sectional area and 15t moment of the
sectional area over ship’s length.

1) Make the ordinate set along ship’'s length
by using the results for each section.

2) Generate B-spline curve which interpolates
the ordinates.

3) Perform the line integration counter-

clockwise using Green’s theorem and
Gaussian quadrature.

Displacement: A=p_ -V

M, .. M, .. M, ..
LCB=—""2 TCB=—2"% JCB=—""*
1% % \%

KB=VCB+T,
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Calculation of Water Plane Area, 1st and 2" Moment of
Water Plane Area

Given: Intersection points between the water plane and the section lines
Find: Water plane area, 15t moment and 2" moment of the water plane area

Calculation procedure

v Transform the intersection points
decomposed in body fixed frame into

Calculate sectional area the points decomposed in water plane
or 15t moment of area fixed frame(inertial frame).

of each section

v Generate the curve which interpolates
the intersection points. If a section ‘x’
has no intersection point, input the point
as (x, 0, 0).

Yy Water plane area

v’ Calculate the area, 1st moment and 2nd
moment of area using Green’s theorem
or Gaussian quadrature.

Intersection point between the
water plane area and the section
lines
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Calculation of Wetted Surface Area

Given: Intersection points between the water plane and the section lines
Find: Wetted surface area

)

2

=

1

Calculation procedure

1) Calculate the girth length of the section
lines under water.

5= j ds = j Ji-(¢)| dt

2) Calculate the sectional area surrounded
by the girth length and water plane

3) Make the ordinate set of the sectional
area

4) Generate B-spline curve which interpolates
the ordinates

5) Integrate the area along ship’s length
using Green’s theorem or Gaussian
quadrature

®» Wetted surface area is calculated

B

»

Integration direction

§59




Classical Calculation Method
for Ship’s Surface Area

< P2 SYstem
E%f% %Design 60
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Example of Calculation for Ship’s Surface Area (1/7)

Using the “Calculation for ship’s surface area”, calculate the wetted surface area of the ship
between 3m and 6m of waterline.

1)@y |21 G |@ @4 @) G) G GaLt®6 ]| @) 18] 9 [10]@11)

HB | HB Sta.| HB | HB | sta | HB | HB | Mean _
Sta.| 6m | 3m sy/62 (6¥/6z)2 Ford.!| 6m | 3m | Aft. | 6m | 3m |5&y/8x By} Sum $5um21/2 s.M | Prod.
0,4z -0,12
5 1966 |18 41 017 & 201211984 4 17,56 15,56 0,01 1,18 1.09 1 1.09 ™

(1 (2]
4 11756 | 1247 § 0.70 043 2 1966 | 1841 3 1338 | 1116 |-024) 006 ) 1.24 3 372

3 (13381118074 055 4 | 1756|1547 2 814 | 664 §-033] 011 166 1.29 3 387

2 | 814 | 664 § 0.00 023 3 1336 | 11,16 1 2.62 216 |-033] 013 138 117 14444 1,69

lig | 543 | 439 | 0.35 01z 2 814 | 664 2.62 216 |-036) 013 ) 112 JL7vig) 198 HBAZ Half-breadth afterward

HBf: Half-breadth forward

1 | 262 | 216 | 015 00z Iye | 243 | 433 ) we |-022+|-028«)-037] 014 Q116 1.08 o444 048

3 =1284 S: Wetted surface area of the ship

2 2
Sum = 1+(QJ + (Qj
ox o0z

ox = Station interval =13.94 m

HB: Half-breadth for waterline i

We can find

the vertical station shape slope

and longitudinal water line sIopeZ—y
X

by using the central difference.
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Example of Calculation for Ship’s Surface Area (2/7)

Using the “Calculation for ship’s surface area”, calculate the wetted surface area of the ship
between 3m and 6m of waterline.

4n @] sy len|(cal 6] @ el 0 |aolay
HB | HB | sta. | HB | HB | mean _
L 6m | 3m | aft. | 6m | 3m |8y/8x] sy/sx2] Sum|(Sum)2|s.M | Prod.
20,12 11984y 4 17,56 | 1556 _3'2:;2 0,01 118 1.09 1 1.09

1966 | 1841 3 1338 | 1116 |-024) 006 ) 1.24 3 372

1756|1547 2 814 | 664 §-033] 011 166 1.29 3 387

1336 | 11,16 1 2.62 216 |-033] 013 138 117 14444 1,69

HB: Half-breadth for waterline i

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
814 | 664 262 | 216 |-036) o013 Jires| 112 u7vs] 199 + HB,: Half-breadth afterward
1
:
1
1
1
1
1
:
1
X,
1
1
1
1
1

