Programming Methodology

Spring 2009 Control and Execution

Expression evaluation

Statement execution

Function/Procedure call (with parameters)
Iterations vs. Recursions

Exceptions

Programming Methodology

Programming language constructs

........

/\‘

i o
int foo(char* l&
typesé: int 1 k;< variables
float x, v, Zi/
]

IIIII
.........
“ .'
o .

"
.
L]
L]

¥

L expressions

*
0. “
......
llllllllll

Programming Methodology

Control structures
£

REIN

0 Control structures control the order of execution of
operations in a program.

0 expression-level control structures

—> precedence/associativity rules, parentheses, function calls

o statement-level control structures
1. sequential structures: stmt,; stmt,; ...; stmt,;
—> a sequence of compound statements
2. selective structures: if-then-else, case/switch
3. lterative structures: for, while, do, repeat
4, escape/exception/branch: exit, break, goto, continue

5. recursive structures: by recursive function calls

Programming Methodology

Expressions
[2

0 An expression is ...

a means of specifying computations in a program.
composed of one or more operations.

0 An operation = an operator + zero or more operands
operators: arithmetic, logical, relational, assignment, procedure call,
reference/dereference, comma, id, constant, ...
operands: sub expressions

C++ p = &z;
X =y + *p / 0.4;
af1] = (z > 0 ? foo(x, y, p) : -1);

0 Syntax tree: abstract representation of expressions

Operator
operand 1 operand 2 operand 3 ... operand n

—> anode = an operator, children of a node = operands
Programming Methodology
Oonn

Evaluation of expressions
.

0 Executing a program is actually a sequence of evaluation of
expressions in the program.

0 How does the compiler/machine determine the evaluation
order of an expression?

- use a syntax tree

x/>+\ []/_\/?:\
/
Yy / a— \I > foo() -
" 5.4 7 o ! 1
| I\
P Xyp

0 The expression evaluation order in a language (in other
words, the way to build a syntax tree) is defined by the
language semantics.

Programming Methodology
©onn

RANHBAN

Rules specifying evaluation orders

0 Precedence rule: the relative priority of operators when

more than one kinds of operator are present
Ex: “* has higher precedence than +”

- thus, 3+4*5 is equal to 3+(4*5), not (3+4)*5.
/ \ / *\
/ \ _— +\ >
) 3 4
0 Associativity rule. the relative priority of operators when

two adjacent operators with the same precedence occur in an

expression
Ex: “- is left-associative” = thus, 3-4-5 is equal to (3-4)-5, not 3—-(4-5)
/ \ / T~

Programming Methodology
@aﬂﬂ

Operator precedence/associativity in C

++++q 2>

t->r.X ol Tptt AT
N \
Precedence Operators I Associativity

15 > _ [1 O e Left

14 ++ —-- ~ 1 unary+ unary- * & Right ----

13 */ % Left

12 + - Left

11 << >> Left

10 < > <= => Left

9 == I= Left

8 & Left

7 é Left

6 | Left

5 && Left

4 |1 Left

3 ?: Left

2 = Right

1 Left
@Dﬂn p'p"::il_q%% Programming Methodology prfjl--l-l--l_l--l—_q-'-l%

Sequential structures
E r

o When is the order of a sequence of compound statements

important? ¢ ¢
statement,;
statement,;

statement,;

}

=>» It is when there is data dependence between the statements. That is,
when the same location is modified by different statements.

o Find data dependences in the following statements.

a[1] + 1 X = 3.4 X = 8.8;

1 * X y = x — 2.1; y = 3.9 * 1.2;

a[3] /7 vy z = 4.1;

read y; = =

Z; X = 5¥O; b[i1] =3 + 0.1
2.3 + 7 X = 7.1; b[1+1] = b[i-1]
z / 0.6 y = X * 1.1; =1 + 1] _
t z; ’ m = b[i] + b[1-1]

Programming Methodology

Selective, iterative structures
£

RANHBAN

o0 Selective structures:
choose control flow depending on conditional test
Most languages support =2 if/then/else, switch/case

