Planning Procedure of Naval Architecture and Ocean Engineering

Ship Stability

September 2013

Myung-Il Roh

Department of Naval Architecture and Ocean Engineering Seoul National University

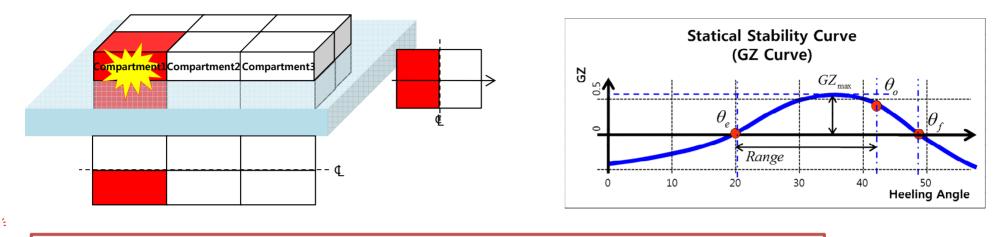
1

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Ship Stability

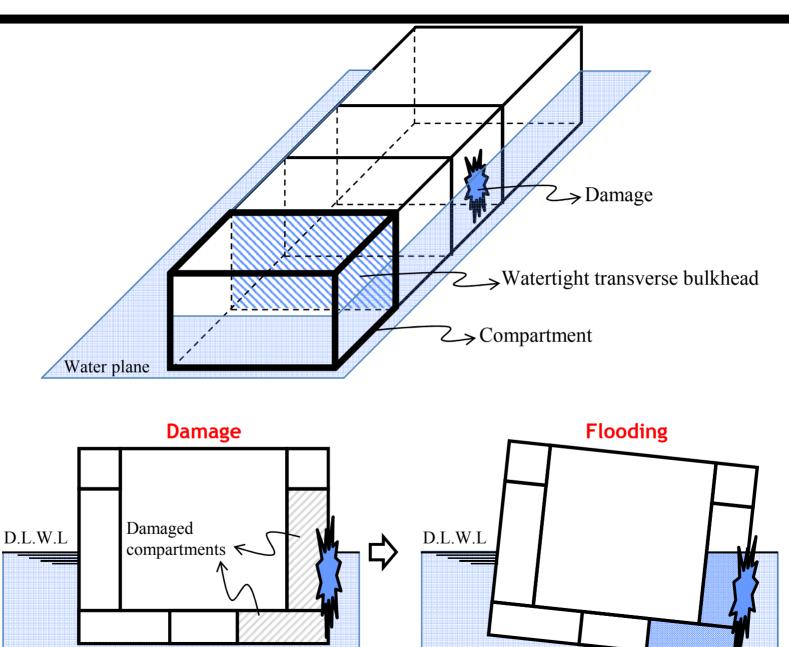
- ☑ Ch. 1 Introduction to Ship Stability
- ☑ Ch. 2 Review of Fluid Mechanics
- ☑ Ch. 3 Transverse Stability
- ☑ Ch. 4 Initial Transverse Stability
- ☑ Ch. 5 Free Surface Effect
- ☑ Ch. 6 Inclining Test
- ☑ Ch. 7 Longitudinal Stability
- ☑ Ch. 8 Curves of Stability and Stability Criteria
- ☑ Ch. 9 Numerical Integration Method in Naval Architecture
- ☑ Ch. 10 Hydrostatic Values
- ☑ Ch. 11 Introduction to Damage Stability
- ☑ Ch. 12 Deterministic Damage Stability
- ☑ Ch. 13 Probabilistic Damage Stability (Subdivision and Damage Stability, SDS)

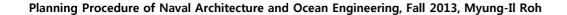
2


Ch. 12 Deterministic Damage Stability

Introduction to Deterministic Damage Stability

Two Methods to Measure the Ship's Damage Stability


How to measure the ship's stability in a damaged condition?


Deterministic Method: Calculation of survivability of a ship based on the position, stability, and inclination in damaged conditions

Probabilistic Method : Calculation of survivability of a ship based on the probability of damage

Definition of Damage and Flooding

Procedures of Calculation of Deterministic Damage Stability

- ☑ Step 1: Determination of international regulations to be applied according to ship type
- ☑ Step 2: Assumption of the location of damage according to ship length
- **☑** Step 3: Assumption of the extent of damage
- ☑ Step 4: Assumption of the permeability for each compartment
- ☑ Step 5: Evaluation of the required damage stability of international regulations

Step 1: International Regulations for Damage Stability According to Ship Type

		De	eterministic D	Probabilistic Damage Stability		
Ship Type	Freeboard Type	ICLL ¹	MARPOL ²	IBC ³	IGC ⁴	SOLAS ⁵
Oil Tankers	A ⁶	0	Ο			
On Tankers	B ⁷		Ο			
Chemical Tankers	Α	Ο		Ο		
Gas Carriers	В				Ο	
	В					0
Bulk Carriers	B-60	Ο				
	B-100	0				
Container Carriers Ro-Ro Ships Passenger Ships	В					Ο

1: International Convention on Load Lines

2: International Convention for the Prevention of Marine Pollution from Ships

3: International Bulk Chemical Code

4: International Gas Carrier Code

5: Safety Of Life At Sea

6: Freeboard type for a ship which carries liquid cargo (e.g., Tanker). Its freeboard is smaller than that of Type B.