(3
543 | 439 | we |-022+|-028<]-037] 014 Qris] 108 Jo4aq 04s HBf: Half-breadth forward
= 1284 S: Wetted surface area of the ship
» 2 2 2 2
1. Approximated formula for ship's surface area:s =oz| :\/1+(?j +(§j d Sum:H(?J {?j
d o ' X Z X z
1) & ~ °r Oox = Station interval =13.94 m
dz 0z e
0z=(6-3)=3m
(6=3) In the table,
O0y=HBy  , —HBy ; _, - [(1.2) - (1.1)]
dy ~ HBy, | ,,—HBy | 3,
dz oz T 2)
2 2
Q - HBW.L.:6m _HBW.L.:3m __________________ 3
R (3)
dz oz 62



Example of Calculation for Ship’s Surface Area (3/7)

Using the “Calculation for ship’s surface area”, calculate the wetted surface area of the ship

between 3m and 6m of waterline.

(1) |@H @2 | 3) 3] (9 |a0)@11)
HB | HB

Sta.| 6m | 3m |sy/5z|(Sy/52)RFord. (Sy/8x)2@Sum] (Sum)2SM | Prod.
0,42

5 | 1966|1841 D 017 1,18 1.09 1 1.09
1

4 | 1756 1547 § 0.70 0.49 1,55 1.24 3 3.72

3 (1338|1115 074 055 166 123 3 3.87

2 814 | 564 § 0.50 025 1,38 1.17 14448 169

e | 543 | 439 | 0.35 01z 1.25 1.12 1778 1399

1 262 | 216 | 0.15 00z 1,16 1.08 04448 048

X =128

HB: Half-breadth for waterline
HB ;: Half-breadth afterward
HBf: Half-breadth forward

S: Wetted surface area of the ship

=

. e 7 Sta.5 dy . dy S 2 5 2
1. Approximated formula for ship’s surface areazszazjsml R SRR Sum=1+(—yJ {_yj
2) Q_l Q +d_y ‘ X z ox Oz
dc  2\dxly,, o, dxly, s, ox = Station interval =13.94 m
dy Sy HB,y s on—HBr oy o In the table, T
dxly, g OX|,, 2.6x T [(5.1) - (4.1)]/25x
d_y N Q _ HBA,W.L.:3m _ HBF,W.L.:3m (W.L.: Waterline)
dx W.L=3m 5)(: W.L=3m 2 ‘5x ________________________________ [(5-2) - (4-2)]/28x
N
ﬂ ~ l HBA,W.L.=6m _HBF,W.L.=6m HBA,W.L.=3m _HBF,W.L.=3m ________________________
dx 2 2.8x 2.5% (6)
2
(ﬂjz ~ l HBA,W.L-=6m _HBF,W.L.=6m + HBA,WAL.:3m _HBF,W_L;3m _______________________ (7)
dx 2 2:0x 2:0x
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Example of Calculation for Ship’s Surface Area (4/7)

Using the “Calculation for ship’s surface area”, calculate the wetted surface area of the ship
between 3m and 6m of waterline.

@ |an|aa| @ @) |@n|@ea] )| 61|62 an|

HB | HB Sta.| HB | HB | st | HB | HB
Sta.| 6m | 3m |sy/5:0(5y/52)Ford.| 6m | 3m | Aft. | 6m | 3m Prod. !
5 | 1966|1841 0('14)2 6 |2012|1984) 4 | 1758 155 1.09 :
4 |17.56 | 1547 | 0.70 s |19e6|1841] 3 | 1338 1116 3.72
3 1338|1116 | 0.74 4 |1756 (1547 2 | 814 | 664 3,87 :
2 | 814 | 664 | 0.50 3 |133s|1ie] 1 | 262 | 218 1.69 i HB: Half-breadth for waterline
Lz | 543 | 439 ] 035 2 | 814 | 6,64 (; 262 | 216 1.99 i HB ,: Half-breadth afterward
1 | 262|216 015 iz | 543 | 439 | we |-022+|-028 0.48 :

= =128 i S: Wetted surface area of the ship

. ., . aY (ayY
1. Approximated formula for ship’s surface area:s=s:] " +(d—y) +(d—yj .
fa. X z

2 2
Sum = 1+(QJ + (Qj
ox o0z

®)=1+(1+3) O x = Station interval =13.94 m

2. Substituting 1) and 2) into the formula.

HBf: Half-breadth forward

E dl ~ HBW.L.:Gm _HBW.L.:3m

Sta.5 5)/ 2 5y : E 1) dz Sz

S~ 5zf 1+ — | +| — | dx !

