Chapter 4. Engineering Wave Properties
4.1 Introduction

Velocity potential

.+ — Wavekinematics, pressurefield, wave energy, etc.
Surfaceelevation

Wave transformation (Shoaling, Refraction, Diffraction)
Wave breaking

4.2 Wave Kinematics for Progressive Waves

Particle velocity
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Local fluid velocities and accelerations
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Figure II-1-3. Profiles of particle velocity and acceleration
by Airy theory in relation to the surface elevation



Particle displacements

Consider a water particle moving around the mean position (x,,z,):
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which is the equation of an ellipse. Note that A is always greater than B because
coshx>sinhx. Also note that B=H /2 at z, =0, that is, the water particle on the

free surface moves vertically between crest and trough.
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In shallow water,
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Figure Il-1-4. Water particle displacements from mean position for shallow-water and deepwater waves




4.3 Pressure Field under a Progressive Wave

Consider the Bernoulli equation:
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Neglecting small nonlinear terms,
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is the pressure response factor, which varies from 1/coshkh at z=—h tolat z=0.

Note that K, (z)<1. In the equation for pressure, the first term represents the

hydrostatic pressure, and the second term dynamic pressure due to waves. The
hydrostatic pressure increases linearly with depth, but the dynamic pressure decreases
exponentially with depth.



Above the mean water level, i.e., in the range of 0<z, <7,
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Wave measurement using a pressure transducer

D
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If the pressure transducer is located at the bottom (z =—#),
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where
K (h)= 1 _ |1 forshallow water (long - period wave)
v " coshkh |0 for deep water (short - period wave)

Dynamic pressure due to short-period wave is hardly recorded by a pressure transducer
located at the bottom. It is difficult to distinguish real signal and noise of the gauge.
Therefore, pressure should be measured near the water surface when water depth is
large.

4.4 Wave Kinematics for Standing Waves

progressive waves ¢ b g
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Figure 4.6 Distribution of water particle velocities in a standing water wave.
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Local accelerations:
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Particle displacements:
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4.5 Pressure Field under a Standing Wave

Consider the Bernoulli equation:
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By the same way as for progressive waves,
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Wave force acting on a vertical wall
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The first integral is a first-order term, and the second integral is a second-order term.
However, note that this F is neither first-order nor second-order. For a complete
second order solution, the nonlinear terms (i.e., u* terms) should be included from the
beginning.



To the first order,
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The first term is the wave force due to dynamic pressure, while the second term is the
hydrostatic pressure force.
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4.6 Partial Standing Waves

Partial reflection from beaches or breakwaters: H, > H, where H, = incident wave

height, and H, = reflected wave height. The wave potential is
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where ¢ = phase lag.
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Since H,# H,, there is no true node. Instead, we have wave envelopes within which

the surface elevation varies (see Fig. 4.7 of textbook). In other words, the upper and
lower envelopes are the upper and lower boundaries of surface elevation, i.e. 7., and

Nwmin - 1herefore, 0n/ot=0 on envelopes.
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To find the envelopes,
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same as perfect reflection

To measure the wave envelopes, we have to measure waves as slowly moving a wave
gauge along the wave tank (see Fig. 4.9 of textbook). This technique for separation of
incident and reflected waves is applicable only to regular waves. For irregular waves,



use multiple fixed gauge method (Suh et al. 2001, Coastal Engineering, 43, 149-159).
4.7 \Wave Energy

Total energy (£) = potential energy (£ ) due to displacement of free surface

+ Kinetic energy ( £, ) due to water particle movement

Potential energy
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The first term is the potential energy in still water, while the second term is the potential
energy due to wave. Therefore, the potential energy of only wave is
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Now, the total energy per unit surface area is
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Energy flux
Energy flux, or rate of work done by wave, is
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Average energy flux over one wave period is
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where C, = group velocity at which wave energy is transmitted.



where o® = gktanh ki is used for the last step.