7: Freeboard type for a ship which carries dry cargo (e.g., Container ship, passenger ship).

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Step 2 & 3: Location and Extent of Damage in International Regulations - MARPOL, IBC, IGC

Location of damage **Extent of damage** Regulation MARPOL IBC IGC Regulation MARPOL IBC IGC Longitudinal Extent Lf^{2/3}/3 or 14.5m, whichever is the lesser For any operating draft Side Draft Transverse Extent B/5 or 11.5m, whichever is the lesser reflecting loading conditions Damage Vertical Extent No limit Lf>225m Type 1^{1} Type $1G^{2}$ Anywhere FP'~0.3 Lf^{2/3}/3 or 14.5m, whichever is the lesser Type 2¹) Type 2PG²) Lf>150m Type 2G²⁾ Lf/10 or 5.0m, Longitudinal Lf^{2/3}/3 or 5.0m, whichever is the Type 3¹⁾ Lf>150m Extent 0.3~Aft whichever is the lesser Lf>225m Type 3G²⁾ lesser Lf≥125m Bottom FP'~0.3 B/6 or 10.0m, whichever is the lesser Extent Transverse Damage of Extent Location of 0.3 ~Aft B/6 or 5.0m, whichever is the lesser Anywhere 150m < Lf Type 2 Type 2G Damage Damage in (Engine room: <225m ≤150m Lf≤150m B/15 or 2m, Lengthwise 1 Type 3 Vertical Extent B/15 or 6.0m, whichever is the lesser whichever is the 125m<Lf compartment) lesser <225m ➡ bottom raking damage³, Reg. 28 of MARPOL 73/78 Lf≤150m Type 3 Anywhere Lf<125m $20,000t \le DWT \le 75,000t$: 0.4 Lf from FP' (Engine room: Lf<125m Type 3G - Longitudinal Extent: 75,000t ≤ DWT : 0.6 Lf from FP' exception) - Transverse Extent: 20,000t ≤ DWT : B/3 anywhere - Vertical Extent: 20,000t ≤ DWT : breach of outer hull⁴⁾

1) Type 1, Type 2, Type 3: Classification of chemical tanker according to the danger of the loaded cargo. The ship which carries most dangerous cargo is classified into Type 1.

2) Type 1G, Type 2G, Type 2PG, Type 3G: Classification of gas carrier according to the danger of the loaded cargo. The ship which carries most dangerous cargo is classified into Type 1G.

3) The bottom raking damage is only considered in MARPOL

4) The outer shell is only damaged in the vertical direction.

Step 2 & 3: Location and Extent of Damage in International Regulations - ICLL

Location of damage

	Regulation	ICLL
	Draft	Summer load line
		Lf>150m
	Anywhere (Engine room: 1 compartment)	Ship type
Location of damage in		A: 1 compartment / B-60: 1 compartment / B-100: 2 compartments
lengthwise		100m <lf≤150m< td=""></lf≤150m<>
	Anywhere (Engine room: exception)	ship type
		B-60: 1 compartment / B-100: 2 compartments

Extent of damage

		Regulation	ICLL
Extent of	Side Damage	Longitudinal Extent	Type A: 1 compartment Type B-60: 1 compartment Type B-100: 2 compartments
Damage	5	Transverse Extent	1/5 or 11.5m, whichever is the lesser
		Vertical Extent	No limit

Damage assumptions

- (a) The vertical extent of damage in all cases is assumed to be from the base line upwards without limit.
- (b) The transverse extent of damage is equal to one-fifth (1/5) or 11.5 m, whichever is the lesser of breadth inboard from the side of the ship perpendicularly to the center line at the level of the summer load water line.
- (c) No main transverse bulkhead is damaged.

Step 4: Permeability of Compartment (1/2)

When the ship is flooding, how to calculate the actual amount of flooding water?

The compartment of the ship already contains cargo, machinery, liquids, accommodations, or any other equipment or material. To consider this characteristics, the concept of permeability is introduced.

The permeability(μ) of a space is the proportion of the immersed volume of that space which can be occupied by water.

Permeability of each general compartment

Spaces	MARPOL	IBC	IGC	ICLL
Appropriated to stores		0.95		
Occupied by accommodation		0.95		
Occupied by machinery		0.85		0.95
Void spaces		0.95		
Intended for liquids		0.95		

* The permeability of partially filled compartments should be consistent with the amount of liquid carried in the compartment.

