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Fig. 5.1. Tlustration of a double heterostructure consisting of a bulk or quantum well
active region and two confinement layers. The confinement layers are frequently called
cladding layers.

Bimolecular rate equation R = _dn = _dp = Bnp

dt dt

>The region in which recombination occurs must have a high carrier
concentration.

« Confinement of carriers in active region of double heterostructure (DH)
« High carrier concentration in active region of DH
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Homostructures versus double heterostructures

() Homojunction under forward bias
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Fig. 5.2. Ilustration of the free carrier distribution in a (a) hoemojunction and
(b) heterojunction under forward bias conditions. In homojunctions, carriers are
distributed over the diffusion length. In heterojunctions, carriers are confined to the well

region.
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« High carrier concentration in active region by introducing DH

« In IlI-V semiconductors, diffusion lengths can be 10um or even longer
—>Low carrier concentration (particularly towards the end of the diffusion

Efficiency versus active layer thickness
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Fig. 5.3. Dependence of the luminous efficiency of an AllnGaP double heterostructure
LED emitting at 565 nm on the active layer thickness. The figure reveals an optimum
active region thickness of (.15 - 0.75 pm (after Sugawara ef al., 1992).

Why is there a lower and upper limit for high efficiency ?

i) Too thick active region (e.g. larger than the diffusion length of carriers)
- Carriers are distributed as they are in homojunctions.
ii) Too thin active region - Overflow at high injection current levels
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Doping of active region
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Fig. 5.4. Dependence of the luminous efficiency of an AllnGaP double heterostructure

LED emitting at 565 nm on the active layer doping concentration (after Sugawara ef al.,
1992).

*« Why is either undoped or doped at a low level active region optimum ?
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Doping of active region

» Heavy doping would place the p-n junction effectively at the edge of the DH
well region, i.e. at the active/confinement interface, thereby promoting
carrier spill-over into one of the confinement regions.

- Decrease of the radiative efficiency

* P-type doping of the active region is more common than n-type doping of
the active region due to the generally longer electron-minority-carrier
diffusion length compared with the hole-minority-carrier diffusion length.

- More uniform carrier distribution throughout the active region

* Intentional doping of the active region
- In the low-excitation regime, the radiative carrier lifetime decreases
with increasing free carrier concentration.
- Radiative efficiency increases.
- Dopants may, especially at high concentrations, introduce defects that act
as recombination centers. High concentrations of intentional dopants lead

to an increased concentration of native defects due to the dependence of
the native and non-native defect concentrations on the Fermi level.
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p-n junction displacement
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*The diffusion of dopants can occur during growth and be caused by high
growth temperature, a long growth time, or a strongly diffusing dopants.

« If dopant redistribution occurs, the p-n junction can be displaced into one
of the confinement layers. -> much lower quantum efficiency
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p-n junction displacement in the GalnAsP/InP DH
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« Zn diffusion coefficient increases rapidly above a critical concentration Nitica-

+Zn will redistribute until the concentration falls below the Nica-
= Zn can diffuse into and through the active region of the DH.
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Doping of confinement regions
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Fig. 5.7. Dependence of the luminous efficiency of an AllnGaP d”'{"l“ heterostructure Fig. 5.8. Dependence of the luminous efficiency of an AllnGaP double heterostructure
LED emitting at 565 nm on the confinement laer doping conc (after Sug LED emitting at 565 nm on the doping concentration in the p-type confinement layer,

eral.. 1992). A o
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« For p-type confinement regions, the optimum doping concentration is clearly
higher than in the n-type cladding regions due to the larger diffusion lengths
of electrons than that of holes.

« A high p-type concentration in the cladding region keeps electrons in the active
region and prevents them from diffusing deep into the confinement region.
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Influence of the confinement layer doping concentration
on the radiative efficiency
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Fig. 5.10. Dependence of internal differential quantum efficiency (emitted photons per
injected electron) on temperature for ditferent cladding doping levels (after Kazarinov
and Pinto, 1994).

« Low doping concentration in the p-type confinement layers facilitates
electron escape from the active region, thereby lowering the internal
quantum efficiency.
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Nonradiative recombination and lifetime

* High crystal quality of active region is needed.

- Deep levels caused by point defects, impurities, dislocations, and others must have a very

low concentration.
- Surface recombination must be kept at the lowest possible levels.

- Any surface must be “out of reach” of the active region.

 Device reliability affected by surface recombination.
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Fig. 5.11. Emission intensity of two mesa-etched LEDs and two planar LEDs versus time
{after Schubert and Hunt, 1998)

- Low IQE
- Reduction of lifetime

- Formation of dark-line defects

If one type of carriers are
present, i.e., near the top
contact of the device, the
presence of surface does not
reduce the radiative efficiency.
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Lattice matching
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Fig. 5.12. Ilustration of two crystals with mismatched lattice constant resulting in
dislocations al or near the interface between the two semiconductors.
« Lattice matching is crucial for high efficiency.
« Multitude of defects are created in mismatched material system.
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Misfit Dislocation Lines

Fig. 5.13. Cathodoluminescence image of a (.35 um thick Gay 4sIng, ,sAs layer grown on
a GaAs substrate. The dark lines forming a cross-hatch pattern are due to misfit

dislocations (after Fitzgerald et al., 1989).

» Dark lines due to dislocation lines

» Radiative efficiency low at dislocation lines
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Fig. 6.14. (a) Iustration of two cubic-symmetry crystals with equilibrium lattice constant
ay and . (b) Hlustration of a thin, coherently strained crystal layer with equilibrium
lattice constant « sandwiched between two semiconductors with a equilibrium lattice
constant a;. The coherently strained layer assumes an in-plane lattice constant ;) and a
normal lattice constant a,,.

« Thin layers can be elastically strained without incurring defects.
« Critical thickness can be calculated by Matthews-Blakeslee law.
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Lattice matching
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Fig. 6.15. Optical output
intensity of an AlGalnP
LED driven with an
injection current of 20 mA
versus lattice mismatch
between the AlInGaP active
region and the GaAs
substrate (after Watanabe
and Usui, 1987).

« Lattice matching better than 0.2 % required in AlGalnP material system.

* Major challenge : High quality crystal growth on mismatched substrate
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Defect insensitive nitrides

* Less sensitive to surface
recombination and lattice
mismatch, compared to GaAs
and InP.

* Possible Reasons

- Lower electrical activity of
dislocations

- Smaller diffusion length of
carriers than the mean
distance between
dislocations, in particular
the hole diffusion length

- Compositional fluctuation
of InGaN, leading to
carrier localization
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