In shallow water, n =1, .. Cg =C

In deep water, n—)%, L C,o=—

So far, we considered the dynamic view of the group velocity.

Kinematic view of group velocity

Consider two waves with slightly different frequencies and wave numbers, which gives
a wave group.
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In the last term of the above expression, the first part represents the individual wave
propagating at the speed of C=o/k, while the second part represents the modulation

or envelope propagating at the speed of C, =Ac/Ak.
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Figure 4.12 Characteristics of a “group” of waves.

The speed of propagation of envelope or wave group is

C’,EA_J
£ Ak

This is why we call C, “group velocity”.



4.8 Wave Transformation Due to Depth Change
In this section, we deal with wave shoaling, refraction, and breaking.

Conservation of waves equation
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8 as
~(V5) - V(E) =0



or

—+Vo=0
ot

This is the equation for conservation of waves, which states that the temporal variation

of wave number % should be balanced by the spatial variation of frequency o .

Consider 1-D case:
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thatis, o (or T)isconstantalong x in a steady state.

Refraction
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Simple example: straight and parallel contours
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Variable bathymetry:
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Since k=k(x,y) and 6=60(x,y),
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This is a 1st-order nonlinear partial differential equation for &, because % is given by
o’ =gktanhkh for given o and /. This equation was solved numerically by Noda

et al. (1974).
A simpler way by Perlin and Dean (1983), Proc. Coastal Structures *83, ASCE 988-999:
Defining

A(x,y)=ksing
B(x,y)=kcosé

we have

OB 04 .
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A’ + B> =k?* = @ is calculated.

Wave height H is calculated by the similar way using the conservation of energy
equation. Also see Dalrymple (1988). JWPCOE, ASCE, 114(4): 423-435, which
includes wave-current interaction and nonlinearity.



Conservation of enerqy

Assume a steady state and no energy input or loss.
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Assume wave energy is not transmitted across wave rays. Then
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In Cartesian coordinates,
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V. (EEg ): 0| Conservation of energy equation




For straight and parallel contours, 6/0dy =0. Therefore,

0
P (ECg cos 49): 0

Depth contours

Figure 4.17 Characteristics of wave rays during refraction over idealized bathymetry.
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If position 1 is in deep water,

H.=H CO b_o_H CO %—H K K
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where K =shoaling coefficient, and K, = refraction coefficient.



Ray tracing method

1) Graphical method: Use Snell’s law over two adjacent bottom contours.
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2) Numerical method

Munk and Arthur (1952)
Griswold (1963), Journal of Geophysical Research, 68(6): 1715-1723.

Let ¢ = travel time along a ray of a wave moving with speed C(x, y). Let the wave is
located at [x(¢), y(r)] attime ¢.Then
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Solve (1), (2), and (3) to find a ray using a numerical method (ray by ray).

Let #=b/b, =ray separation factor such that
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£ can be found analytically (Munk and Arthur, 1952)
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Figure 4.20 Schematic diagram showing adjacent rays.
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Now
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On the other hand, directly from (4.113) and (4.120b),
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Comparing the two results,
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Now, we have an ODE for f(s):
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p(s):—3 cosﬁ§+sin0£
C ox oy
2 2 2
61(s)=£ sin2 S—Zsin@cosé’a € 4 cos?0f f
C ox Ox0y oy

Initial condition:
p=1, 6;—ﬂzo at +=0 indeep water
t

which means that no refraction occurs, i.e. K, =1, in deep water

1
reay frem (), (), (3)

Jnfmfer

-1

A ray tracing method gives @ and H along rays not at grid points. So, it is difficult
to use the results from ray tracing method as input data for numerical models (e.g.
sediment transport model) using finite difference method. We need interpolation.
Furthermore, infinite wave heights are calculated at the ray-crossing points. To resolve
these problems, finite-difference refraction models have been developed, e.g. Noda et al.
(1974), Perlin and Dean (1983), Dalrymple (1988).