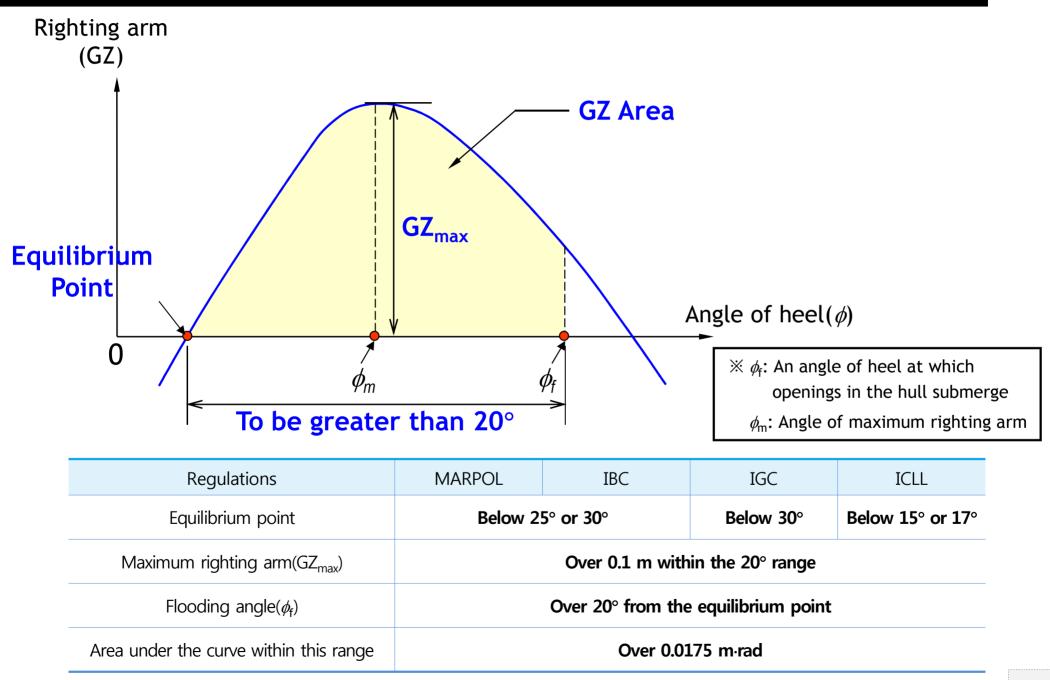
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Step 4: Permeability of Compartment (2/2)

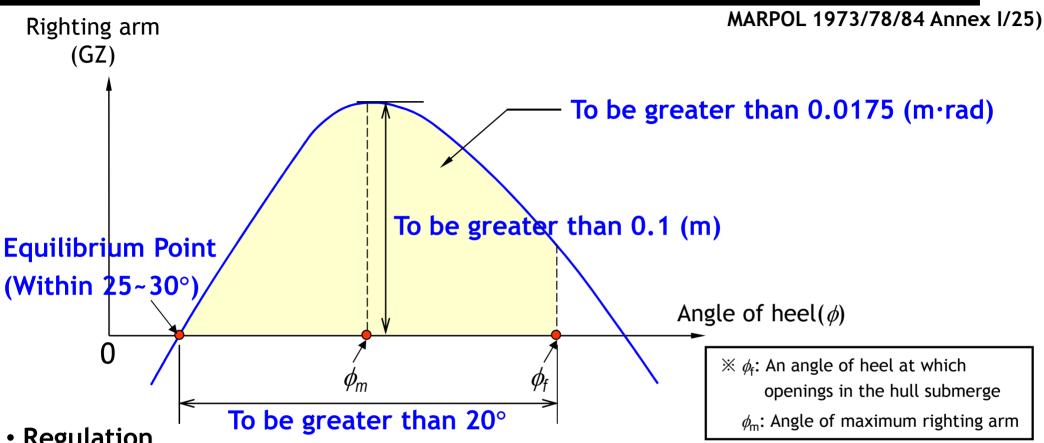
Permeability of each cargo compartment

Spaces	Permeability at draft ds	Permeability at draft dp	Permeability at draft dl
Dry cargo spaces	0.70	0.80	0.95
Container cargo spaces	0.70	0.80	0.95
Ro-Ro spaces	0.90	0.90	0.95
Cargo liquids	0.70	0.80	0.95
Timber cargo in holds	0.35	0.70	0.95

Definitions of three draft Light service draft(dl): the service draft corresponding to the lightest anticipated loading and


associated tankage, including, however, such ballast as may be necessary for stability and/or immersion. Passenger ships should include the full complement of passengers and crew on board.

Partial subdivision draft(dp): the light service draft plus <u>60% of the difference between the light</u> <u>service draft and the deepest subdivision draft</u>.


Deepest subdivision draft(ds): the waterline which corresponds to the <u>summer load line draft</u> of the ship