0 Iterative structures

looping construct
C = while, for, do-while

0 goto statements
efficient, general purpose, easy to use and translate to machine codes

flattens hierarchical program structures into a linear collection of
statements -> difficult to read/understand

difficult to optimize or verify programs

Programming Methodology

Function/Procedure calls

0 Why is a function call/invocation a universal feature in
programming languages?

0 A function call involves a caller and a callee.

0 The caller and the callee involved in the same call should

communicate to exchange

information necessary for the
call. Then, how?

using global
variables

using parameters |/

and returning
values

int outsider;

1 /

void caller(Q) { L

= callee(actual);

= outsider; <«

-~
-~
-
~~_
—— -
e ——_

-’

Programming Methodology

RANHBAN

¢

void\pallee(int dUmmy) {

outsider

y = dummy ‘= 3:

return,y;

Passing function parameters
£

o Given a function invocation func(a,,a,,..,a,), and a function
declaration type func(type, d,, type, d,, .., type, d.),

a; represents an expression for the 1-th actual parameter/argument
for the invocation provided by the caller

d; represents a variable for the 1-th dummy/formal parameter for
the callee func.

0 parameter/argument passing

=>» Study of the different ways of communication between a caller and a
callee with parameters and results
0 parameter passing methods
Two most popular ones: call-by-value, call-by-reference

Others: call-by-result, call-by-value-result, call-by-sharing, call-by-
name, call-by-need =» Out of our scope!

Programming Methodology
©onn

Call-by-value
.

S et

0 When a procedure is called, the r-value of an actual parameter
is assigned to the l-value of the matching formal parameter.

0 secure because changes made on formal parameters do not
affect the actual ones. WhenToois called

-
-~

= » scopy [=
i \

int foo(int i, int j) { | J
I yo copyi
i = - s <0 n
return j * 2; m " \

}) 3

void bar() { when OO0 returns
mem=1; o/ o/ — —
int n = 10; m n H 2241 copy
n = foo(m+3,n); s

Programming Methodology just before Too returns
Oonn

Call-by-value

o Typically, not appropriate if a callee

wants to return multiple output results

int foo(int a, Int b, .) {

return c;

+
int main() {

_ -+ multi inputs
single
output

z = Tfoo (X,

}

But it is not impossible to return multi-
results with call-by-value = use !

o Also, possibly expensive if large data
needs to be passed.

Programming Methodologies
onn

struct S {
int x, y

float a[1000][1000]:;

};
void foo(S dum) {

cout << dum.a[1][1];
dum.a[1][1] = 9?
} o |

int main() {)
S act;

act.a[1][1] = 55;
foo(act);

cout << act.a[1][1];

RANHBAN

Call-by-reference/location

£
0 When a procedure is called, the l-value of an actual parameter
is shared with the matching dummy parameter. = aliasing

o For this, C++ uses a reference type for dummy parameters.

int k = 10;
void foo(int &r, int* &p) {
1 = 7; h J ' [l
LS feey when foofq) Iscalled N\ .

p = &k;

+

void bar() {

int j = 2;

int* q = &j;
foo(J., d):
cout << J << 7*q;
foo(J+3, Q)

“» error: j+3 has not l-value.

Programming Methodologies
Oonn

Call-by-reference/location

o0 can be used to return multiple output
results struct S {
— - - 1 t b b
int foo(int a, Int &b, .) { %?oai a{lOOO][lOOO];
b = .. ¥
S e . void Foo(S &dum) {
¥ -+« multi inputs -
. _ cout << dum.a[1][1];
one (int main(Q) { one more output dum.a[1][1] :[9%F
output . ’
z = foo(X, Yy, .) . } - :

¥ int mainQ) {
S act;
0 can be efficient via aliasing when large act.a[1][1] = SD

foo(act);

data needs to be passed. cout << act.a[1][1];