Sta.1 ox oz I 2) dl ~ 1 HB 1 —sm = HBpyy 1 —sm

E dx 2 2-0x
2 , _
_ 52.[5”15 14+ l HBA,W.L.:6m - HBF,W.L.:6m + HBA,W.L.:3m - HBF,W.L:sm + HBy, , ,—HB,  _,, ’ dxi + HBA’WL}; , 5i]BF’W4L'3m j
Sta.1 2 2-0x 2-0x oz .
©)=J®

3. By using the Simpson’s 1st and 2" rules, calculate the ship’s surface area(wetted surface area),,



Example of Calculation for Ship’s Surface Area (5/7)

Using the “Calculation for ship’s surface area”
between 3m and é6m of waterline.

, calculate the wetted surface area of the ship

olav[aala ] @ @ lev|ea] ) [ cv|ea e ] @ @] o (11)
HB | HB Sta.| HB | HB | sta. | HB | HB [ Mean _

Sta.| 6m | 3m |sy/6z|(8y/62)| Ford.| 6m | 3m | Aft. | 6mM | 3m |8y/&x] (sy/8x)2] Sum| (Sum)2fs.M i Prod.
0.42 ~0,12

5 | 1986 | 1841 0,17 6 |2012|1984] 4 | 1758 | 1556 001 Jiis] 109 1.09
(1) (2)

4 | 1756|1547 oo | 049 5 1966|1841 3 | 1338 | 1116 |-02a] o006 fiss| 124 3,72

3 |1338 11160 ] 055 4 (1756|1547 2 | 814 | 664 |-033] o011 Qres| 129 3,87

2 | 814 | 664 Joso | 025 3 |133s|1te)l 1 | 262 | 216 |-035] o013 Qs 117 1.69

1
e | 543 | 439 foas | o2 | 2 | 814 | 664 . 262 | 216 [-038] 013 Jizs] L1z 1.99
1 262|216 Jois | ooz | we | 543 | 439 | w2 |-022+|-028|-037] 014 JLr18] 1.08 0,48

3. By using the Simpson’s 1st and 2" rules, calculate the ship's

surface area. y=(sum)"2,(9)
1) Simpson’s multiplier (10) —
Areal Area2
Yol V4| V2 V3 7 Ys
— -
¥ 1, 2 Ox 3 4 5 Station,(1)
2
Simpson’s 1st Rule: Areal_% %5x-(y0+4y1 +,)
3
Simpson’s 2nd Rule: Areaz—g Sx-(yy +3y;,+3y, +y5)
3 8 11 8 11 8 11
Total Area: Areal+ Area2==-6x-| —-— +—— =4y +——- —V,+y,+3y,+3y, +
3 (3 3 2y 337 3 3 2y2 Vo T3V3 T3y ysj

== ox-(0a4a}, +[L778, +[484, B, +Bh ) [: sm, o

Simpson'’s 1st Rule
yi

-

"=
X

Yo 2 Y2 |
s |

Area :%s(y0 +4y,+y,)

Simpson’s 2nd Rule

yi

v v v |
== -
Area—is(y0+3yl+3y2+y3)
___________________________________ 65.;‘



Example of Calculation for Ship’s Surface Area (6/7)

Using the “Calculation for ship’s surface area”, calculate the wetted surface area of the ship
between 3m and 6m of waterline.

@lavaal@l @ | @ |evlea]l ) ||l e ]| @) |©

HB | HB Sta.| HB | HB | sta. | HB | HB | Mean |
Sta.| 6m | 3m Jsy/sz)(6y/529 Ford.| 6m | 3m | Aft. | 6m | 3m |8y/8x] (sy/6x2] Sum
0.42 0,12
5 | 1966 | 1841 017 | & |2012|1984) 4 | 1756 | 1556 001 |18

(1 (2

4 11756 | 1247 § 0.70 043 2 1966 | 1841 3 1338 | 1116 |-024) 006 )

3 (13381118074 055 4 | 1756|1547 2 814 | 664 §-033] 011 166

2 | 814 | 664 § 0.00 023 3 1336 | 11,16 1 2.62 216 |-033] 013 138

1
lig | 543 | 439 | 0.35 01z 2 814 | 664 2.62 216 |-036) 013 )

(3) HB ,: Half-breadth afterward

1 | 262 | 216 | 015 00z iy | 243 | 439 e | -022+ | -028«-037] 014 116

HBf: Half-breadth forward

n =1284

S: Wetted surface area of the ship

3. By using the Simpson’s 1st and 2" rules, calculate the ship's sy (6vY
surface area. S”m:H(gJ {Ej

2 _ _
S zézJ‘S’“'s 1+ l HB 3y 1 —om —HBr 1 —6m + HB, 3w —HBpy s, 4 HBy, , .. —HB,, ;. 2dx L__é:)_c:_l_%'_g_é_t_’_n_’_é_‘_z_:%_’? ______________
2 2-0x 2:-0x oz

i HB: Half-breadth for waterline i

2-6x 2-6x z
(10) )

=6z-=-8x- Y |Prod.