Step 5: Evaluation of the Required Damage Stability

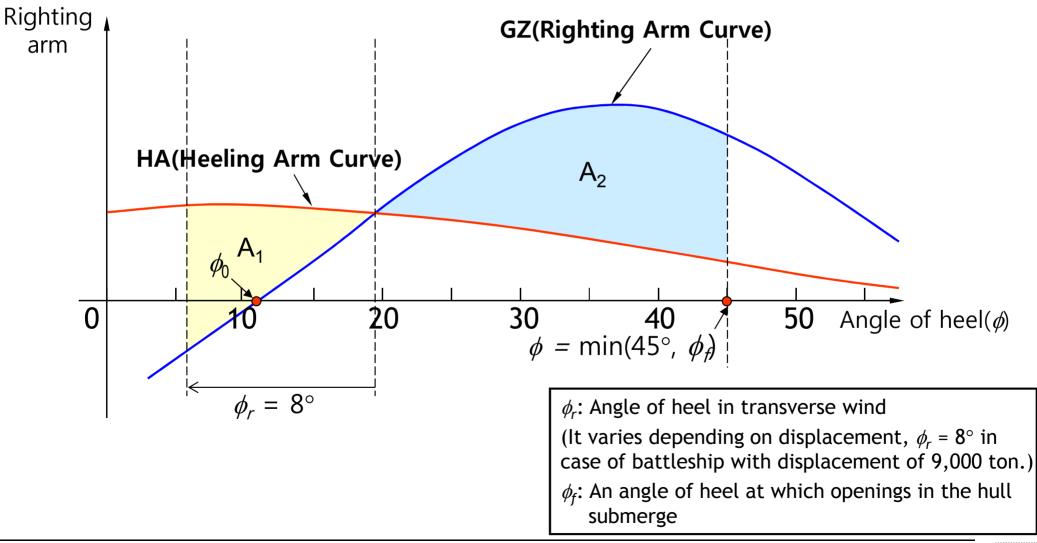
Step 5: Evaluation of the Required Damage Stability - MARPOL Regulation for Damage Stability

Regulation

(a) The final waterline shall be below the lower edge of any opening through which progressive flooding may take place.

(b) The angle of heel due to unsymmetrical flooding shall not exceed 25 degrees, provided that this angle may be increased up to 30 degrees if no deck edge immersion occurs.

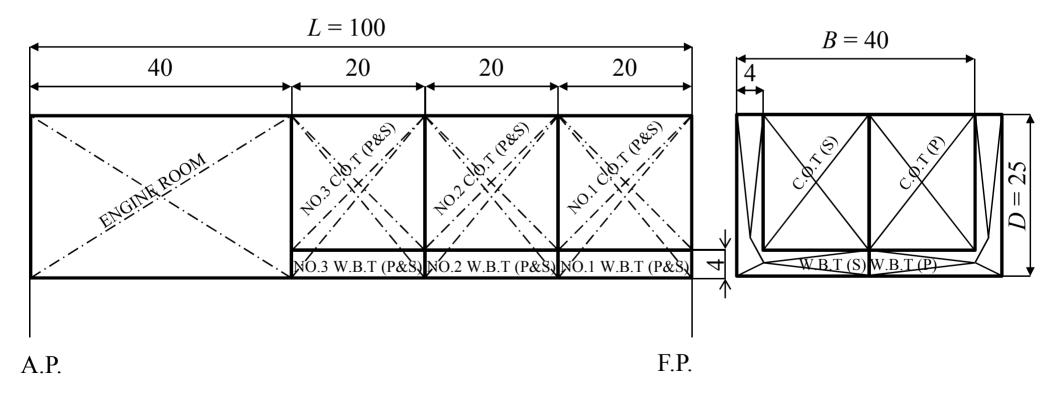
(c) The statical stability curve has at least a range of 20 degrees beyond the position of equilibrium in association with a maximum residual righting arm of at least 0.1 meter within the 20 degrees range


(d) The area under the curve within this range shall not be less than 0.0175 meter-radians.

Step 5: Evaluation of the Required Damage Stability - Damage Stability Criteria in Battleship*

 ϕ_0 (Initial Angle of Heel) $\leq 15^\circ$, $A_2 \geq 1.4 \cdot A_1$

* Surko, S.W., "An Assessment of Current Warship Damaged Stability Criteria", Naval Engineers Journal, 1994


Example of the Evaluation of Damage Stability According to the Deterministic Method for a Box-Shaped Ship

16

Principal Characteristics of the Box-Shaped Ship

☑ Principal dimensions

- Ship type: Tanker
- Length B.P: 100m
- Breadth, molded: 40.0m
- Summer draft, molded (Scantling draft): 14.5m
- Deadweight: 50,000ton

17

- ☑ International rules to be applied: MARPOL
- Deterministic Damage Stability Probabilistic Damage Stability Freeboard Type Ship Type ICI 1 MARPOL² IGC⁴ SOLAS Α 0 0 a a a st в 0 Α 0 Chemical Tankers Gas Carriers R 0 R 0 **Bulk Carriers** B-60 0 B-100 0 Container Carriers R ο Ro-Ro Shins Passenger Ships

- ☑ Loading conditions to be calculated
 - All loading conditions should be evaluated.
 - Here, we will evaluated the damage stability for the homogeneous scantling draft condition only.

