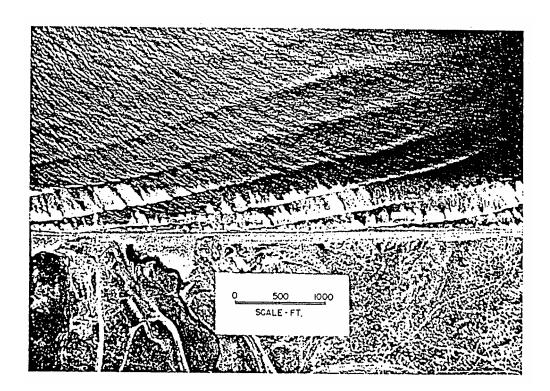
Chap 2. Statistical Properties and Spectra of Sea Waves

2.1 Random Wave Profiles and Definitions of Representative waves

2.1.1 Spatial Surface Forms of Sea Waves

- Long-crested waves: Wave crests have a long extent (swell, especially in shallow water)
- Short-crested waves: Wave crests do not have a long extent, but instead consists of short segments (wind waves in deep water)



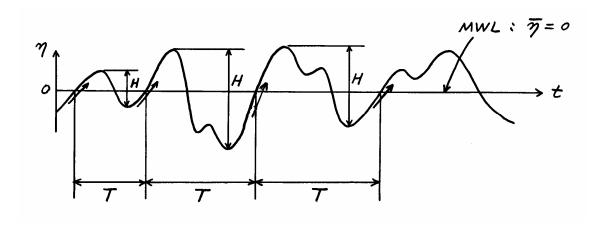
2.1.2 Definition of Representative Wave Parameters

In nature, no sinusoidal wave exists

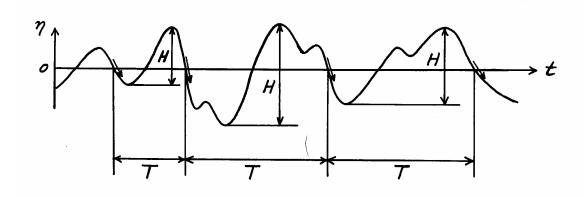
- → Wave forms are irregular (or random)
- → Difficult to define individual waves
- → Zero-crossing method is used.

Assume that we measured $\eta(t)$ at a point.

Zero-upcrossing:

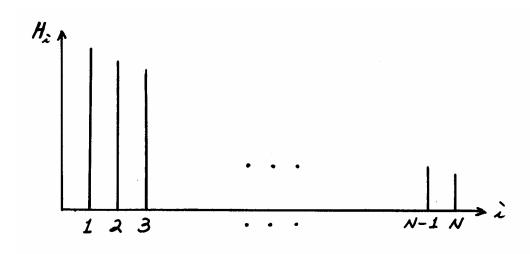


Zero-downcrossing:



Statistically, zero-upcrossing and zero-downcrossing are equivalent if the wave record is long enough. But zero-upcrossing is more commonly used.

Arrange the wave heights in descending order.



(a) Highest wave: H_{max} , T_{max}

Note: $T_{\rm max}$ is not the maximum wave period in the record, but the wave period corresponding to $H_{\rm max}$.

(b) Highest one-tenth wave: $H_{1/10}$, $T_{1/10}$

Average of the highest N/10 waves

$$H_{_{1/10}} = \frac{1}{N/10} \sum_{i=1}^{N/10} H_{_i}$$

 $T_{1/10}$ = average of the wave periods corresponding to the highest N/10 waves

(c) Significant wave, or highest one-third wave: $H_{\scriptscriptstyle 1/3}$, $T_{\scriptscriptstyle 1/3}$ (or $H_{\scriptscriptstyle s}$, $T_{\scriptscriptstyle s}$)

$$H_{1/3} = \frac{1}{N/3} \sum_{i=1}^{N/3} H_i$$

(d) Mean wave: \overline{H} (or H_1), \overline{T}

$$\overline{H} = \frac{1}{N} \sum_{i=1}^{N} H_i$$

2.2 Distribution of Individual Wave Heights and Periods

2.2.1 Wave Height Distribution

Gaussian stochastic (linear) theory for narrow-band spectra (range of periods is small) suggests Rayleigh distribution of H_i (discrete) = H (continuous) for large $N \to \infty$.