(11)

= 3%-13.94-12.84 =201.36 (m*)

2 2
=0z- E Ox- Z S M -\/l + [l(HBA,W.L.—Gm B HBF,W.L.:ém " HBA,W.L.:sm B HBF,W.L.:3m jj +(HBW.L.=6m —HBy s j
8 ' 5
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Example of Calculation for Ship’'s Surface Area (7/7)

Using the “Calculation for ship’s surface area”, calculate the wetted surface area of
the ship between 3m and 6m of waterline.

@aniaal@l 3 |@ | dvdal G | cn|eale| @ 1®] 9 |aolay
HB | HB Sta.| HB | HB | sta. | HB | HB Jnean _

Sta.| 6m | 3m Jsy/s2|(8y/62) Ford.| 6m | 3m | Aft. | 6m | 3m | 8y/8x] (5y/6x2] Sum](Sum)¥2|SM | Prod.
0,42 -0,12

5 | 1986|1841 017 & 20,12 11984y 4 17,56 | 1556 0,01 118 1.09 1 1.09
(L) (2)

4 | 17.56 | 1547 | 0.70 0.43 3 1966 | 18.41 3 1338 | 1116 p-0.24] 0.06 135 1.24 3 372

3 [133s|1Lefona] o5 | 4 (1756 |1547] 2 | 814 | 664 |-033] o1 Jres] 129 | 3| se7

2 | 814 | 664 | 0.50 0.25 3 13.38 | 11.16 1 2.62 216 |-033] 013 1.38 1.17 1.444F 169

1

lie | 543 | 439 § 0.35 01z 2 814 | 664 ) 2.62 216 |-036] 013 123 1.1z 17rep 1.99

1 262 | 216 015 00z e | 243 | 439 e |-022+(-028«Q-037] 014 116 1.08 04448 048

5 =1284

3. By using the Simpson’s 1st and 2" rules, calculate the ship’s surface

darea.

S ~201.36 m’

4. Calculate the wetted surface area of both sides of the ship

Wetted Surface, Both sides =2-S ~2-201.36=402.7 (m’)

HB: Half-breadth for waterline

HB ;: Half-breadth afterward
HB;. Half-breadth forward
S: Wetted surface area of the ship

2 2
Sum = 1+(QJ + (Qj
ox o0z
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Derivation of cosf Using Differential Geometry (1/2)

A curve r(s) in space is written as follows;

. arbitrary r(S) = X(S)i + y(S)j + Z(S)k
curve r=r(s)
lying on the

surface where, s is a parameter for this curve.

Suppose that a surface as depicted in the figure is
represented as an implicit function, F(x, y, z)=0.

If the curve r(s) is on this surface, the components of this
curve should satisfy the equation of the surface as follows;

F(x(s), y(s),2(s)) =0

The normal vector N at a point on a the surface F(x, y, z)=0, is perpendicular to the curve
r(s) crossing the point. Therefore the normal vector on the point is perpendicular to the
unit tangent vector, T =dr/ds (where, s is the arc length of the curve r(s).)

N 1T where T=dr/ds
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Derivation of cosf Using Differential Geometry (2/2)

N 1T where T=dr/ds

Because the value of the implicit function F(x, y, z)=0 is
not changed along the curve r(s), it can be written as

curve I'=r(s) —_— = O

lying on the
surface dS

By using Chain rule, dF/ds =0 can be expressed as
dF _ OF a’x+6F dy+8F dz_o
ds Oxds Oyds 0z ds

The equation leads to VF.

oF ., OF , OF dr
i+—Jj+—k |-—=
ox o0y 0z ds

0

Because (0F/oxi+0F/dy j+0F/ozK) represents the gradient vector VF and inner product of
VF and dr/ds equals zero, that means VF is normal to the unit tangent vector dr/ds at a
point of the curve on the surface.

Thus, VF represents the normal vector at a point on the surface. It also means VFis the
direction of the maximum increase of a function.

Therefore, the normal vector on the surface is given as follows;

N E
|VF| 70



