
Chapter 6. Wavemaker Theory

LCFSBC(Linearized Combined Free Surface Boundary Condition): Take time derivative of LDFSBC and substitute into LKFSBC.

$$\frac{1}{g} \frac{\partial^2 \phi}{\partial t^2} = -\frac{\partial \phi}{\partial z} \quad \text{on} \quad z = 0$$

Since $\phi \propto e^{i\sigma t}$, $\partial^2 \phi / \partial t^2 = -\sigma^2 \phi$. Therefore,

$$\frac{\partial \phi}{\partial z} - \frac{\sigma^2}{g} \phi = 0 \quad \text{on} \quad z = 0 \quad \text{(LCFSBC)}$$

Lateral boundary condition:

- (1) Kinematic boundary condition on wavemaker
- (2) Radiation condition: Waves outgoing at $x = +\infty$

Paddle displacement is described by

$$x = \frac{S(z)}{2} \sin \sigma t$$

$$F(x, z, t) = x - \frac{S(z)}{2} \sin \sigma t$$

$$\vec{u} \cdot \vec{n} = \frac{-\partial F / \partial t}{|\nabla F|}$$

$$\vec{n} = \frac{\nabla F}{|\nabla F|} = \frac{\hat{i} - \frac{1}{2} \frac{dS}{dz} \sin \sigma t \hat{k}}{|\nabla F|}$$

$$u - \frac{w}{2} \frac{dS}{dz} \sin \sigma t - \frac{S(z)}{2} \sigma \cos \sigma t = 0 \qquad \text{on} \quad x = \frac{S(z)}{2} \sin \sigma t$$

By Taylor series expansion about x = 0

$$\left(u - \frac{w}{2} \frac{dS}{dz} \sin \sigma t - \frac{S(z)}{2} \sigma \cos \sigma t\right)_{x=0}$$

$$+ \frac{S(z)}{2} \sin \sigma t \frac{\partial}{\partial x} \left(u - \frac{w}{2} \frac{dS}{dz} \sin \sigma t - \frac{S(z)}{2} \sigma \cos \sigma t\right)_{x=0} + \dots = 0$$

Assume S is small so that S = O(H). Then the linearized wavemaker KBC is

$$u = -\frac{\partial \phi}{\partial x} = \frac{S(z)}{2} \sigma \cos \sigma t$$
 on $x = 0$

Referring to Table 3.1 of textbook, assume the solution as

$$\phi(x, z, t) = A \cosh k(h + z) \sin(kx - \sigma t) + (Bx + C)(Dz + E) \cos \sigma t$$
$$+ \left(Fe^{k_x x} + Ge^{-k_x x}\right) \left(H \cos k_x z + I \sin k_x z\right) \cos \sigma t$$

$$\phi(x,z,t) = A\cosh k_p (h+z)\sin(k_p x - \sigma t) + Be^{-k_s x} (C\cos k_s z + D\sin k_s z)\cos \sigma t$$

The first term satisfies BBC. For the second term to satisfy BBC, we need

$$-\frac{\partial \phi}{\partial z}\bigg|_{z=-h} = 0 = -Be^{-k_s x} \left(-k_s C \sin(-k_s h) + k_s D \cos(-k_s h)\right)$$
$$-C \sin(-k_s h) + D \cos(-k_s h) = 0$$

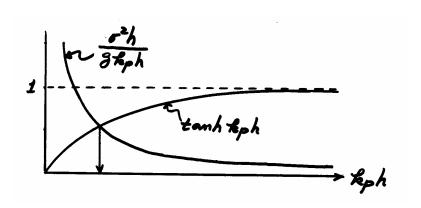
$$D = -C \tan k_s h$$

$$C\cos k_s z + D\sin k_s z = C\cos k_s z - C\tan k_s h\sin k_s z$$

$$= \frac{C}{\cos k_s h} (\cos k_s z \cos k_s h - \sin k_s z \sin k_s h) = E\cos k_s (h+z)$$

$$\therefore \phi(x, z, t) = A \cosh k_p (h + z) \sin(k_p x - \sigma t) + B e^{-k_s x} \cos k_s (h + z) \cos \sigma t$$