Wave breaking

T T T T T ] T I T T T T T
1.6 ‘ —
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1.4 \\ —
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i.2— -
1.0~ —
N 5 .
0.8 1 | 1 | ] | ] | 1 | 1 ] 1
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7
(0.056) {0.170) (0.287) (0.395) (0.498) (0.599) (0.700)
d/L (d/Ly)

(1) Finite, constant depth

Miche (1944):

[ﬁ) :0.142tanh(@J
L), L

As hlL—0, H/h=0.89 atbreaking.

But, Nelson (1983, 6th Australian Conf. on Coastal and Ocean Eng.) found based on
experimental results that

(%} <0.55 on a constant depth
b



(2) Shoaling waves in shallow water

breoker ﬁo‘n‘t’
where bmle.‘na nrtlates

ms= t‘am,& = beach slope

where /4, = breaking depth, and H, = breaker height.

H A
—b = /{m, ”Zj as in Fig. 12.7 of textbook,

where m = beach slope.

Surf similarity parameter based on H, (Battjes, 1974, Proc. 14th Coastal Eng. Conf.,

ASCE, 466-480):

Breaker types depending on &, :

Spilling £, <04 smaller beach slope and steeper wave

Plunging 04<é, L2



Collapsing 2<¢, <35

Surging 35<¢, larger beach slope and milder wave

For other breaker height formulas, see Rattanapitikon and Shibayama (2000) Coastal
Eng. Journal, 42(4): 389-406.

Analyzing many laboratory results, Weggel (1972) proposed

H,

x =b(m) —a(m) o7

where

a(m) = 43.8(1.0 —e )

b(m) :1.56(1.0 4 g lo5m )—1

On a beach with straight and parallel contours,
cos
H=H, S | % =H,K K,
2C, \ cosé

For breaking wave in shallow water, C, =,/gh, and 6, =0. Therefore




For a plane beach with 4 =mx, where x = distance from shoreline,

2 215
1 (HO C, cosHO}

g 2
2 2/5
1 H{iC,cosb,
Xp = mg 2

where x, = distance from shoreline to breaker point.



4.9 Wave Diffraction
High energy region —(Energy transfer)— Low energy region
Examples:
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Diffraction behind a breakwater: Penney and Price (1952) Philosophical Transaction of
Royal Society of London, A244: 236-253.

4 3
S 3& O anmfimtely ong o + X direction
depth —> X
. %;— =0 (/mpermentle)
wave

BBC, DFSBC, and KFSBC are same as before. Far offshore from breakwater,

H gcoshk(h+z) .
—— =~ _Zsin(ky—ot) as y— —
2 o coshkh (ky ) Y %

¢ =
Assume
=Im{F(x, »)Z(z)e ™ |

where
Z(z)=cosh k(h+ z)

Substituting into the Laplace equation,

2 2 2
Vig=e 8ZZF+OZZF+F8f =0
Ox oy oz
2 2
Zaalj+ZzI;+szZ=O
X 4
_O0°F O*F

. +
o’ oy?

+k*F=0 Helmholtz equation for F(x, y)



The solution is given by Eq. (4.135) of textbook.
4.10 Combined Refraction-Diffraction
Assume locally

cosh k(h + z) o

= F y
¢ (x.) cosh kh

Berkoff (1972), Proc. 13th International Conference on Coastal Eng., 471-490:

C
vV, (CCthF)+ o’ ?gF =0/ mild-slope equation

The mild-slope equation is an elliptic equation, which gives a boundary value problem
in horizontal space and can be solved when all the boundary conditions are specified.

Radder (1979, Journal of Fluid Mechanics, 95: 159-176) proposed the parabolic
approximation, which gives an initial value problem so that the parabolic equation can
be solved by marching toward shore, with given offshore boundary condition.

Also, Copeland (1985, Coastal Engineering, 9: 125-149) proposed a hyperbolic
equation, and Massel (1993, Coastal Engineering, 19: 97-126) proposed an extended
refraction-diffraction equation, which includes higher-order bottom effect terms
compared with the mild-slope equation.
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