}

Programming Methodologies
©onn

RANHBAN

Call-by-reference/location

0 causes aliasing, which makes the code ...
generally more efficient (ex: long arrays); but
error prone due to side effects, and
in some cases, even less efficient because call-by-reference

is often implemented with an extra level of indirection thru
a frame pointer (fp)

g(int c, Int& d) {
. =c+d

N
memory
Co
\
\
dr-~\\~~
\\ \""m\
*
z..\\ f
_ "l.!"_ pg
¥ 1
Al 1
=< ’
/
> ~ Il
T--->~. //
—===1¢=Tps

load ril ., Lfpgt<c>]

< C
load r2, [fpy+<fpe] € Tpg
load r3, [r2+] < d=0>b
add r4, rl1, r3 < c+d
'i'oad ri4, [fpet<a>] < a
load rl15, [fpet] < b

call g

Programming Methodologies

RANHBAN

Write protection thru constant dummy
&

o Using constant dummy parameters may prevent erroneous
updates or side effects void foo(int a) { //by value
due to aliases created by
call-by-reference.
Still Call'bY'reference, so avoid void gee(const int& c) {// by const ref
copying.
Yet, providing write-protectig
on dummy parameters

3oid bar(int& b) { //byref

// Compile error: write protection

by
int main() {
InNt X = 1965;
const int y = 2009;
foo(X); // OK?
. //OK?
// OK?
// OK?
); //OK?
gee(y); //O0K?

The function gee guarantees

that the actual parameter (not
only Yy but also X) is never

modified inside gee,

}

Programming Methodology
Oonn

Simulating call-by-reference thru pointers

£
o0 C cannot support true call-by-ref. (. no reference type included)

o But, it can simulate call-by-ref. by using pointers as call-by-

value parameters. when oo (&]J ,&q) is called
int kK = 10;
void foo(int *i1, Int* *p) {
*1 = 7;
**p = *f + **p;
*p = &K;
L
void bar() {
int j = 2;
int* q = &j;

foo(&j, &q);
cout << J << *q;

Same results as the original code
with reference type dummies

Programming Methodology
©onn

Multidimensional arrays as parameters

Note: gee and Too/bar may be compiled in separate filesk--._

0 When a multidimensional array is passed, the callee should

1
\ =EEIe

know the original dimension of the array declared in the Caller.“"..‘
void foo O { void bar O { void gee (int c[1[D { |

int a[5][9]: int b[7][3];
. gee(a) gee(b) ..

) .c[2]16].. //error

(or **C)

c[2][6] is invalid when bar calls gee. 2 How can the compiler find this?-
It is valid when foo calls gee. 2 But how to determine its exact address?

o0 Recall: a multidimensional array in C/C++ is an array of arrays,
and physically stored to 1 D memory 1 in row-major order.

X consists of 3 row arrays. m-——-=- b o
' Each row is an array with size = 4. X la|bfc|d|e|Tf

g

h

int x[31[4]1; //2-D array x[0]

C).(.[.I]..."‘ >

x[2]1[1]
*(X[2]+1)

To compute the exact address for c[1][]j], the compiler must evaluate

addressof cLi1[J]1 = C+i-n+t] > - ize of row array = # of columns
What does this imply? =» Compiler must know n when gee is called.

Programming Methodology
©onn

Multidimensional arrays as parameters

0 One solution for the above case ~ VoId geetoo (I SLIITA)
void foo O { void bar O {
int a[5][9]; int b[7][3]:; . -
.. geefoo(a) geebar(b) .. Vvoid geebar (int c[][3]) {

.C[2][6].. // Now the compiler
// knows this is error since 6 > 3

0 The problem of this solution?

Poor reusability of code and increase of code size
Ex: a new function for gee must be written for every different row size.

0 Alternative solution
Pass the array as a pointer along with its dimension information

#define gee_c(1,3) (*(c + ((1) * n) + (4)))
void geel (int *c, int m, Int n) { //indicating c[m][n]
.. gee_c(2,6) .. /J/=*(c+24) Iifcalled by foo
// =*(c+12) ifcalled by bar

The same function geel can be used for foo and bar, regardless of the
caller’s array dimension.