Probability density function:

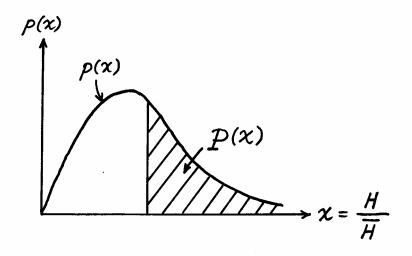
$$p(x) = \frac{\pi}{2} x \exp\left(-\frac{\pi}{4} x^2\right)$$
 with $x = \frac{H}{H}$

satisfying
$$\int_0^\infty p(x)dx = 1$$

Probability of exceedance:

$$P(x) = \int_{x}^{\infty} \frac{\pi}{2} \xi \exp\left(-\frac{\pi}{4} \xi^{2}\right) d\xi = \exp\left(-\frac{\pi}{4} x^{2}\right)$$

$$= \text{probability (arbitrary } \tilde{x} = \frac{\tilde{H}}{H} > \text{given } x)$$



Field data indicate that Rayleigh distribution based on restricted assumptions (linear + narrow-band) yields good agreement with data.

2.2.2 Relations between Representative Wave Heights

Exceedance probability based on Rayleigh distribution

$$P(x_N) = \exp\left(-\frac{\pi}{4}x_N^2\right) = \frac{1}{N}$$

$$x_N = \frac{2}{\sqrt{\pi}}(\ln N)^{1/2} \text{ for given } N \text{ (e.g., } N = 3, 10)$$

By definition

$$x_{1/N} = \frac{H_{1/N}}{\overline{H}} = \frac{\int_{x_N}^{\infty} xp(x)dx}{\int_{x_N}^{\infty} p(x)dx} = \frac{1}{1/N} \int_{x_N}^{\infty} xp(x)dx$$

Using
$$\frac{dP}{dx} = -p(x)$$
 and $P(x) = \exp\left(-\frac{\pi}{4}x^2\right) = \int_x^{\infty} p(\xi)d\xi$

$$x_{1/N} = N \int_{x_N}^{\infty} \left(-x \frac{dP}{dx} \right) dx$$

$$= N \left\{ -xP \right\}_{x_N}^{\infty} - \int_{x_N}^{\infty} (-P) dx \right\}$$

$$= N \left\{ x_N P(x_N) + \int_{x_N}^{\infty} P dx \right\}$$

$$= N \left\{ x_N \exp \left(-\frac{\pi}{4} x_N^2 \right) + \int_{x_N}^{\infty} \exp \left(-\frac{\pi}{4} x^2 \right) dx \right\}$$

using complementary error function, $\operatorname{erfc}(x) = \int_{x}^{\infty} e^{-t^{2}} dt$,

$$x_{1/N} = N \left\{ x_N \exp\left(-\frac{\pi}{4} x_N^2\right) + \int_{\frac{\sqrt{\pi}}{2} x_N}^{\infty} \exp(-t^2) \frac{2}{\sqrt{\pi}} dt \right\}$$

$$x_{1/N} = x_N + \frac{2}{\sqrt{\pi}} N \operatorname{erfc}\left(\frac{\sqrt{\pi}}{2} x_N\right) \quad \text{with} \quad x_N = \frac{2}{\sqrt{\pi}} (\ln N)^{1/2}$$

See Table 9.1 (p 263) for $H_{1/N} / \overline{H}$ vs $N = 100,50,20,10,\cdots$

$$H_s = H_{1/3} = 1.6\overline{H}$$
, $H_{1/10} = 1.27H_s$, $H_{1/100} = 1.67H_s$

2.2.3 Distribution of Wave Periods

Not well established.