Hydrostatic values for the homogeneous scantling draft condition

Condition	Displacement	Draft	Trim	GoM	KGo
Homo. Scant. Draft (S.G.=0.810)	59,450	14.5	0.0	7.47	8.98

Step 1: International Regulations for Damage Stability According to Ship Type

		Deterministic Damage Stability			lity	Probabilistic Damage Stability
Ship Type	Freeboard Type	ICLL ¹	MARPOL ²	IBC ³	IGC ⁴	SOLAS ⁵
Oil Tankers	A ⁶	0	0			
On Tankers	B ⁷		0			
Chemical Tankers	A	0		0		
Gas Carriers	В				ο	
	В					0
Bulk Carriers	B-60	0				
	B-100	0				
Container Carriers Ro-Ro Ships Passenger Ships	В					Ο

1: International Convention on Load Lines

2: International Convention for the Prevention of Marine Pollution from Ships

3: International Bulk Chemical Code

4: International Gas Carrier Code

5: Safety Of Life At Sea

6: Freeboard type for a ship which carries liquid cargo (e.g., Tanker). Its freeboard is smaller than that of Type B.

7: Freeboard type for a ship which carries dry cargo (e.g., Container ship, passenger ship).

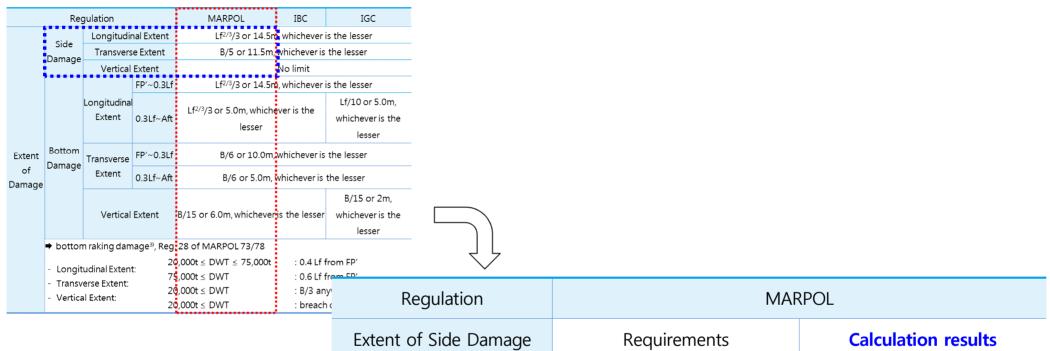
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Step 2 & 3: Location and Extent of Damage in International Regulations - MARPOL, IBC, IGC

Locati	on of da	amag	е		Exter	nt of	damag	ge					
Reg	Julation	MARPOL	IBC	IGC		Regulation		MARPOL	IBC	IGC			
	_	For a	y operati	ng draft		Side	Longitudir	nal Extent	Lf ^{2/3} /3 or 14.5n	, whichever i	is the lesser		
Ι	Draft	reflecting	loading	conditions		Damage	Transvers	e Extent	B/5 or 11.5m,	whichever is	the lesser		
	Anywhere	Lf>225m	Type 1 ¹⁾	Type 1G ²⁾		Durnage	Vertical	Extent		No limit			
		.		Type 2PG ²⁾				FP'~0.3Lf	Lf ^{2/3} /3 or 14.5n	, whichever i	is the lesser		
			Type 3 ¹⁾	Type 2G ²⁾ Lf>150m Type 3G ²⁾ Lf≥125m	Extent Bottom		Longitudinal Extent	0.3Lf~Aft	Lf ^{2/3} /3 or 5.0m, whiche lesser	ver is the	Lf/10 or 5.0m, whichever is the lesser		
						Extent	Extent	of Damage	Damage Transv Exte	Transverse	FP'~0.3Lf	B/6 or 10.0m,	whichever is
Location of	Anywhere	150m <lf< td=""><td>Type 2</td><td>Type 2G</td><td>of Damage</td><td>01</td><td>01</td><td>Extent</td><td>0.3Lf~Aft</td><td>B/6 or 5.0m,</td><td>whichever is</td><td>the lesser</td></lf<>	Type 2	Type 2G	of Damage	01	01			Extent	0.3Lf~Aft	B/6 or 5.0m,	whichever is
Damage in Lengthwise	(Engine room: 1 compartment)		≤150m Type 3 125m <lf <225m</lf 	Lf≤150m	2 0		Vertical	Extent	B/15 or 6.0m, whichever	is the lesser	B/15 or 2m, whichever is the lesser		
	Anywhere (Engine room: exception)	Lf≤150m		Lf<125m Type 3G		- Longit	udinal Extent erse Extent:	20 t: 7!	28 of MARPOL 73/78 ,000t ≤ DWT ≤ 75,000t ,000t ≤ DWT ,000t ≤ DWT	: 0.4 Lf f : 0.6 Lf f : B/3 any	rom FP'		
						vertice		20	,000t ≤ DWT	: breach	of outer hull4)		

1) Type 1, Type 2, Type 3: Classification of chemical tanker according to the danger of the loaded cargo. The ship which carries most dangerous cargo is classified into Type 1.

