Planning Procedure of Naval Architecture and Ocean Engineering

Ship Stability

September 2013

Myung-Il Roh

Department of Naval Architecture and Ocean Engineering Seoul National University

1

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Ship Stability

- ☑ Ch. 1 Introduction to Ship Stability
- ☑ Ch. 2 Review of Fluid Mechanics
- ☑ Ch. 3 Transverse Stability
- ☑ Ch. 4 Initial Transverse Stability
- ☑ Ch. 5 Free Surface Effect
- ☑ Ch. 6 Inclining Test
- ☑ Ch. 7 Longitudinal Stability
- ☑ Ch. 8 Curves of Stability and Stability Criteria
- ☑ Ch. 9 Numerical Integration Method in Naval Architecture
- ☑ Ch. 10 Hydrostatic Values
- ☑ Ch. 11 Introduction to Damage Stability
- ☑ Ch. 12 Deterministic Damage Stability
- ☑ Ch. 13 Probabilistic Damage Stability (Subdivision and Damage Stability, SDS)

2

Ch. 11 Introduction to Damage Stability

Change in Position Due to Flooding Lost Buoyancy Method Added Weight Method

3

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Change in Position Due to Flooding

Damage of a Box-Shaped Ship

✓ A ship is composed of three compartments.

When a compartment of the ship is damaged, what is the new position of this ship?

5

Damage of a Box-Shaped Ship (Immersion)

The position of the ship will be changed.

Immersion

* The new position of the ship can be calculated by the lost buoyancy and added weight methods.

Damage of a Box-Shaped Ship (Immersion, Trim)

"Trim by stern" (draft at AP > draft at FP)

The position of the ship will be changed.

* The new position of the ship can be calculated by the lost buoyancy and added weight methods.

7

Damage of a Box-Shaped Ship (Immersion, Trim, Heel)

\checkmark When the ship is composed of "six" compartments.

When the compartment at the <u>after and right</u> part of the ship is damaged, what is the new position of the ship?

The position of the ship will be changed.

* The new position of the ship can be calculated by the lost buoyancy and added weight methods.

Damage of a Box-Shaped Ship (GZ Curve)

✓ To measure the damage stability, we should find the a statical stability curve(GZ curve) of this damage case by finding the new center of buoyancy(B) and center of mass(G).

 θ_{j} : Angle of flooding (righting arm becomes negative)

 θ_o : Angle at which an <u>"opening"</u> incapable of being closed weathertight becomes submerged

9

Two Methods to Measure the Ship's Damage Stability

How to measure the ship's stability in a damaged condition?

Deterministic Method: Calculation of survivability of a ship based on the position, stability, and inclination in damaged conditions

Probabilistic Method : Calculation of survivability of a ship based on the probability of damage

Change in Position due to Flooding (Immersion)

What happens if the compartment located in the <u>midship</u> part of a ship is damaged?

Change in Position due to Flooding (Immersion, Trim)

What happens if the compartment located in the <u>after</u> part of a ship is damaged?

aboratory

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Change in Position due to Flooding (Immersion, Trim, Heel)

What happens if the compartment located in the fore and right part of a ship is damaged?

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Design

Lost Buoyancy Method

Concept of Lost Buoyancy Method (1/2)

* Hydrostatic Equilibrium Displacement(△) = Buoyant Force = Weight(W)

A damage occurs.

: Volume which contributes to buoyancy

The buoyancy of the flooded space is lost.

The lost buoyancy must be regained by an increase of draft.

 Additional volume which contributes to buoyancy (regained buoyancy)

Lost buoyancy method

"The water that enters the ship is considered still part of the sea, and the <u>buoyancy of the flooded space is lost</u>."

Concept of Lost Buoyancy Method (2/2)

Lost buoyancy method

* Hydrostatic Equilibrium Displacement(△) = Buoyant Force = Weight(W)

- : Volume which contributes to buoyancy
- E : Additional volume which contributes to buoyancy

- In this method, it is assumed that the flooded compartment has free communication with the sea.
- The <u>flooded compartment</u> can be considered as a sieve (or filter), and that <u>offers no buoyancy</u> to the ship. Only the intact portions of the ship on either side of the flooded compartment contribute to the buoyancy.
- Since buoyancy has been lost, it must be regained via an increase in the draft.
- The ship <u>will sink until</u> the volume (or displacement) of the newly immersed portions equals the volume (or displacement) of the flooded compartment.

16

Lost Buoyancy Method

The <u>water</u> that enters the damaged compartment <u>is considered as an still</u> <u>part of the sea</u>, and the <u>buoyancy of the flooded space is lost</u>. And the loss of buoyancy is regained by an increase of draft.