Programming Methodology
Oonn

Multidimensional arrays as parameters

0 The problem with geel? = Yes, indeed... because we need ...

a special statement ‘#define’ - awkward

to manage dimensions (m, n) separately = inconvenient, error prone

a different ‘#define’ for other array parameters: gee_d, gee e, ...

0 A better solution? =» Create a new class (i.e., ADT)!

In Java (also C#), arrays are objects of a system class, say Array.

RANHBAN

Array objects are all 1-dimensional, but their elements can be also objects

of Array. = For example, 2-D array X[3][4] N

The Array class offers a named constant ‘length’
that is set to the length of the array when the array

object is created. Java Code
int[][1 x = new Int[3][4];
.. X.length .. //=3
.. X[1].length .. // =4

Programming Methodology
©onn

XL0]

a

b

C

d

X[1];

—1

e

f

g

h

x[2]

J

k

Multidimensional arrays as parameters

£
0 Using Array objects for parameter passing

No need to separately pass dimensions for a multidimensional array
since the compiler can extract them from the internal constant Iength.

void gee2 (int[][] ©) { //setting c.length and c[i]-length

Java Code .. c[2][6] .. //valid ifcalled by foo
// error if called by bar since 6 >b[1].length =3

void foo O { void bar () {
int[][] a = new Int[5][9]; int[][] b = new Int[7][3];
.. gee2(a) gee2(b) ..

Good reusability and code size reduction

o How about C++7?
Unlike Java, C++ doesn’t support such a system class as Array by default.

But, the programmers can create similar objects for multidimensional
arrays by using the class construct.

Programming Methodology
Oonn

Functions as parameters

. : . integers, characters,
0 The traditional view of a function f: D —> ® rea,g,,umberS, S

Ordinary data objects of primitive types have first-class values.

f is a static piece of code for mapping input values of first-class into

first-class output values.
Such a function is said to be first-order.

o In programming languages such as C/C++, Java, and Fortran,
most functions are first-order. float foo (int x) {
Ex) To00: Z (integer) — R (real) 1
o0 In some languages, functions themselves can be considered as
first-class values so that they can be passed as inputs to or as

output from other functions. (.Y { intg (intn) {
int main Q) {
. F(&g) .. + ¥

Programming Methodology
©onn

RANHBAN

Functions as parameters

o A function that takes functions as parameters or returns as
outputs is called a higher-order function (HOF).

0 C++ support a limited form of HOFs.
A C++ function may take another function as its parameters.

For this, C++ uses a function pointer. int square(int x) {

int (*pf) (int);
pf = □
cout << pF(5);
pf = &double;
cout << pf(5);

C++ HOF foo:

return X * X;

f= by
//g5 square int double(int y) {
// Now pT=double return y + y;
// 10 }

void foo(aint (*pf) (int)) { .. }
int main() { \>¢ int *pf (int)

foo(&square);
foo(&double);

}

Programming Methodology

RANHBAN

HOFs
26

o0 HOFs are sometimes powerful and useful.

Treating functions as values increase the expressive power of a
language. = functions handling functions : sums (), derivatives (d,0)

They help abstract out common control patterns, leading to very
concise programs. =2 repetitive applications of similar tasks

0 Where HOFs are useful for concise programming

For example, the summation in mathematics (denoted by the notation
) is a HOF since it takes a function f as a parameter.

Zm:f(j): f(0)+ f(2)+...+ f(m)

A notation X makes a mathematical expression concise and brief by
capturing the common patterns among the expression.

?I‘ §7n f@,jpk)=1011)+..+ f@Ln)+ Q21 +..+ f(,m,n)

i=1 j=1

Programming Methodology
Oonn

RANHBAN

HOFs
p

0 Where HOFs are useful for concise programming (cont’'d)
> in math can be represented briefly by a HOF sig in C++.
Like X does for math, s1g will make a program concise by taking any

function f as a parameter of the common input/output types.

int sig(int (¢f) (int), Iint m) { int square(int x) {
int result = 0; return x * Xx;
for (int j = 1; J < m; j++) }
result += T(J); /] ZfU) int double(int y) {
return result; return y + vy;
1 +
int main () {
cout << sig(&square, 5); [/ > What if we cannot
cout << sig(&double, 5); //X%;2j- > use HOFs for this
} example in C++?