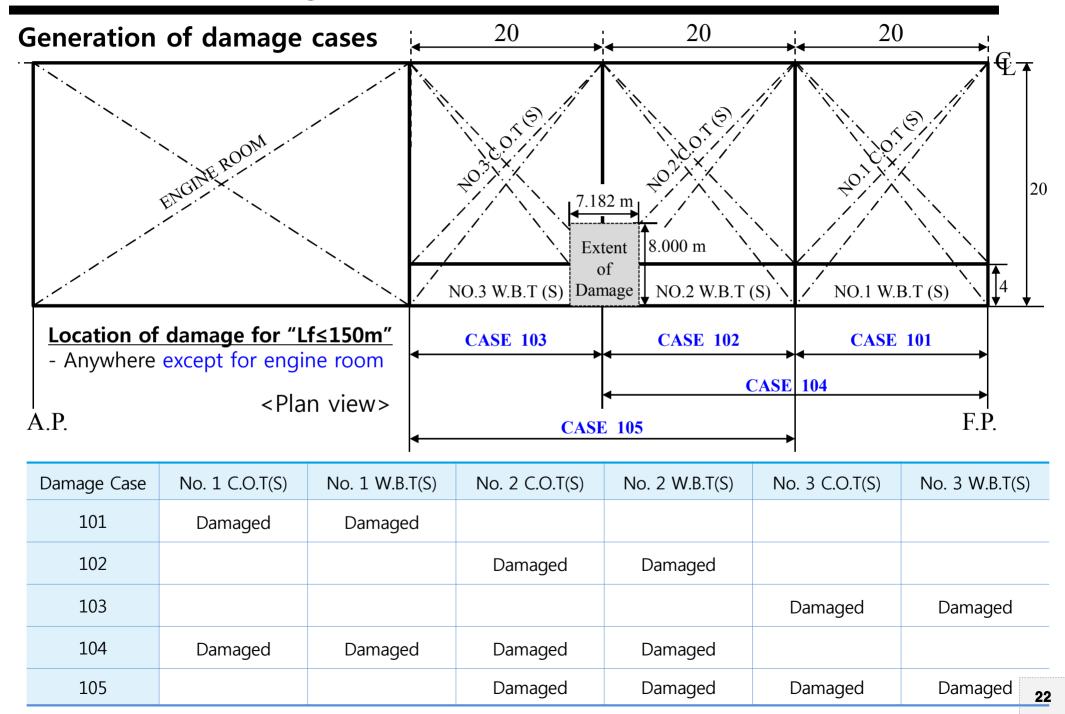
2) Type 1G, Type 2G, Type 2PG, Type 3G: Classification of gas carrier according to the danger of the loaded cargo. The ship which carries most dangerous cargo is classified into Type 1G.


3) The bottom raking damage is only considered in MARPOL

4) The outer shell is only damaged in the vertical direction.

Step 2 & 3: Location and Extent of Damage in International Regulations - Case 1: Side Damage

Assumption of Extent of Damage (Side Damage)



Extent of Side Damage	Requirements	Calculation results		
Longitudinal Extent	Lf ^{2/3} /3 or 14.5m, whichever is the lesser	7.182m		
Transverse Extent	B/5 or 11.5m, whichever is the lesser	8.0m		
Vertical Extent	No limit (Infinite from baseline)	No limit (Infinite from baseline)		

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Step 2 & 3: Location and Extent of Damage in International Regulations - Case 1: Side Damage

-	Step 4: Permeability of Compartment - Case 1: Side Damage							MARPOL	IBC 0.60 0.95 0.85	IGC	ICLL 0.95 0.95 0.95
All da	amag	e cases for		Void sp Intended fo			0.95 0 to 0.9	5*	0.95 0.95		
Damag	e Case	No. 1 C.O.T(S)	No. 1 W.B.T(S)	No. 2 C.O.T(S)	No. 2 \	W.B.T(S)	No. 3	3 C.O.T(S	5)	No. 3 W.B	.T(S)
10)1	Damaged	Damaged								
10)2			Damaged	Dam	aged					
10)3						Da	maged		Damage	ed
10)4	Damaged	Damaged	Damaged	Dam	aged					
10)5			Damaged	Dam	aged	Da	maged		Damage	ed

Information on the damaged compartments of the damage case "101"

	Permeability	Volume	XG (From AP)	YG (From Centerline)	ZG (From Baseline)
No. 1 C.O.T(S)	0.95	3,373.0	90.0	8.0	14.5
No. 1 W.B.T(S)	0.95	2,388.0	90.0	13.0	5.0