Loss of buoyancy: Sea water flooded into the damaged compartment is considered as part of the sea

Loss of buoyancy = Regained buoyancy by the increase of draft

$$\rho \cdot g \cdot v = \rho \cdot g \cdot (A_{WP} - a) \cdot \delta d$$

Changed draft due to lost buoyancy:

$$\delta d = \frac{v}{A_{WP} - a}$$

A_{WP}: water plane area of the ship (Including water plane area of the damaged compartment)
a: water plane area of the damaged compartment
d: Draft before the compartment is not damaged
δd: Draft change due to damaged compartment
v: Volume of damaged compartment below initial water plane

[Example] Damage of a Box-Shaped Ship (Immersion) (1/6)

✓ A ship is composed of three compartments.

Initial displacement volume: $\nabla_I = LBT = 20 \times 5 \times 1.5 = 150m^3$

When a compartment of the ship is damaged, what is the new position of this ship?

[Example] Damage of a Box-Shaped Ship (Immersion) (2/6)

The position of the ship will be changed.

Immersion

[Example] Damage of a Box-Shaped Ship (Immersion) (3/6)

[Example] Damage of a Box-Shaped Ship (Immersion) (4/6)

Simplest method using the formula

Draft after immersion:
$$\delta d = \frac{v}{A_{WP} - a} = \frac{(4 \times 5 \times 1.5)}{(20 \times 5) - (4 \times 5)} = 0.375m$$

$$T_L = T + \delta d = 1.5 + 0.375 = 1.875m$$

A_{WP}: water plane area of the ship

 (Including water plane area of the damaged compartment)
 a: water plane area of the damaged compartment

 δd : Draft change due to damaged compartment

v: Volume of damaged compartment below initial water plane

[Example] Damage of a Box-Shaped Ship (Immersion) (5/6)

Another method

Water plane area: $A_L = (L - l)B = (20 - 4) \times 5 = 80m^2$

Draft after immersion: $T_L = \frac{\nabla_I}{A_L} = \frac{150}{80} = 1.875m$, where $\nabla_I = 150m^3$ $KB_L = \frac{T_L}{2} = \frac{1.875}{2} = 0.938m$ Moment of inertia of water plane area $I_L = \frac{B^3 \cdot (L-l)}{12} = \frac{5^3 (20-4)}{12}$ about transverse axis through point G: $I_L = \frac{166.6667m^4}{12} = \frac{5^3 (20-4)}{12}$

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

[Example] Damage of a Box-Shaped Ship (Immersion) (6/6)

Metacentric Height: $GM_L = KB_L + BM_L - KG = 0.938 + 1.111 - 1.5 = 0.549m$

The righting moment for small angle of heel by lost buoyancy method: $M_{RL} = \Delta_I \cdot GM_L \cdot \sin \phi = 150 \times 1.025 \times 0.549 \sin \phi = 84.349 \sin \phi (ton \cdot m)$

Added Weight Method

24

Concept of Added Weight Method (1/2)

* Hydrostatic Equilibrium Displacement(∆) = Buoyant Force = Weight(W)

A damage occurs.

Flooded water is considered as the added weight.

Added weight

Added weight will be equilibrium with the buoyancy regained by an increase of draft.

- : Additional added weight
- Additional volume which contributes to buoyancy

Added weight method

"The water that enters the damaged compartment is considered as an **added weight** with no loss of buoyancy."

Concept of Added Weight Method (2/2)

Added weight method

- <u>The water that enters the damaged compartment</u> is considered as an <u>added weight</u> with no loss of buoyancy.
- This is a <u>misnomer</u>, since water in space open to the sea and free to run in or out does <u>not actually add to a ship's weight</u>.
- For calculation purposes, it is <u>convenient</u> to regard such flooding water as adding to the displacement.
- <u>However</u>, it <u>must be remembered</u> that the resulting (virtual) <u>displacement not</u> only differ from the initial displacement, but varies with change in trim or heel.
- Since the added weight method involves a <u>direct integration of volumes</u> up to water plane at the damaged condition, it is just as <u>well adapted to dealing</u> <u>with complex flooding conditions</u> as with simple ones.

