Chapter 8. Coastal Zone Processes

8.0 Introduction
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e Stability of beach depends on:
(1) sediment supply
(2) onshore-offshore transport of sediment
(3) longshore transport of sediment

e Equilibrium beach: A beach which is subject to short-term change, but remains stable
for a long-term period (over several years).



¢ Coastal development (construction of structures, dredging, beach nourishment, etc)
\2
Violation of equilibrium state

\J

Beach evolution towards a new equilibrium state

e Effects of coastal development on a beach:

(1) Change of sediment supply to the beach
- Construction of dam or reservoir
- Change of river passage
- Beach nourishment or sand mining

(2) Change of wave energy flux to the beach
- Construction of offshore structures or submerged breakwater

(3) Interruption of longshore transport
- Construction of shore-connected structures (e.g., groins or jetties)

8.1 Beach Sediment Properties and Analysis

e Physical properties of sediment
- Particle size and size distribution
- Particle shape
- Specific gravity (p,/ p) = 2.6 for sand
- Fall velocity = f (size, shape, p./p)

e Sediment sampling
- Beach: shovel or corer

- Underwater: Grab

Size and size distribution

e Sediment classification:
See Table 8.1 of textbook (Wentworth) and SPM Fig. 4-7 (Wentworth and Unified)

e Unit: diameter (d , mm) or ¢

¢ =—log, d(mm) — dzz%; ¢Tas ddand ¢ can be negative.



e Size distribution
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e Useful parameters
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Figure 8.1 Plot of typical sand sample size analysis.
- Median diameter (M, ; "RAFE) = g,
- Mean diameter (M, ; “F¥IHRHE) = %(% + Be)
- Standard deviation (o ; EH#E(R ) = %(%4 )
small o, well sorted, large o, poorly sorted

M, -M,

- Skewness (o, ; E&) =
Oy
THDE(M,)S A= size distributione] Bt %4
Perfectly symmetric distribution (straight line) > M ;= M iy > Ay = 0

Note: It is meaningful to convert M, and M, to mm unit, but it is meaningless to

convert o, and o, tomm unit.



8.2 Beach Profiles and Profile Change
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Figure 8.2. Typical beach profiles (vertical scale exaggerated) and terminology.

e Seasonal variation of beach profile

- Storm (or winter) profile:
Storm (high, steep waves) — Erosion of beach face — Offshore movement of sand
— Offshore bar is formed

- Normal (or summer) profile:
Normal (low, mild waves) — Sediment at offshore bar is transported onshore
gradually — Recovery of beach

.| mild for storm profile
- Overall beach slope is .
steep for normal profile
- Large tide area — water level fluctuation — Change of location of wave breaking
— no prominent offshore bars



e Parameters related to storm/normal profiles

- Wave steepness (H, /L,)
H, /L, >0.025: Strom profile
H, /L, <0.025: Normal profile

No consideration on sediment characteristics

H,

- Dean number, D =
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; V. =fall velocity of sediment for median diameter

VT

Sand partic/e

ﬁ” = -ﬂe,‘glt q’ entrainment
by breaking wave

Time to fall to bottom = ﬁ

Vf
Wave orbital motion Sand particle w/o wave  Sand particle under wave
¢:0 ¢z=0
—l— p— =T/
t=T/
=T
If sk <— or 21 <1 — Onshore transport of sand — Normal profile
V, 2 VT
If \iﬁ >% or % >1 — Offshore transport of sand — Storm profile
f

f

£ is unknown, which should be determined empirically.

D=

H, [<1 normal profile
V(T [>1 storm profile



¢ Sand size variation along beach profile

Winnowing of fine seand
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e Beach slope versus sand size
Coarser sand — Steeper beach slope

Normal profile — Steeper slope
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Storm profile — Milder slope
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8.3 Nearshore Circulation

e Nearshore currents
- wind-generated currents (W& 9)
- river outflow
- tidal currents (##i)

- longshore currents (7 5=9it): most important for nearshore sediment transport

- undertow (3 [ EEIT)
e Generation mechanism of longshore currents

1) Obliquely incident breaking waves
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Figure 8.4. Wave-generated longshore current.