But, sig is notas flexible as .= .. sig(&sig(&F.m),n); /lerror: 3 f(i))
—> Such flexibility is possible in functional languages like scheme and ML.

Programming Methodology
onn

Another example of HOFs

! trapezoidal approximation for the definite integral
function integral (f,a,b,n) result(t)

igterche 60 K__lf/’L__—*
unction f(x
real::f,x _[:f(x)dxzh(f(a);r f(b)+ f(@a+h)+...+ f(b—h))

end interface
real, intent(in)::a, b
integer, intent(in):: n

real::t = Integral | in math is another example where
real::h, sum]
integer:: i HOFs are useful for programming.
Qu;_gbofg,al éf(na) + fbY) = Like C++, Fortran90 also supports a function
do 1 =1, n-1 that takes another function as its input
sum = sum + f(a+i*h)
enddo parameter.
en}j ;gﬂctiiﬁmintegra. * The function integral can be implemented
function bar(x) .. by using function parameters in C++.

end function bar
program main ..

write (*,*) integral(sin,1=0.0,u=3.14,n=100) ! calculate the approximation of jo sin(x)dx
wri te (*,*) integral(bar,I=1.0,u=2.0,n=15) I calculate the approximation of .[2 bar (x)dx
1
Programming Methodology

Evaluation order of function arguments
£

RANHBAN

o Given a function invocation func(a,,a,,..,a,), and a function
declaration type func(type, d,, type, d,, .., type, d.),
a; represents an expression for the 1-th actual argument for the
invocation

d; represents a variable for the 1-th dummy argument for func.

all the expressions for actual arguments are usually evaluated before
func is called. (consider the syntax tree)

o The order of evaluation is imposed differently depending on
specific languages or compilers.
no order imposed - Fortran
right-to-left 2 gnu C++, Visual C++

0 The order is important due to _s t of expressions.

Programming Methodology
©onn

Evaluation order of function arguments

0 right-to-left =2 gnu C++

output

void foo(int m,
void bar(int &a,

int main() {

int k = 5;
k+1); // call-by-value w/o side effect

<«—— Too(k+1,
«—— Too(++k,
<« foo§k++,

bar
<—— bar

}

0 left-to-right

0 Comparison of expressions k++ and ++k

++k = (&b=(k=k+1; k) ++k
k++ = (&b=(k; k=k+1)

k+1,
++k,
bar(k++,

++K); //w/ side effect
k++); //w/side effect

k+1); //call-by-ref. w/o side effect > error:

++Kk); // w/ side effect

int n) { cout << m * 10 + n; }

int &) { cout << a * 100 + b; }

k++); //w/side effect > error:

So...=> Kt

10;
10;

Programming Methodology

// ok

// error

RANHBAN

Evaluation order of function arguments

o Visual C++: also right-to-left, but slightly different from gnu C++

void foo(int m, 1nt n) {
cout << m * 10 + n;

+
void bar(int &a, Int &b) {
cout << a * 100 + b;

%nt main() {
int k = 5;
foo(k++, k++); //output->
foo(++k, ++k); //output->
foo(k++, ++k); //output->
foo(++k, k++); //output->
y bar(++k, ++K); //output >

gnu C++
gnu C++
gnu C++
gnu C++
gnu C++

RANHBAN

gnu C++

foo(x++,++y) // from r-2-1
n = ++y; // assign expr

m = x++; // assign expr

Visual C++ // from r-2-1

++y; // for pre, compute first
m = x++; // for post, assign expr
n=y; // now assign var for pre

0 What lesson do we take from the different results of compilers?

Do not make any assumption on the evaluation order even with C/C++.