Applying LCFSBC,


$$\frac{\partial \phi}{\partial z} - \frac{\sigma^2}{g} \phi = 0 \quad \text{on} \quad z = 0$$

$$Ak_{p} \sinh k_{p} h \sin(k_{p} x - \sigma t) - Bk_{s} e^{-k_{s} x} \sin k_{s} h \cos \sigma t$$
$$-\frac{\sigma^{2}}{g} \left\{ A \cosh k_{p} h \sin(k_{p} x - \sigma t) + B e^{-k_{s} x} \cos k_{s} h \cos \sigma t \right\} = 0$$

$$\therefore k_p \sinh k_p h - \frac{\sigma^2}{g} \cosh k_p h = 0 \implies \sigma^2 = g k_p \tanh k_p h$$

$$-k_s \sin k_s h - \frac{\sigma^2}{g} \cos k_s h = 0 \implies \sigma^2 = -g k_s \tan k_s h$$

$$\frac{\sigma^2 h}{g k_p h} = \tanh k_p h$$

$$\frac{\sigma^2 h}{g k_s h} = -\tan k_s h$$

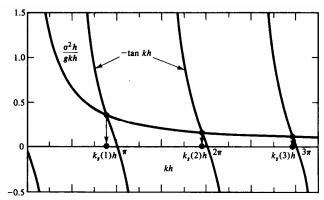


Figure 6.3 Graphical representation of the dispersion relationship for the standing wave modes, showing three of the infinite numbers of roots, $k_i(n)$. Here, $\sigma^2 h/g = 1.0$.

We have infinite number of roots, $k_s(n)$, $n = 1, 2, \cdots$. Let us examine the first term:

$$e^{-k_s(1)x} \le e^{-\frac{\pi/2}{h}x} = e^{-\pi/2} = 0.208$$
 for $x = h$
= $e^{-\pi} = 0.043$ for $x = 2h$
= $e^{-3\pi/2} = 0.009$ for $x = 3h$

This term decays exponentially with the distance from the wavemaker, x. The other terms decay more rapidly with x. These terms are called evanescent modes. Now the velocity potential becomes

$$\phi(x, z, t) = A_p \cosh k_p (h + z) \sin(k_p x - \sigma t) + \sum_{n=1}^{\infty} C_n e^{-k_s(n)x} \cos[k_s(n)(h + z)] \cos \sigma t$$

$$\uparrow \qquad \uparrow$$

progressive wave evanescent waves decaying exponentially with x

 A_p and C_n (n = 1 to ∞) should be determined from WBC:

$$-\frac{\partial \phi}{\partial x}\bigg|_{x=0} = -A_p k_p \cosh k_p (h+z) \cos \sigma t + \sum_{n=1}^{\infty} C_n k_s (n) \cos [k_s (n)(h+z)] \cos \sigma t = \frac{S(z)}{2} \sigma \cos \sigma t$$

Examining variation over depth,

$$\frac{d^2Z}{dz^2} - k^2Z = 0$$

$$\frac{dZ}{dz} = 0 \quad \text{on} \quad z = -h$$

$$\frac{dZ}{dz} - \frac{\sigma^2}{g}Z = 0 \quad \text{on} \quad z = 0$$

This is the Sturm-Liouville problem, which gives the orthogonality of eigenfunctions, or

$$\int_{-h}^{0} Z_m Z_n dz = 0 \quad \text{if} \quad m \neq n$$

In our problem, the eigenfunctions are $\cosh k_p(h+z)$ and $\cos [k_s(n)(h+z)], \quad n=1,2,\cdots$. To find A_p , multiply $\cosh k_p(h+z)$ on both side of WBC and integrate over depth:

$$-\int_{-h}^{0} A_{p} k_{p} \cosh^{2} k_{p} (h+z) dz + \sum_{n=1}^{\infty} \int_{-h}^{0} C_{n} k_{s} (n) \cos[k_{s} (n)(h+z)] \cosh k_{p} (h+z) dz$$

$$= \int_{-h}^{0} \frac{S(z)}{2} \sigma \cosh k_{p} (h+z) dz$$

$$\therefore A_p = \frac{-\int_{-h}^0 \frac{S(z)}{2} \sigma \cosh k_p (h+z) dz}{k_p \int_{-h}^0 \cosh^2 k_p (h+z) dz}$$