Added Weight Method

Weight of sea water due to the damaged compartment: $w = \rho \cdot g \cdot (v + a \cdot \delta d)$ Increased buoyancy due to the change in draft: $b = \rho \cdot g \cdot (A_{WP} \cdot \delta d)$

$$w = b \Rightarrow \rho \cdot g \cdot (v + a \cdot \delta d) = \rho \cdot g \cdot (A_{WP} \cdot \delta d)$$

Changed draft due to compensated weight of damaged compartment:

$$\delta d = \frac{v}{A_{WP} - a}$$

A_{WP}: water plane area of the ship (Including water plane area of the damaged compartment)
a: water plane area of the damaged compartment
d: Draft before the compartment is not damaged *d*: Draft change due to damaged compartment
v: Volume of damaged compartment below initial water plane

[Example] Damage of a Box-Shaped Ship (Immersion) (1/9)

✓ A ship is composed of three compartments.

Initial displacement volume: $\nabla_I = LBT = 20 \times 5 \times 1.5 = 150m^3$

When a compartment of the ship is damaged, what is the new position of this ship?

[Example] Damage of a Box-Shaped Ship (Immersion) (2/9)

The position of the ship will be changed.

Immersion

[Example] Damage of a Box-Shaped Ship (Immersion) (3/9)

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

SY SYstem Design DLaboratory

[Example] Damage of a Box-Shaped Ship (Immersion) (4/9)

Simplest method using the formula

Draft after immersion:
$$\delta d = \frac{v}{A_{WP} - a} = \frac{(4 \times 5 \times 1.5)}{(20 \times 5) - (4 \times 5)} = 0.375m$$

$$T_A = T + \delta d = 1.5 + 0.375 = 1.875m$$

A_{WP}: water plane area of the ship

 (Including water plane area of the damaged compartment)
 a: water plane area of the damaged compartment

ôd: Draft change due to damaged compartment

v: Volume of damaged compartment below initial water plane

[Example] Damage of a Box-Shaped Ship (Immersion) (5/9)

Another method

The volume of flooding water: $v + a \times \delta d = l \cdot B \cdot T_A = l \cdot B \cdot (T + \delta d)$

The additional buoyant volume: $\delta \nabla = L \cdot B \cdot \delta d$

Because $v + a \times \delta d = \delta \nabla$,

$$lB(T + \delta d) = L \cdot B \cdot \delta d$$

$$l(T + \delta d) = L \cdot \delta d$$

$$l \cdot T = (L - l) \cdot \delta d$$

$$\delta d = \frac{l \cdot T}{L - l} = \frac{4 \times 1.5}{20 - 4} = 0.375 m$$

[Example] Damage of a Box-Shaped Ship (Immersion) (6/9)

The draft after flooding: $T_A = T + \delta d$ = 1.500 + 0.375 = 1.875m

The volume of flooding water: $v + a \times \delta d = l \cdot B \cdot T_A = 4 \times 5 \times 1.875 = 37.5m^3$

The height of its center of gravity:
$$kg = \frac{T_A}{2} = \frac{1.875}{2} = 0.938m$$

The displacement volume alter flooding:

$$\nabla_A = L \cdot B \cdot T_A = 20 \times 5 \times 1.875 = 187.5m^3$$

[Example] Damage of a Box-Shaped Ship (Immersion) (7/9)

KG by the added weight method:

	Volume	Centre of gravity	Moment
Initial	150.0	1.500	225.000
Added	37.5	0.938	35.156
Total	187.5	1.388	260.156

 $KG_A = 1.388m$

Moment of inertia of water plane area about transverse axis through point G: $I_A = \frac{B^3 \cdot L}{12} = \frac{5^3 \times 20}{12} = 208.333 m^4$ Metacentric radius: $BM_A = \frac{I_A}{\nabla_A} = \frac{208.333}{187.5} = 1.111m$

[Example] Damage of a Box-Shaped Ship (Immersion) (8/9)

Free surface effect caused by the flooding water:

The moment of inertia of the free surface in the flooded compartment: $i = \frac{B^3 \cdot l}{12} = \frac{5^3 \times 4}{12} = 41.667m^4$

The moment arm of the free surface effect $l_F = \frac{\rho \cdot i}{\rho \cdot \nabla_A} = \frac{41.667}{187.5} = 0.222m$ (free surface correction):

The changed vertical center of buoyancy: $KB_A = \frac{T_A}{2} = \frac{1.875}{2} = 0.938m$

[Example] Damage of a Box-Shaped Ship (Immersion) (9/9)

Metacentric height: $GM_A = KB_A + BM_A - KG_A - l_F$ = 0.938 + 1.111 - 1.388 - 0.222 = 0.439m

The changed displacement: $\Delta_A = \rho \nabla_A = 1.025 \times 187.5 = 192.188 ton$

The righting moment for small angle of heel by added weight method: $M_{RA} = \Delta_A \cdot GM_A \cdot \sin \phi = 192.188 \times 0.439 \sin \phi = 84.349 \sin \phi (ton \cdot m)$