Step 5: Evaluation of the Required Damage Stability - Case 1: Side Damage

Evaluation results for the damage case "101" according to MARPOL

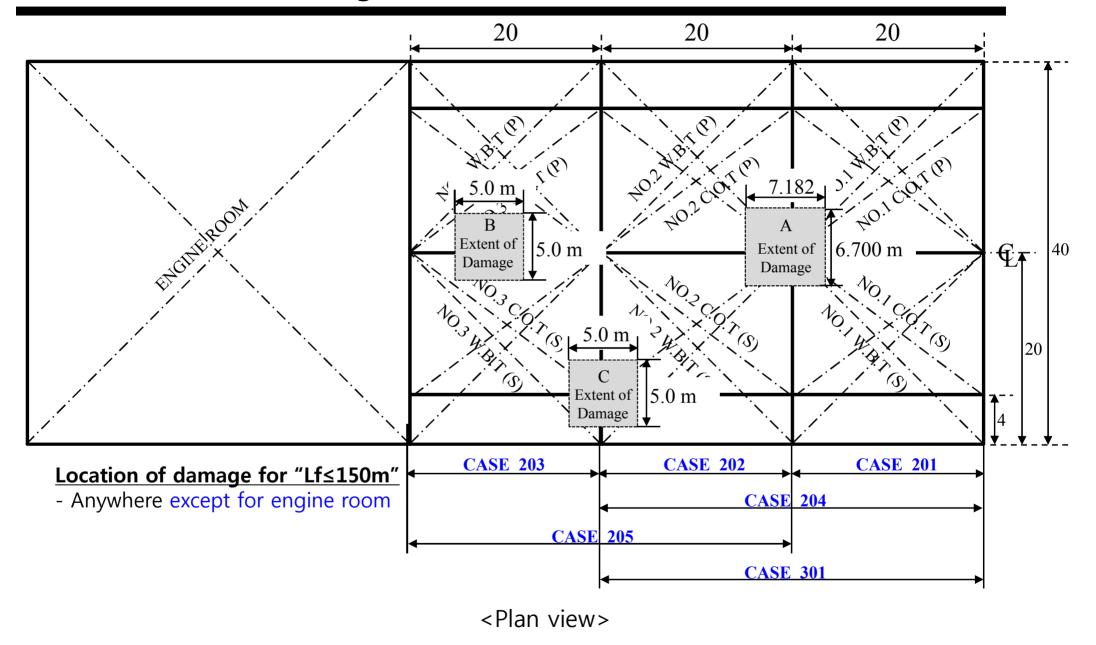
Regulations	Requirements	Calculation results	Satisfaction
Equilibrium point	Below 25° or 30°	1.878 °	Ο
Maximum righting arm(GZ _{max})	Over 0.1 m within the 20° range	2.652 m	Ο
Flooding angle($\phi_{\rm f}$)	Over 20° from the equilibrium point	24.475 °	Ο
Area under the curve within this range	Over 0.0175 m∙rad	0.446 m∙rad	Ο

24

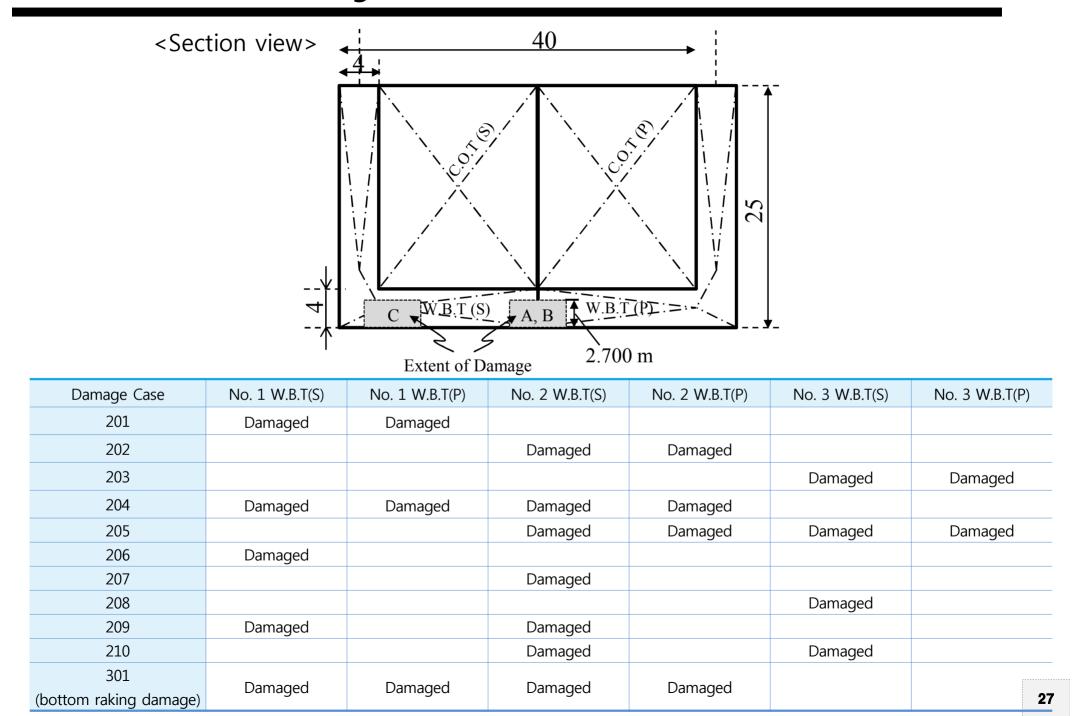
Step 2 & 3: Location and Extent of Damage in International Regulations - Case 2: Bottom Damage

Assumption of Extent of Damage (Bottom Damage)