Similarly,

$$C_{n} = \frac{\int_{-h}^{0} \frac{S(z)}{2} \sigma \cos[k_{s}(n)(h+z)] dz}{k_{s}(n) \int_{-h}^{0} \cos^{2}[k_{s}(n)(h+z)] dz}$$

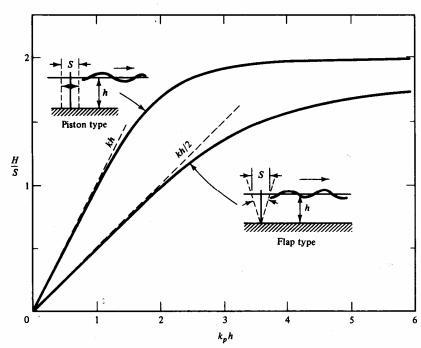


Figure 6.2 Plane wavemaker theory. Wave height to stroke ratios versus relative depths. Piston and flap type wavemaker motions.

For piston-type wavemaker,

$$S(z) = S$$

and for flap type wavemaker,

$$S(z) = S\left(1 + \frac{z}{h}\right)$$

where S = stroke at SWL.

Far from the wavemaker, where the evanescent modes are negligible,

$$\eta = \frac{H}{2}\cos(k_p x - \sigma t) = \frac{1}{g} \frac{\partial \phi}{\partial t} \Big|_{z=0} = -\frac{\sigma}{g} A_p \cosh k_p h \cos(k_p x - \sigma t)$$

$$H = -2 \frac{\sigma}{g} A_p \cosh k_p h$$

See H/S versus $k_p h$ in Figure 6.2 of textbook. See also Eqs. (6.25) and (6.26). For small $k_p h$,

$$\frac{H}{S} = \begin{cases} k_p h & \text{for piston wavemaker} \\ \frac{k_p h}{2} & \text{for flap wavemaker} \end{cases}$$

Mean power (averaged over one wave period) required by the wavemaker is calculated by the energy flux away from the wavemaker:

$$P = EC_g = \frac{1}{T} \int_{t}^{t+T} \int_{-h}^{0} p_d u dz$$

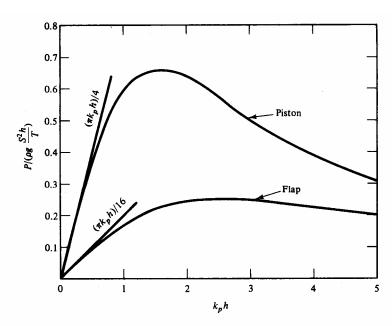


Figure 6.4 Dimensionless mean power as a function of water depth for piston and flap wavemakers.

3-D Wavemaker

"Snake-type" wavemaker

The boundary value problem is

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

$$\frac{\partial \phi}{\partial z} = 0$$
 on $z = -h$

$$\frac{\partial \phi}{\partial z} - \frac{\sigma^2}{g} \phi = 0 \quad \text{on} \quad z = 0$$

$$-\frac{\partial \phi}{\partial x} = \frac{S(z)}{2} \sigma \cos(\lambda y - \sigma t) \quad \text{on} \quad x = 0$$

Assume $\phi(x, y, z, t) = X(x)Z(z)Y(y, t)$. z-problem is the same as 2-D wavemaker problem. Thus,

$$Z(z) = A \cosh k(h+z) + \sum_{n=1}^{\infty} C_n \cos k_s(n)(h+z)$$

with $\sigma^2 = gk \tanh kh$ and $\sigma^2 = -gk_s \tan k_s h$. Periodicity condition in y-direction gives

$$Y(y,t) = C\sin(\lambda y - \sigma t) + D\cos(\lambda y - \sigma t)$$

Substituting these into the Laplace equation,

$$\frac{1}{X}\frac{d^2X}{dx^2} \pm k^2 - \lambda^2 = 0$$

where + is for progressive wave, and - is for evanescent waves. The solutions are