For better portability, compute all actual arguments that ;j = 'ﬂ;
have potential side effects before the function invocation. foo(x,Yy)

Programming Methodology
onn

Recursive structures

o A function fis recursive if it contains an application of fin its
definition. int fib(int n) {
return ((n==0]|n==1) ? 1 : Ffib(n-1)+Fib(n-2)));
}
o0 Recursion simplifies programming by exploiting a divide-and-
conquer method. = “divide a large problem into smaller ones”

=>» Rewrite the function f1b without using recursion, and find how many
more lines you need for your code without recursion.

Programming Methodology
onn

RANHBAN

RANHBAN

,

‘Recursion allows users to implement their algorithms in the
applicative style rather than the imperative style.

foo(X,
Oy func 1<E foo(x.y) {

o do this;

do that;

func 2<E:::
" do this;

- g 3 do that;
foo(xy) = fy- fy fi(x) | func3<f::: }

Applicative/Functional Programming Procedural/Imperative Programming

o Recursion can be expensive if not carefully used.

—> Compare these two functions that compute the factorial
compute the factorial with recursion compute the factorial with iteration

. - i faci1(int n) {
int fac(int n) { int » NP i .
return (n==0 ? 1 : n*fac(n-1)); fo:egapﬁ B?l’ n>0: n=-) p=np:

b5 b5
Oonn

1
I
1
1

]
I
I
I
1
I
\
)

\
1
\
\

Programming Methodology

Comparison of fac and faci

Computation of fFac(4) Computation of Faci (4)
fac(4) faci(4)

4 * fac(3) function call p=1 < ------- n=4 [
4 * (3 P =4 < ——————- n =3

4> (3 * (2 * fac(1))) p =12 < ——————- n=2

4> @ *@=* @ * fac(0)))) P =24 < ——————- n=1
4> @*@*@A=* D)) n=20

4 * * return

4 * / returnp
24 5 function calls 1 function call

upto 4 words to store the temporal data 1 word to store the temporal data

o The main problem with the recursive version is that fac needs more
memory space and function calls as the problem size n increases.

o In contrast, faci always needs only 1 function call and 1 word
regardless of the value of n. 2 Suppose n = 1000!

Programming Methodology
©onn

Tail recursion
£

0 A function fis tail-recursive if it is a recursive function that
returns either a value without needing recursion or the result
of a recursive activation.

Ex: void fact(int n, int& p) { if (n > 0) { p*=n; fact(n-1,p);} }

no int/ ~ S k

- cf: Neither Fib nor fac is tail-recursive. " -----__ BN

S o ~

0o What are tail-recursive functions so great about? .

—> It is can always be translated to iterative structure.

initialization

Y ———— - _— - —_—-—
- -
-

fact(4,(1}

|l - -~

2 n=4, p=1 |= | Fht 7= .o

5 ’ = int p=1; .
fact(3, 4) % n=3, p=4 g § for (; n >*0; n--)
fact(2, 12): n=2, p=12|8 [& D *= nu"
fact(l, 24) & n=1, p=24|5 return p;
fact(0, 24) n=0, p:24"3

Programming Methodology
©onn

Application of tail recursion
£

e]

o Write a tail-recursive version of fib. = efficient & simple

void fibt(int n, Int& I, 1nt& r) {
it (n>0) { l+=r; r=1; fibt(n-1,1,r); }

fibt(4,1,0)

.
‘e
‘e
.

““Fibt(3,1,1)

.
.
.
‘e
‘.
‘.
.

Fibt(2,2,1

‘e
.
)
.

“AFibt(1,3,2) 4
 fibt(0;5,3)

Programming Methodology

Inlining
£

o While enjoying the advantages of ~ VO'§, {20t .
using functions, can we minimize y = bargz é99
the overhead for function calls? ; oS Gy
0 For this, some languages such as inline int bar(int a, b) {
C++ support explicit inlining. %n§ § *tg,
o Pros and cons of inlining p GO x 7 t;
removes the overhead for function call.
Reckless use may increase the code size. l’
Inlined code is generally less readable void foo() {
and maintainable. f,nt X2, X4, T,x2. €
> So, inlining is ideal for a small ilzzzz_*gg?;
procedure invoked within frequently y = x1 / t;
executed regions (e.g., loops). <o z
> How about procedure with recursion? z = x2 / tl;

Programming Methodology }
Oonn

Exceptions
£

o Diverse types of error may occur in program execution

overflow, type error, segment faults, divide by zero, ...

