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Chapter 1
Introduction
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Why study logic design?
it is the implementation basis for all modern computing devices

building large things from small components
provide a model of how a computer works

More important reasons
the inherent parallelism in hardware is often our first exposure to 
parallel computation
it offers an interesting counterpoint to software design and is 
therefore useful in furthering our understanding of computation, in 
general
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What will we learn in this class? (1/2)
The basics of logic design

Boolean algebra, logic minimization, state, timing, CAD tools

The concept of state in digital systems

analogous to variables and program counters in software systems
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What will we learn in this class? (2/2)
How to specify/simulate/compile/realize our designs

hardware description languages (HDLs)

tools to simulate the workings of our designs

logic compilers to synthesize the hardware blocks of our designs

mapping onto programmable hardware

Contrast with software design

sequential and parallel implementations

specify algorithm as well as computing/storage resources it will use
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Applications of logic design
Conventional computer design

CPUs, busses, peripherals
Networking and communications

phones, modems, routers
Embedded products

in cars, toys, appliances, entertainment devices
Scientific equipment

testing, sensing, reporting
The world of computing is much bigger than just PCs!
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Global processor/controller market

PC CPUs constitute less than 2% of the market
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What is logic design? (1/2)
Digital hardware consists of components
Components or building blocks

Switches built from semiconductor transistors
Most basic element

Higher level circuits such as logic gates and memories
A logic designer should choose the right component to solve 
logic design problems
Constraints: size, cost, performance, power consumption

Cost vs. size

* A circuit is an interconnected collection of switches
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What is logic design? (2/2)
Each component has 

a set of input wires 
a set of output wires
Each wire is set to some analog voltage value

But will be interpreted as either 1 or 0 (digital abstraction)

Transistors react to the voltage levels on the input wires
Switch their state and cause a change in output wires
At macro scale, a component that contains transistors reacts to 
input voltage values

Depending on the way a circuit reacts to the input voltages
Combinational logic circuits
Sequential logic circuits



9

sense

sense

driveAND

What is digital hardware?
Collection of devices that sense and/or control wires, which 
carry a digital value (i.e., a physical quantity that can be 
interpreted as a “0” or “1”)

example: digital logic where voltage < 0.8v is a “0” and > 2.0v is a “1”

Primitive digital hardware devices
logic computation devices (sense and drive)

are two wires both “1” - make another be “1” (AND)
is at least one of two wires “1” - make another be “1” (OR)
is a wire “1” - then make another be “0” (NOT)

memory devices (store)
store a value
recall a previously stored value 
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Computation: abstract vs. implementation
Computation has been a mental exercise (paper, programs)
This class is about physically implementing computation using 
physical devices that use voltages to represent logical values
Basic units of computation are:

representation: "0", "1" on a wire
set of wires (e.g., binary integer)

assignment: x  =  y
data operations: x + y – 5
control: 

sequential statements: A; B; C
conditionals: if   x == 1   then   y
loops: for ( i = 1 ; i == 10, i++)
procedures: A; proc(...); B;

We will study how each of these are implemented in hardware 
and composed into computational structures
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close switch (if A is “1” or asserted)
and turn on light bulb (Z)

A Z

open switch (if A is “0” or unasserted)
and turn off light bulb (Z)

Switches: basic element of physical implementations
Implementing a simple circuit

Z  ≡ A

A
Z

Z and A are equivalent boolean variables
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AND

OR

Z ≡ A and B

Z ≡ A or B 

A B

A

B

Switches (cont’d)
Compose switches into more complex ones (Boolean 
functions):



13

Switching networks
Switch settings

determine whether or not a conducting path exists to light 
the light bulb

To build larger computations
use a light bulb (output of the network) to set other switches 
(inputs to another network).

Connect together switching networks
to construct larger switching networks, i.e., there is a way to 
connect outputs of one network to the inputs of the next.
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A switch?
A mechanical switch

A semiconductor switch or transistor
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Transistor networks
Modern digital systems are designed in CMOS 
technology

MOS stands for Metal-Oxide on Semiconductor
C is for complementary because there are both normally-open 
and normally-closed switches: nMOS and pMOS

MOS transistors act as voltage-controlled switches

* CMOS: complementary metal-oxide semiconductor
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n-channel (or n-type) MOS (nMOS) circuit
Three terminals: source-gate-drain (or S-G-D for short)
three layers: polysilicon (used to be metal) – SiO2 - substrate

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+

* n+: heavily doped n-type semiconductor

If G is at positive voltage, electrons in the substrate will move toward 
G terminal, which sets up a channel between S and D

And D is at high voltage, current will flow from drain to source
Metal is replaced by polysilicon which is more adhesive

* oxide 산화물
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p-channel (or p-type) MOS (pMOS) circuit
Three terminals: source-gate-drain (or S-G-D for short)
Same principle, but reverse doping and voltage

Source (Vss) is positive with regard to drain (Vdd)
Bubble indicates the inverted behavior

If G is at positive voltage, the current does not flow
If G is at ground level, the current flows

SiO2

n

GateSource Drain

bulk Si

Polysilicon

p+ p+
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n-channel
open when voltage at G is low

closed when voltage at G is high

p-channel
closed when voltage at G is low
open when voltage at G is high

MOS transistors
MOS transistors have three terminals: drain, gate, and source

they act as switches in the following way:
if the voltage on the gate terminal is (some amount) higher/lower 
than the source terminal, then a conducting path will be 
established between the drain and source terminals

G

S D

G

S D
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3v

X

Y 0 volts

x y

3 volts0v

what is the 
relationship 

between x and y?