Local wind waves (\sim 10 s) + Swell (\sim 15 s) \rightarrow two peaks (bi-modal) or two main direction

Typically,
$$T_{\text{max}} \cong T_{1/10} \cong T_{1/3} \cong (1.1 \sim 1.3)\overline{T}$$

2.3 Spectra of Sea Waves

2.3.1 Frequency Spectra

Free surface oscillation at a point:

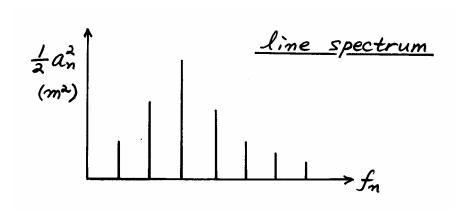
$$\eta(t) = \sum_{n=1}^{\infty} a_n \cos(2\pi f_n t + \varepsilon_n)$$

where

 a_n = amplitude of wave with frequency $f_n = \frac{1}{T_n}$

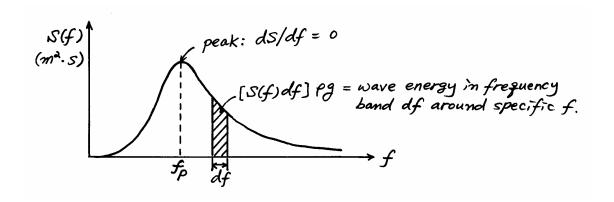
 ε_n = phase of wave with frequency f_n

Energy of wave with frequency $f_n = \frac{1}{2} \rho g a_n^2$



Real sea waves → infinite number of frequency components

→ (continuous) frequency spectrum



Note:
$$\frac{1}{2}a_n^2 = S(f_n)\Delta f$$

$$a_n = \sqrt{2S(f_n)\Delta f}$$

Standard spectra

 \uparrow

ensemble average of large number of wave records

(1) Bretschneider-Mitsuyasu spectrum

Fully developed wind waves in deep water (energy input from wind = energy dissipation due to breaking)

$$S(f) = 0.257H_s^2T_s^{-4}f^{-5}\exp[-1.03(T_sf)^{-4}]$$
(2.10)

for given H_s and T_s .

Modified by Goda (1988): $0.257 \rightarrow 0.205$, $1.03 \rightarrow 0.75$ as in Eq. (2.11).

(2) JONSWAP (JOint North Sea WAve Project) spectrum

Growing wind seas in deep water

$$S(f) = \beta_J H_s^2 T_p^{-4} f^{-5} \exp[-1.25(T_p f)^{-4}] \gamma^{\exp[-(T_p f - 1)^2/2\sigma^2]}$$

where

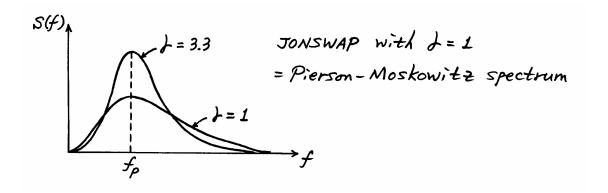
$$\beta_I = \beta_I(\gamma) \tag{2.13}$$

$$T_p = T_p(T_s, \gamma) \tag{2.14}$$

$$\sigma = \begin{cases} \sigma_a \approx 0.07 & \text{for } f \leq f_p \\ \sigma_b \approx 0.09 & \text{for } f > f_p \end{cases}$$

peak enhancement factor $\gamma = 1 \sim 7$ (typically 3.3)

Need to specify H_s , T_s , σ_a , σ_b , and γ (sharper spectral peak as $\gamma \uparrow$).



