Chapter 6. Wavemaker Theory
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LCFSBC(Linearized Combined Free Surface Boundary Condition): Take time
derivative of LDFSBC and substitute into LKFSBC.
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Since goce'™, 0°¢/ot? =—o2¢p. Therefore,
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Lateral boundary condition:
(1) Kinematic boundary condition on wavemaker
(2) Radiation condition: Waves outgoing at X =+

Paddle displacement is described by
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By Taylor series expansion about x =0
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Assume S issmall sothat S=0O(H). Then the linearized wavemaker KBC is
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Referring to Table 3.1 of textbook, assume the solution as

#(X,z,t) = Acoshk(h + z)sin(kx — ot) + (Bx + C)(Dz + E) cos ot
+(Fe* +Ge™* (H cosk,z + I sink, z)cos ot

#(x,2,t) = Acoshk, (h + z)sin(k  x — ot) + Be ™**(C cosk,z + Dsink,z)cos ot

The first term satisfies BBC. For the second term to satisfy BBC, we need

_Z_¢ =0=-Be (- k.Csin(-k,h) + kD cos(k,h))
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—Csin(-k,h) + Dcos(-k.h)=0
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- ¢(x,z,t)= Acoshk (h+z)sin(k x — ot) + Be " cosk, (h + z) cos ot
Applying LCFSBC,
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Figure 6.3 Graphical representation of the dispersion relationship for the stand-
ing wave modes, showing three of the infinite numbers of roots, k,(n). Here, a*h/g
=1.0.

We have infinite number of roots, k (n), n=1,2,---. Let us examine the first term:
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This term decays exponentially with the distance from the wavemaker, x. The other
terms decay more rapidly with x. These terms are called evanescent modes. Now the
velocity potential becomes

#(x,2,t) = A, coshk, (h+z)sin(k,x —at) + > C e™ cos[k, (n)(h + z)]cos ot
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progressive wave  evanescent waves decaying exponentially with x

A, and C (n=1to) should be determined from WBC:
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Examining variation over depth,
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This is the Sturm-Liouville problem, which gives the orthogonality of eigenfunctions, or
[°z,z,02=0 it m=n

In our problem, the eigenfunctions are coshk, (h+2) and

coslk,(n)(h+2)], n=12,---. To find A,, multiply coshk,(h+z) on both side of

WBC and integrate over depth:
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Similarly,
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Figure 6.2 Plane wavemaker theory. Wave height to stroke ratios versus relative
depths. Piston and flap type wavemaker motions.

For piston-type wavemaker,
S(z)=S

and for flap type wavemaker,
S(2) = 5(1+ Ej
h

where S = stroke at SWL.

Far from the wavemaker, where the evanescent modes are negligible,
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See H/S versus k h in Figure 6.2 of textbook. See also Egs. (6.25) and (6.26).

For small kph,

for piston wavemaker
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Lo
% for flap wavemaker

Mean power (averaged over one wave period) required by the wavemaker is calculated
by the energy flux away from the wavemaker:

P=EC, :%I:J j_oh P, Udz

Figure 6.4 Dimensionless mean power as a function of water depth for piston
and flap wavemakers.



3-D Wavemaker

“Snake-type” wavemaker



The boundary value problem is

Vigp= 0'¢ + 0% + 0'¢ =0
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Assume ¢(x,Y,z,t)=X(X)Z(2)Y(y,t). z-problem is the same as 2-D wavemaker
problem. Thus,

Z(z)=Acoshk(h+z)+ icn cosk, (n)(h+2)

n=1
with o? =gktanhkh and o? =-gk, tank.h. Periodicity condition in y -direction
gives
Y (y,t) =Csin(ly — ot) + D cos(1y — ot)
Substituting these into the Laplace equation,

1d%X
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+k? -4 =0

where + is for progressive wave, and — is for evanescent waves. The solutions are

X =Ecosvk? — A?x+ Fsinvk? — A%x
X, = Bl 4 perlkie s



Now the velocity potential is given by

¢ = Acoshk(h + z)sin(vk* — A*x + Ay —ot)
+3°¢, coslk, (n)(h+ 2)]e V< cos(ay - ot)
n=1

WBC gives
_g_¢ =—Avk? = 2% coshk(h + z) cos(ly — ot)
X x=0

+ icm/kj + A% cos[k, (h + z)] cos(ly — ot)
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——= o cos(Ay — ot)

Use orthogonality to determine A and C, .

Cylindrical wavemaker

Spiral wavemaker (Type Il in text)
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Boundary value problem:
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KBC on cylinder wall:

r=R+é&sin(@ — ot)
F(r,0,t)=r-R—¢sin(@ —ot)=0
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Neglecting the second order term,
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Taylor series expansion about r=R gives
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Using separation of variable, the solution satisfying the radiation condition (outgoing
waves as r —» o) is

#(r.0,2,t)= A, HP (k r)coshk, (h+2)e' P +>°C K, (k,r)cosk, (h+z)e'®?

n=1

A, and C,_ can be determined from orthogonality condition by integrating over z.



Plunger wavemaker (See Figure 6.8 of textbook.)