MOS networks

0 volts

3 volts

A simple component is made up of two transistors
X: input
Y: output
What is this function?

In CMOS circuits, pMos and nMOS are used in pair
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x y z1 z2

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts

3 volts

3 volts

what is the relationship 
between x, y and z1/z2?

Two input networks

3v

X Y

0v

Z1

0v

3v

X Y

Z2

3 volts

3 volts

3 volts

0 volts

3 volts

0 volts

0 volts

0 volts

NAND NOR
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Three input NAND gate

A
B

Y

C

Y pulls low if ALL inputs are 1
Y pulls high if ANY input is 0

VDD

In general, the more inputs, the more transistors (TRs)
In CMOS, a variable requires a pair of TRs
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Digital vs. analog
Convenient to think of digital systems as having only
discrete, digital, input/output values
In reality, real electronic components exhibit
continuous, analog behavior
Why do we make the digital abstraction anyway?

switches operate this way
easier to think about a small number of discrete values
Quantization error, though

Why does it work?
does not propagate small errors in values
always resets to 0 or 1

P.14
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easy to implement
with CMOS transistors
(the switches we have
available and use most)

Combinational logic symbols
Common combinational logic systems have standard symbols 
called logic gates

Buffer, NOT

AND, NAND

OR, NOR

Z

A
B

Z

Z

A

A
B
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inputs outputssystem

Combinational vs. sequential digital circuits
A simple model of a digital system is a unit with inputs and 
outputs:

Combinational means "memory-less"
a digital circuit is combinational if its output values
only depend on its (current) input values
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Combinational vs. sequential digital circuits

Logic

Circuit

Logic

Circuit
Out

OutIn
In

(a) Combinational (b) Sequential

State

Output = f(In) Output = f(In, Previous In)
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Sequential logic

Sequential systems
exhibit behaviors (output values) that depend not only 
on the current input values, but also on previous input values
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B

A
C

Clock

Example of combinational and sequential logic
Combinational:

input A, B
wait for clock edge
observe C
wait for another clock edge
observe C again: will stay the same

Sequential:
input A, B
wait for clock edge
observe C
wait for another clock edge
observe C again: may be different
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Abstractions
Some we've seen already

digital interpretation of analog values
transistors as switches
switches as logic gates
use of a clock to realize a synchronous sequential circuit

Some others we will see
truth tables and Boolean algebra to represent combinational logic
encoding of signals with more than two logical values into 
binary form
state diagrams to represent sequential logic
hardware description languages to represent digital logic
waveforms to represent temporal behavior
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An example
Calendar subsystem: number of days in a month (to control 

watch display)

Combinational logic

used in controlling the display of a wrist-watch LCD screen

inputs: month, leap year flag

outputs: number of days
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Implementation in software
integer number_of_days ( month, leap_year_flag)
{

switch (month) {
case 1: return (31);
case 2: if (leap_year_flag == 1) then return (29)

else return (28);
case 3: return (31);
...
case 12: return (31);
default: return (0);

}

}

P.16
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leapmonth

d28 d29 d30 d31

Implementation as a combinational digital system
Encoding:

how many bits for each input/output?
binary number for month
four wires for 28, 29, 30, and 31

Behavior:
combinational
truth table
specification

month leap d28 d29 d30 d31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Don’t 
care
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Truth-table to logic to switches to gates
d28 = 1 when month=0010 and leap=0
d28 = m8'•m4'•m2•m1'•leap'

d31 = 1 when month=0001 or month=0011 or ... month=1100
d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + ... 
(m8•m4•m2'•m1')
d31 = can we simplify more?

symbol 
for and

symbol 
for or

symbol 
for not

Combinational example (cont’d)

month leap d28 d29 d30 d31
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
...
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –
0000 – – – – –
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Combinational example (cont’d)
d28 = m8'•m4'•m2•m1'•leap’
d29 = m8'•m4'•m2•m1'•leap
d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') +     

(m8•m4'•m2'•m1) + (m8•m4'•m2•m1) 
= (m8'•m4•m1') + (m8•m4'•m1)

d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + 
(m8'•m4•m2'•m1) + (m8'•m4•m2•m1) + 
(m8•m4'•m2'•m1') + (m8•m4'•m2•m1') + 
(m8•m4•m2'•m1')
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Combinational example (cont’d)
d28 = m8'•m4'•m2•m1'•leap’
d29 = m8'•m4'•m2•m1'•leap
d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') + 