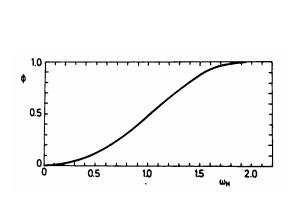
(3) TMA spectrum (Bouws et al., 1985, J. Geophys. Res., 90, C1) \downarrow

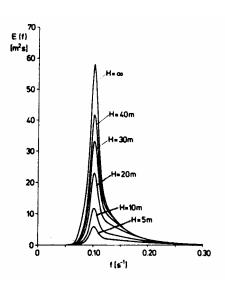
Includes effects of finite water depth

Kitaigordskii shape function (depth effect)

$$\phi_k(f,h) = \begin{cases} 0.5\omega_h^2 & \text{for } \omega_h < 1\\ 1 - 0.5(2 - \omega_h)^2 & \text{for } 1 \le \omega_h \le 2\\ 1 & \text{for } \omega_h > 2 \end{cases}$$

$$\omega_h = 2\pi f \left(h / g \right)^{1/2}$$





2.3.2 Directional Wave Spectra

(1) General

frequency spectrum \rightarrow assumes waves with many different frequencies but single direction.

However, real sea waves consist of many component waves with different frequencies and direction. Therefore, we need directional wave spectrum:

$$S(f,\theta) = S(f)G(f;\theta)$$

$$\uparrow$$
directional spreading function
$$\downarrow$$
directional distribution of wave energy
$$\downarrow$$
varies with frequency f .

$$\int_{-\pi}^{\pi} \underbrace{G(f;\theta)}_{\uparrow} d\theta = 1$$

represents relative magnitude of directional spreading of wave energy

$$\therefore \text{ Total energy} = \int_0^\infty \int_{-\pi}^\pi S(f,\theta) d\theta df$$

$$= \int_0^\infty \int_{-\pi}^\pi S(f) G(f;\theta) d\theta df$$

$$= \int_0^\infty S(f) df$$

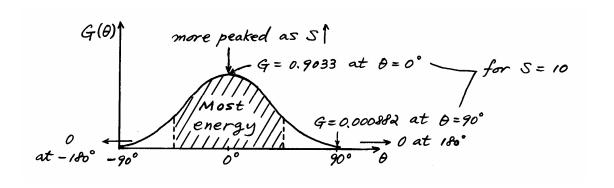
(2) Mitsutasu-type directional spreading function

Based on field measurements,

$$G(f;\theta) = G_0 \cos^{2s} \left(\frac{\theta}{2}\right)$$
 \leftarrow symmetric about $\theta = 0$

$$\theta = \text{wave angle from principal direction } (\theta = 0)$$

See Fig. 2.11 for the variation of G versus θ .



Intuitively, G = 0 for $-180^{\circ} \le \theta \le -90^{\circ}$ and $90^{\circ} \le \theta \le 180^{\circ}$.

But, G is very small as long as s is large.

Must satisfy
$$\int_{-\pi}^{\pi} G_0 \cos^{2s} \left(\frac{\theta}{2} \right) d\theta = 1$$

Symmetric about $\theta = 0$: $2G_0 \int_0^{\pi} \cos^{2s} \left(\frac{\theta}{2}\right) d\theta = 1$

$$G_0 = \frac{1}{2\int_0^{\pi} \cos^{2s} \left(\frac{\theta}{2}\right) d\theta} = \frac{1}{\pi} 2^{2s-1} \frac{\left[\Gamma(s+1)\right]^2}{\Gamma(2s+1)}$$

where Gamma function $\Gamma(n) = (n-1)!$ for integer n.

s depends on frequency f:

$$s = \begin{cases} s_{\text{max}} (f/f_p)^5 & \text{for } f \le f_p \\ s_{\text{max}} (f/f_p)^{-2.5} & \text{for } f > f_p \end{cases}$$

where $f_p = \frac{1}{T_p}$ = peak frequency, and roughly $T_p \approx 1.05T_s$.

$$s = s_{\text{max}}$$
 at $f = f_p$, and s decreases as $|f - f_p|$ increases.

Hence, directional spreading is the narrowest near $f = f_p$. See Fig. 2.12 for $s_{\text{max}} = 20$ where $f^* = f / f_p$ (=1 at peak frequency).

