Evaluation of Anisotropy using Knoop indenter

A.R.S.M 2019.05.13.

Why use 3D printing

▲ Intake module

▲ Cylinder head

▲ Turbine housing

▲ Intake module VR6

▲ Compressor housing

▲ Turbine housing

3D Printing Technique

Anisotropic issues

Microstructures of N, R, T plane depending on reduction rate

- R plane : More or less equiaxed grains

S. Choudhary, V. Nanda, S. Shekhar, A. Garg, and K. Mondal, Effect of Microstructural Anisotropy on the Electrochemical Behavior of Rolled Mild Steel, JMEPEG (2017) 26:185–194

Grains of N, R, T plane depending on reduction rate

<u>Yield Strength</u>

Tensile Strength

Separation of load difference with stress directions

<#>

Separation of load difference with stress directions

Evaluation of Residual Stresses Directionality

Separation of stress

*Assumption

 $\sigma_{Total} = \frac{\sigma_{RD} + \sigma_{TD}}{2} = \frac{\sigma_{RD} + (p \cdot \sigma_{RD})}{2} \qquad (p = \frac{\sigma_{RD}}{\sigma_{TD}})$ $\sigma_{RD} = \frac{2 \cdot \sigma_{Total}}{(1 + p)}$ $\sigma_{TD} = 2 \cdot \sigma_{Total} - \sigma_{RD}$

$$H_{RD} = \alpha_{TD}\sigma_{RD} + \alpha_{RD}\sigma_{TD}$$

 $H_{TD} = \alpha_{RD}\sigma_{RD} + \alpha_{TD}\sigma_{TD}$

< Invariant hardness regardless of stress state >

$$p = \frac{\sigma_{TD}}{\sigma_{RD}} = \frac{\frac{H_{TD}}{H_{RD}}}{\frac{1}{\frac{\alpha_{RD}}{\alpha_{TD}}}} \frac{\frac{\alpha_{RD}}{\alpha_{TD}}}{\frac{1}{\frac{\alpha_{RD}}{\alpha_{TD}}}}$$

Load-Depth difference according to indentation direction

Anisotropy evaluation using DIC

* DIC

Prediction of Anisotropy

Evaluation of anisotropy of amorphous materials by high energy X-ray scattering

Evaluation of amorphous anisotropy by measuring 4 point electrical resistance

Validation of applying the model to 3D printing material