	Reg	gulation		MARPOL	IBC	IGC	
	c' 1	Longitudinal Extent		Lf ^{2/3} /3 or 14.5n	, whichever is the lesser		
	Side Damage	Transverse Extent		B/5 or 11.5m,	whichever is the lesser		
		Vertical Extent			No limit		
			FP'~0.3Lf	Lf ^{2/3} /3 or 14.5n	, whichever is the lesser		
Extent of Damage	Bottom Damage	Longitudinal Extent	0.3Lf~Aft	Lf ^{2/3} /3 or 5.0m, whiche lesser	ver is the	Lf/10 or 5.0m, whichever is the lesser	
		Transverse Extent	FP'~0.3Lf	B/6 or 10.0m,	whichever is the lesser		
			0.3Lf~Aft	B/6 or 5.0m,	vhichever is	the lesser	
		Vertical Extent		B/15 or 6.0m, whichever	is the lesser	B/15 or 2m, whichever is the lesser	
	➔ bottom raking damage ³⁾ , Reg			28 of MARPOL 73/78			
	- Longitudinal Extent: 75 - Transverse Extent: 20 - Vertical Extent: 20			,000t ≤ DWT ≤ 75,000t ,000t ≤ DWT ,000t ≤ DWT ,000t ≤ DWT	: 0.4 Lf from FP' : 0.6 Lf from FP' : B/3 anywhere : breach of outer hull ⁴⁾		


Regulation		Reg. 25, Annex I	Reg. 28, Annex I of MARPOL 73/78				
		Bottom	Bottom raking damage				
	FP'~(0.3Lf	0.3Lf	~Aft	g		
Extent of Damage	Requirements	Calculation results	Requirements	Calculation results	Requirements for DWT≤75,000ton	Calculation results	
Longitudinal Extent	Lf ^{2/3} /3 or 14.5m, whichever is the lesser	7.182m	Lf ^{2/3} /3 or 5.0m, whichever is the lesser	5.0m	0.4 Lf from FP'	40.0m	
Transverse Extent	B/6 or 10.0m, whichever is the lesser	6.7m	B/6 or 5.0m, whichever is the lesser	5.0m	B/3 anywhere	13.0m	
Vertical Extent	B/15 or 6.0m, whichever is the lesser	2.7m	B/15 or 6.0m, whichever is the lesser	2.7m	breach of outer hull	breach of outer hull	

25


Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Step 2 & 3: Location and Extent of Damage in International Regulations - Case 2: Bottom Damage

Step 2 & 3: Location and Extent of Damage in International Regulations - Case 2: Bottom Damage

Stop 1. Dormoshility of Compartment					Spaces		MARPOL	IBC	IGC	ICLL
Step 4: Permeability of Compartment						Appropriated to stores		0.60		0.95
- Case 2: Bot	Occupied by accommodation		0.95		0.95					
	Occupied by machinery		0.85		85 0.					
	Void spaces		0.95			0.95				
All damage ca		Intended for liquids		0 to 0.95*		0.95				
Damage Case	No. 1 W.B.T(S)	No. 1 W.B.T(P)	No. 2 W.B.T(S)	No.	2 W.B.T(P)	No	. 3 W.B.T(S)	No. 3 W.B.	T(P)
201	Damaged	Damaged								
202			Damaged	Da	amaged					
203						Ľ	Damaged		Damage	d
204	Damaged	Damaged	Damaged	Da	amaged					
205			Damaged	Da	amaged	Γ	Damaged		Damage	d
206	Damaged									
207			Damaged							
208						E	Damaged			
209	Damaged		Damaged							
210			Damaged			Γ	Damaged			
301	Domogod	Demaged	Demagad		amagad					
(bottom raking damage)	Damaged	Damaged	Damaged	Da	amaged					

Information on the damaged compartments of the damage case "201"

	Permeability	Volume	XG (From AP)	YG (From Centerline)	ZG (From Baseline)
No. 1 W.B.T(P)	0.95	2,388.0	90.0	-13.0	5.0
No. 1 W.B.T(S)	0.95	2,388.0	90.0	13.0	5.0

28

Step 5: Evaluation of the Required Damage Stability - Case 2: Bottom Damage

Evaluation results for the damage case "201" according to MARPOL

Regulations	Requirements	Calculation results	Satisfaction
Equilibrium point	Below 25° or 30°	?	O or X ?
Maximum righting arm(GZ _{max})	Over 0.1 m within the 20° range	?	O or X ?
Flooding angle($\phi_{\rm f}$)	Over 20° from the equilibrium point	?	O or X ?
Area under the curve within this range	Over 0.0175 m∙rad	?	O or X ?

29

Reference Slides

[Appendix] Assumptions for Damage Stability

MARPOL 1973/78/84 Annex I/25

It <u>must be remembered</u> that the resulting (virtual) <u>displacement not only differ</u> <u>from the initial displacement</u>, but varies with change in trim or heel.

SOLAS 2006 Amend / Chapter II1 / Reg. 7 3 When determining the positive righting lever (GZ) of the residual stability curve, the displacement used should be that of the intact condition. That is, the <u>constant displacement method</u> of calculation should be used.

In <u>constant displacement method</u>, the GZ curve related values are represented so that the displacement of the ship is assumed to be constant (=<u>initial displacement</u>).

This means that to get the correct uprighting (restoring) moments from the GZ values, GZ must be multiplied by the initial displacement.