(m8•m4'•m2'•m1) + (m8•m4'•m2•m1)
d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +      

(m8'•m4•m2'•m1) + (m8'•m4•m2•m1) + 
(m8•m4'•m2'•m1') + (m8•m4'•m2•m1') + 
(m8•m4•m2'•m1')
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Another example (Door combination lock)
punch in 3 values in sequence and the door opens; if there is 

an error the lock must be reset; once the door opens the lock 

must be reset

Sequential logic

inputs: sequence of input values, reset

Numeric number: 4 wires

outputs: door open/close

memory: must remember combination

or always have it available as an input
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Implementation in software
integer combination_lock ( ) {

integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while (!new_value( ));
v1 = read_value( );
if (v1 != c[1]) then error = 1;

while (!new_value( ));
v2 = read_value( );
if (v2 != c[2]) then error = 1;

while (!new_value( ));
v3 = read_value( );
if (v2 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);

}

P.19, 20

Array index starts from 1
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Implementation as a sequential digital system
Encoding:

how many bits per input value?
how many values in sequence?
how do we know a new input value is entered?
how do we represent the states of the system?

Behavior:
clock wire tells us when it’s ok
to look at inputs
(i.e., they have settled after change)
sequential: sequence of values
must be entered
sequential: remember if an error occurred
finite-state specification

resetvalue

open/closed

new

clock
state
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C2!=value
& new

C3!=value
& new

reset

not newnot newnot new

closed

S1

closed
C1=value

& new

S2

closed
C2=value

& new

S3

C3=value
& new

OPEN

open

C1!=value
& new

closed

ERR

Sequential example (cont’d): abstract control
Finite-state diagram

states: 5 states
represent point in execution of machine
each state has inputs and outputs

transitions: 6 from state to state, 5 self transitions, 1 global
changes of state occur when clock says it’s ok
based on value of inputs

inputs: reset, new, results of comparisons
output: open/closed
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reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control

clock

Sequential example (cont’d): data-path vs. control
Internal structure

data-path
storage for combination
comparators

control
finite-state machine controller
control for data-path
state changes controlled by clock

* Multiplexer (MUX)
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closed

closed
mux=C1reset equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Sequential example (cont’d): FSM
Finite-state machine (FSM)

refine state diagram to include internal structure
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reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
0 0 – S2 S2 C2 closed
0 1 0 S2 ERR – closed
0 1 1 S2 S3 C3 closed
0 0 – S3 S3 C3 closed
0 1 0 S3 ERR – closed
0 1 1 S3 OPEN – open
0 – – OPEN OPEN – open
0 – – ERR ERR – closed

next

Sequential example (cont’d): FSM
Finite-state machine

generate state table (much like a truth-table)
closed

closed
mux=C1

reset equal
& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

* state is not input, but internal variable
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Sequential example (cont’d): encoding

Encode state table
state can be: S1, S2, S3, OPEN, or ERR

needs at least 3 bits to encode: 000, 001, 010, 011, 100

and as many as 5: 00001, 00010, 00100, 01000, 10000

choose 4 bits: 0001, 0010, 0100, 1000, 0000

output mux can be: C1, C2, or C3

needs 2 to 3 bits to encode

choose 3 bits: 001, 010, 100

output open/closed can be: open or closed

needs 1 or 2 bits to encode

choose 1 bits: 1, 0



Internal 
input

Encode state table
state can be: S1, S2, S3, OPEN, or ERR

choose 4 bits: 0001, 0010, 0100, 1000, 0000
output mux can be: C1, C2, or C3

choose 3 bits: 001, 010, 100
output open/closed can be: open or closed

choose 1 bits: 1, 0
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good choice of encoding!

mux is identical to 
last 3 bits of next state

open/closed is
identical to first bit
of state

Sequential example (cont’d): encoding

reset new equal state state mux open/closed
1 – – – 0001 001 0 
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0 
0 0 – 0010 0010 010 0
0 1 0 0010 0000 – 0
0 1 1 0010 0100 100 0 
0 0 – 0100 0100 100 0
0 1 0 0100 0000 – 0
0 1 1 0100 1000 – 1 
0 – – 1000 1000 – 1
0 – – 0000 0000 – 0

next

Internal 
output

system’s 
or external 

output

external 
input
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reset

open/closed

new equal

controller
mux
control

clock
reset

open/closed

new equal

mux
control

clock

comb. logic

state

special circuit element, called a register, for 

remembering inputs when told to by clock

Sequential example (cont’d): controller implementation

Implementation of the controller
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system

data-path control

state
registers

combinational
logic

multiplexer comparatorcode
registers

register logic

switching
networks

Design hierarchy
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terminologies

n+n+
S

G
D

+

DEVICE

CIRCUIT

GATE

MODULE

SYSTEM



47

Summary

That was what the entire course is about

converting solutions to problems into combinational and 

sequential networks effectively organizing the design 

hierarchically

doing so with a modern set of design tools that lets us handle 

large designs effectively

taking advantage of optimization opportunities