Average longshore current velocity:

U =20.7my/gH, sin2¢,; m = beach slope

_A Longshore

\ current



2) Longshore variation of wave setup

In general, larger H, — larger setup — increase mean water level. Therefore, the

gradient of mean water level generates longshore currents from high water level region

to low water level region.
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8.4 Alongshore Sediment Transport Processes and Rates
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————— xr— V- —g——= — = breakerhine

Q, = volumetric longshore transport rate [L*/T]

I, =immersed weight longshore transport rate [ML/T *], which has the same

dimension as wave energy flux per unit length of beach

I, =Q,(p, —p)g(d—p); p =porosity of sand ~ 0.4

Energy flux per &1 of crest length = ECgél
Energy flux per unit length of beach = EC, cosa

Longshore component of energy flux per unit length of beach = ECg cosasina =R,

Since I, and B, have the same dimension, assume

where K =empirical constant (~0.58 for field data and smaller for laboratory data)

KR
(o, —P)a(1-p)

Q =



At breaker line,

P, = EsC,, COSa, Sine,
:%ngbqugdb %sin 2a,

1 H, .
= — pgH? [g—2sin2
16,09 b+|9 " a

1 g3/2

H'?sin 2a,

K 1 g3/2
=P
(ps—p)g(L-p)16° |y

We can write

Q=

H?>'? sin 2a,

Q, =T'KH;'*sin 2¢,

where

Jo. .~

s = =specific gravity of sand

I'= ;
16(s—1)(1- p)y/y P

More general equation:
5/2 H aHb
Q =TH.;"| K;sin2¢a, - K, a—cotﬂcowb
X

where tan # = beach slope. The first term represents sediment transport due to oblique

incidence of waves, while the second term is due to different wave setup which is
important where diffraction effect is dominant. K, and K, are empirical constants,

but they can be used as model calibration parameters for a shoreline evolution model.



8.5 Shore Response to Coastal Structures
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Figure 8.6. Shore response to placement of a shore-perpendicular structure.
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Figure 8.7. Shore response to a series of shore-perpendicular structures.
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8.6 Numerical Models of Shoreline Change

Calculationof H, and «, from wave transformation numerical model

\J

Calculation of shoreline change due to longshore transport of sediment

Assumptions:

(1) The beach profile always has the same shape determined by the equilibrium profile.
Therefore, all bottom contour lines are parallel.

(2) The beach has a fixed depth, D, within which erosion or accretion of beach occurs,
and which is called depth of closure and is about 10 m.

Conservation of sand:
Ddxdy = Qdt — (Q + dQ)dt = —dQdt
or

dy  1dQ

dt D dx

which can be solved numerically.



r 4
. a4X I
Yy tlLr, i+t A:

\ S‘“‘d;ﬂe
' 4..:_.‘_’
Q‘::;r N Q‘- (”Axo 66;)

y-y _ 1Q,, -G

At D Ax

or

" _E Qi+l _Ql

y=y D AX

where the prime indicates a new value of shoreline position.

Boundary conditions:

(1) No flux boundary condition (groin or jetty)

. ° LI ]

—

Q=0

(2) Fixed boundary condition: If the boundary is far enough from the source of beach
change, assume that the shoreline does not change at the boundary.
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(3) Floating boundary condition: Assume linear variation of Q in the vicinity of the

boundary.
/‘fwown
18 _|fen _| By,
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Qp.1 — Qs =Qg., — Qg

Qs =2Q5,1 —Qss2

Calculate y, using Qg and Qg,,.



8.7 Beach Nourishment and Sediment Bypassing (read text)
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8.9 Sediment Budget Concept and Analysis

e Sources of sand
(1) River
(2) Coast erosion
(3) Beach nourishment

¢ Sinks of sand
(1) Tidal inlets
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(2) Wind-driven sand (7€)

(3) Offshore deposition

Severe erosion during storms — offshore transport of sand — Not 100% of eroded
sand return to the beach during mild wave condition.

(4) Spits, tombolos, etc.
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(6) Sand mining: construction material, etc.



	Size and size distribution