Example jnt
n

a 9:
tb 3;

10 /7 (a— b * 3);
Exceptions are such errors detected at run time.
0 What would happen if your program ignores exceptions?

Errors will eventually cause low-level message (from O/S or hardware) to
be printed and to terminate the program execution.

Low-level message from Linux

$ a.out
Abort (core dump)

Programming Methodology
Oonn

Exceptions
p

0 What is the problem with low-level messages? o

They do not provide sufficient information about the error that caused
your program to end.

They may even produce an unpredictable result or cause unexpected
damage to your system. = sudden crash of an aviation control system?

0 Alternative solution: use test code defined by languages or users

test result = foo(a,b,c);
IT (test _result 1s error) raise exception;

When an exception is raised, the normal program control is interrupted
and the control is transferred to an exception handler, a special routine
that handles the exception.

Errors are controlled by the user, so they can be led to safer, predictable
and user-guided states.

Programming Methodology
Oonn

Exception handling models

foo (int 1, char c
float a[10]; abort _,
iIT (error occurs) !
raise. exceptlon(error type); !
} et T . termination
"""""""" N ____...continue model
exceptlon handler { resumption e
‘-. SW|tch (error-type) { L
E model | - :
case 1: handler, & error analysis ™.

.................. > case 2: handlerz

case n:

}

}

handler,, ..

.

..................
aay
“uy
.
-
.
.

.
......
........
...............

0 Exception handling makes programs robust & reliable.
0 But, it may be tedious because it needs to test possible errors.
o This might be inefficient if errors occurs infrequently.

Programming Methodology

* error report/print

~.error correction

RANHBAN

Exception handling in C++
g

o C++ originally had no explicit support for exceptions. -
0 In 1990, the ANSI C++ accepted the exception handling.

It provides a programming construct with three keywords for exception
handlers : try, catch, throw

Example void foo(.) {

. try {

" handler match . .. // code that is expected to raise a exception trv block
f throw expr // raise an exception with actual parameter Y
type(expr) == type.? f'; catch(type; var;) { // asingle formal parameter

,_ .WCode for an exception handler,

e f S . > handler block
, 2 catch (type,var,) { // asingle formal parameter
jump to .. //|code for an exception handler,
matched handler ¥ /

.. €= resume execution fr [om the first instruction following
+ the try/handler block after exception is handled

Programming Methodology
©onn

Example: exception handling in C++
g

e]

a derived class of standard library class exception functional call expression

#i1nclude <cstdlib>
#include <iostream>
#include <stdexcept>
using std;

void i1s _dividable(int a, Int b) {
1T (Ib) throw Divide by 00
cout << “Yes, you can divide *;

¥ _
class Divide_by_0: '”'i‘nT:a)'(”(gl_{
pUbliggbllc ALMELE S RLT o cout << %Give two Integers:’’;
Divide by 00) : while (cin 2> x >V L
= = cc ” cou an ivide
. runtime_error(“No, you cannot!”) {} X << “ with “ << y << “?2\n”;
’ try {
i1s_dividable(x, y);
Give two integers: 10 3 cout << X << * py ¥ <<y
Can | divide 10 with 3? y << AT
Yes, you can divide 10 by 3. catch(Divide by 0& d) {
. . cout << “Exception: *
Give two Integers: 11 O << d_what()p<< endl;
Can 1 divide 11 with 0?
Exception: No, you cannot! cout << “\nGive two integers:”;
Give two integers: return O; //normaltermination
B +

Programming Methodology Recall: a class = a tvpe
@.Qﬂﬂ - yp