Comparison of Two Methods

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

[Appendix] An Example of Finding Immersion and Heel of a Boxed-Shaped Ship with a Flooded Cargo

38

Governing Equations of Computational Ship Stability (1/2)

When the ship is in intact state.

$$\begin{bmatrix} F^{(k+1)} - F^{(k)} \\ M_T^{(k+1)} - M_T^{(k)} \\ M_L^{(k+1)} - M_L^{(k)} \end{bmatrix} = \begin{bmatrix} -\rho g A_{WP}^{(k)} & -\rho g T_{WP}^{(k)} \cdot \cos \theta & \rho g L_{WP}^{(k)} \\ -\rho g T_{WP}^{(k)} & element(2,2) & \rho g I_P^{(k)} \\ \rho g L_{WP}^{(k)} & \rho g I_P^{(k)} \cdot \cos \theta & element(3,3) \\ \end{bmatrix}_{\substack{n_z^{(k)}, \phi^{(k)}, \theta^{(k)} \\ \sigma g^{(k)}, \theta^{$$

When the ship is in intact state, the water plane area is as follows.

$$A_{WP} = A_{WP}^{I}$$

 $A_{\!W\!P}$: Water plane area of the intact ship

When the ship is flooded, the water plane area is as follows.

$$A_{WP} = A_{WP}^I - \mu_F \cdot a_{WP}$$

 $\mu_{F}: \text{ Surface permeability of a compartment} \\ A_{WP}^{I}: \text{ Water plane area of the intact ship} \\ a_{WP}: \text{ Water plane area of the flooded cargo hold} \\ \hline Plan view \\ y_{h}y_{h} \\ B \\ B \\ B \\ A_{WP} \\ A_{WP}$

Governing Equations of Computational Ship Stability (2/2)

When the ship is flooded. (Damaged state)

$$\begin{bmatrix} F^{(k,\#1)} - F^{(k)} \\ M_T^{(k,\#1)} - M_T^{(k)} \\ M_L^{(k,\#1)} - M_L^{(k)} \end{bmatrix} = \begin{bmatrix} -\rho g A_{WP}^{(k)} & -\rho g T_{WP}^{(k)} \cdot \cos \theta & \rho g L_{WP}^{(k)} \\ -\rho g T_{WP}^{(k)} & element(2,2) & \rho g I_P^{(k)} \\ \rho g L_{WP}^{(k)} & \rho g I_P^{(k)} \cdot \cos \theta & element(3,3) \\ \end{bmatrix}_{\substack{n_z(k), \phi^{(k)}, \theta^{(k)} \\ \sigma g^{(k)}, \theta^{$$

 $A_{WP} = A_{WP}^{I} - \mu_{F} \cdot a_{WP}$ $I_{T} = I_{T}^{I} - \mu_{F} \cdot i_{T}$ $I_{L} = I_{L}^{I} - \mu_{F} \cdot i_{L}$ $I_{P} = I_{P}^{I} - \mu_{F} \cdot i_{P}$ $T_{WP} = T_{WP}^{I} - \mu_{F} \cdot t_{WP}$ $L_{WP} = L_{WP}^{I} - \mu_{F} \cdot l_{WP}$

 μ_{F} : Surface permeability of a compartment

 A_{WP}^{I} : Water plane area of the intact ship

 a_{WP} : Water plane area of the flooded cargo hold

 I_T^{I} : Transverse moment of inertia of the water plane area of the intact ship about the $x_{b'}$ axis

 i_{T} : Transverse moment of inertia of the water plane area of the flooded cargo hold about the $x_{b'}$ axis

 I_I^I : Longitudinal moment of inertia of the water plane area of the intact ship about the y_{b'} axis

 i_L : Longitudinal moment of inertia of the water plane area of the flooded cargo hold about the y_{b'} axis

 I_{P}^{I} : Centrifugal moment of the water plane area of the intact ship about the $x_{b'}$ and $y_{b'}$ axis

 i_P : Centrifugal moment of the water plane area of the flooded cargo hold about the $x_{b'}$ and $y_{b'}$ axis

 T_{WP}^{I} : Transverse moment of water plane area of the intact ship about the $x_{b'}$ axis

 t_{WP} : Transverse moment of water plane area of the flooded cargo hold about the $x_{b'}$ axis

 L'_{WP} : Longitudinal moment of water plane area of the intact ship about the y_b axis

 l_{WP} : Longitudinal moment of water plane area of the flooded cargo hold about the y_b axis