$$X = E\cos\sqrt{k^2 - \lambda^2}x + F\sin\sqrt{k^2 - \lambda^2}x$$

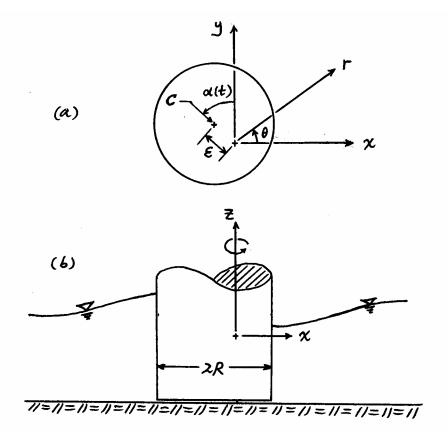
$$X_{s} = Ee^{\sqrt{k_s^2 + \lambda^2}x} + Fe^{-\sqrt{k_s^2 + \lambda^2}x}$$

Now the velocity potential is given by

$$\phi = A \cosh k(h+z) \sin(\sqrt{k^2 - \lambda^2} x + \lambda y - \sigma t)$$

$$+ \sum_{n=1}^{\infty} C_n \cos[k_s(n)(h+z)] e^{-\sqrt{k_s^2 + \lambda^2} x} \cos(\lambda y - \sigma t)$$

WBC gives


$$\begin{aligned} -\frac{\partial \phi}{\partial x}\bigg|_{x=0} &= -A\sqrt{k^2 - \lambda^2} \cosh k(h+z)\cos(\lambda y - \sigma t) \\ &+ \sum_{n=1}^{\infty} C_n \sqrt{k_s^2 + \lambda^2} \cos[k_s(h+z)]\cos(\lambda y - \sigma t) \\ &= \frac{S(z)}{2} \sigma \cos(\lambda y - \sigma t) \end{aligned}$$

Use orthogonality to determine A and C_n .

Cylindrical wavemaker

Spiral wavemaker (Type III in text)

Boundary value problem:

$$\nabla^{2} \phi = \frac{\partial^{2} \phi}{\partial r^{2}} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}} + \frac{\partial^{2} \phi}{\partial z^{2}} = 0$$

$$-\frac{\partial \phi}{\partial z} = 0 \quad \text{on} \quad z = -h$$

$$\frac{\partial \phi}{\partial z} - \frac{\sigma^{2}}{g} \phi = 0 \quad \text{on} \quad z = 0$$

KBC on cylinder wall:

$$\begin{aligned} r &= R + \varepsilon \sin(\theta - \sigma t) \\ F(r, \theta, t) &= r - R - \varepsilon \sin(\theta - \sigma t) = 0 \\ \frac{DF}{Dt} &= \sigma \varepsilon \cos(\theta - \sigma t) + u_r - \frac{u_\theta}{r^2} \varepsilon \cos(\theta - \sigma t) = 0 \quad \text{on} \quad F = 0 \end{aligned}$$

Neglecting the second order term,

$$u_r = -\frac{\partial \phi}{\partial r} = -\sigma \varepsilon \cos(\theta - \sigma t)$$
 on $F = 0$

Taylor series expansion about r = R gives

$$\begin{split} & \left[u_r + \sigma \varepsilon \cos(\theta - \sigma t) \right]_{r=R+\varepsilon \sin(\theta - \sigma t)} \\ & = \left[u_r + \sigma \varepsilon \cos(\theta - \sigma t) \right]_{r=R} + \varepsilon \sin(\theta - \sigma t) \frac{\partial}{\partial r} \left[u_r + \sigma \varepsilon \cos(\theta - \sigma t) \right]_{r=R} + \dots = 0 \\ & \therefore -\frac{\partial \phi}{\partial r} = -\sigma \varepsilon \cos(\theta - \sigma t) \qquad \text{on} \quad r = R \end{split}$$

Using separation of variable, the solution satisfying the radiation condition (outgoing waves as $r \to \infty$) is

$$\phi(r,\theta,z,t) = A_p H_1^{(1)}(k_p r) \cosh k_p (h+z) e^{i(\theta-\sigma t)} + \sum_{n=1}^{\infty} C_n K_1(k_n r) \cos k_n (h+z) e^{i(\theta-\sigma t)}$$

 A_p and C_n can be determined from orthogonality condition by integrating over z.

<u>Plunger wavemaker</u> (See Figure 6.8 of textbook.)