(3) Estimation of the spreading parameter s_{max}

As s_{max} increases, more long-crested.

Tentatively,
$$\begin{cases} s_{\text{max}} = 10 & \text{for wind waves} \\ s_{\text{max}} = 25 \sim 75 & \text{for swell} \end{cases}$$
 in deep water.

 $s_{\rm max}$ increases as $H_{\rm 0}/L_{\rm 0}$ decreases (see Fig. 2.13).

As waves propagate to shallow water, they become long-crested due to refraction. In other words, s_{max} increases as h decreases. On the other hand, s_{max} increases more rapidly with decreasing h for a larger incident angle because of more refraction (see Fig. 2.14).

(4) Cumulative distribution curve of wave energy

Read text.

(5) Other directional spreading functions

Simplest:

$$G(f;\theta) \equiv G(\theta) = \begin{cases} \frac{2}{\pi} \cos^2 \theta & \text{for } |\theta| \le \frac{\pi}{2} \\ 0 & \text{for } |\theta| \le \frac{\pi}{2} \end{cases}$$
 (2.29)

which is independent of f.

SWOP (Stereo Wave Observation Project):

$$G(f;\theta) = G(\omega;\theta); \qquad \omega = 2\pi f$$
 (2.30)

Eqs. (2.29) and (2.30) are similar to Mitsuyasu-type with $s_{\text{max}} = 10$ except energy spread with f.

Wrapped normal function (Borgman, 1984):

$$G(f;\theta) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{N} \exp\left\{-\frac{(n\sigma_m)^2}{2}\right\} \cos n(\theta - \theta_m)$$

 θ_m = mean wave direction

 σ_m = directional spreading parameter (broad directional spreading as $\sigma_m \uparrow$)

2.4 Relationship between Wave Spectra and Characteristic Wave Dimensions

Wave - by - wave analysis \rightarrow time domain \longrightarrow relates each other. Wave spectrum \longrightarrow frequency domain

$$\eta(t) = \sum_{n=1}^{\infty} a_n \cos(2\pi f_n t + \varepsilon_n)$$

$$\eta^2 = \left[\sum_{n=1}^{\infty} a_n \cos(2\pi f_n t + \varepsilon_n)\right]^2$$

$$\overline{\eta^2} = \frac{1}{T} \int_0^T \left[\sum_{n=1}^\infty a_n \cos(2\pi f_n t + \varepsilon_n) \right]^2 dt$$

Using orthogonality, $\frac{1}{T} \int_0^T \cos(m\sigma t) \cos(n\sigma t) dt = 0$ if $m \neq n$,

$$\overline{\eta^2} = \frac{1}{T} \int_0^T \left[\sum_{n=1}^\infty a_n^2 \cos^2(2\pi f_n t + \varepsilon_n) \right] dt$$
$$= \sum_{n=1}^\infty \frac{1}{2} a_n^2$$
$$= \int_0^\infty S(f) df \equiv m_0$$

where m_0 = zeroth moment of S(f) $\overline{\eta^2}$ = variance of $\eta(t)$

Defining $\eta_{rms} = \sqrt{\overline{\eta^2}}$ = root-mean-squared value of $\eta(t)$, we get

$$\eta_{rms} = \sqrt{\overline{\eta^2}} = \sqrt{m_0}$$

For Rayleigh distribution of H,

$$H_s \cong 4\eta_{rms} = 4\sqrt{m_0}$$

Since H_s and $4\sqrt{m_0}$ are not exactly the same, use

 $H_s = H_{1/3}$ = average height of highest 1/3 waves from zero-crossing method $H_{m0} = 4\sqrt{m_0}$ = spectral estimate of significant wave height

As for wave periods,

$$T_s \cong 0.95T_p$$

$$\overline{T} \cong \sqrt{m_0/m_2}$$
; $m_2 = \int_0^\infty f^2 S(f) df = 2^{\text{nd}}$ moment of $S(f)$